

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2007 by John L. Viescas and Jeff Conrad

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

Library of Congress Control Number: 2006940676

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 2 1 0 9 8 7

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor-
mation about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress.
Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, ActiveX, Calibri, Excel, Expression, FrontPage, Georgia, Hotmail, InfoPath,
IntelliSense, Internet Explorer, MSDN, MS-DOS, MSN, OneNote, Outlook, PivotChart, PivotTable,
PowerPoint, Rushmore, SharePoint, SQL Server, Tahoma, Verdana, Visual Basic, Visual C#, Visual
C++, Visual FoxPro, Visual J#, Visual Studio, Windows, Windows Live, Windows NT, Windows
Server, and Windows Vista. are either registered trademarks or trademarks of Microsoft Corporation in
the United States and/or other countries. Other product and company names mentioned herein may be
the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided
without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its
resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions Editor: Juliana Aldous Atkinson
Developmental Editor: Sandra Haynes
Project Editor: Melissa von Tschudi-Sutton
Project Management: Publishing.com
Compositor: Curtis Philips

Body Part No. X13-24152

Technical Reviewer: Rozanne Murphy Whalen
Copy Editors: Andrea Fox and Kim Wimpsett
Proofreader: Andrea Fox
Indexer: Rebecca Plunkett

Dedication

For Suzanne, as always . . .

 — John Viescas

For the love of my life, Cheryl. Without your love, support, and patience,

I would not have been able to complete this project.

Thank you for always believing in me.

And for Amy, Aaron, and Arica. Thank you

for understanding why Daddy could not play

very much for a long time.

And thank you John for taking a chance

and giving an untested, slightly crazy, Access Junkie

the opportunity of a lifetime.

 — Jeff Conrad

Contents at a Glance
Part 1: Understanding Microsoft
Access
Chapter 1
What Is Microsoft Access? 3

Chapter 2
Exploring the New Look of Access 2007 19

Chapter 3
Microsoft Offi ce Access 2007 Overview 99

Part 2: Building an Access 2007
Desktop Application
Chapter 4
Creating Your Database and Tables 141

Chapter 5
Modifying Your Table Design 203

Chapter 6
Importing and Linking Data 253

Chapter 7
Creating and Working with
Simple Queries . 347

Chapter 8
Building Complex Queries 413

Chapter 9
Modifying Data with Action Queries 485

Part 3: Creating Forms and Reports
in a Desktop Application
Chapter 10
Using Forms . 517

Chapter 11
Building a Form . 559
Chapter 12
Customizing a Form . 609

Chapter 13
Advanced Form Design 685

Chapter 14
Using Reports . 735

Chapter 15
Constructing a Report . 757

Chapter 16
Advanced Report Design 811

Part 4: Automating an Access
Application
Chapter 17
Understanding Event Processing 867

Chapter 18
Automating Your Application
with Macros . 887

Chapter 19
Understanding Visual Basic
Fundamentals . 941

Chapter 20
Automating Your Application with
Visual Basic . 1051

Part 5: Linking Access and the Web
Chapter 21
Publishing Data on the Web 1127

Chapter 22
Working with Windows SharePoint
Services . 1165

Chapter 23
Using XML . 1235
v

vi Contents at a Glance
Part 6: After Completing Your
Application
Chapter 24
The Finishing Touches 1283

Chapter 25
Distributing Your Application 1319

Appendix
Installing Your Software 1341

 Bonus Content
 on the Companion CD

Part 7: Designing an Access Project
Chapter 26
Building Tables in an Access Project 1449

Chapter 27
Building Queries in an Access Project 1493
Chapter 28
Designing Forms in an Access Project 1549

Chapter 29
Building Reports in an Access Project 1569

Part 8: Articles
Article 1
Designing Your Database Application A3

Article 2
Understanding SQL .A33

Article 3
Exporting Data . A79

Article 4
Function Reference . A85

Article 5
Color Names and Codes A93

Article 6
Macro Actions .A101

Table of Contents
Acknowledgments . xxv

About the CD . xxvii

What’s on the CD. xxvii

Sample Applications .xxviii

System Requirements . xxix

Support Information . xxix

Conventions and Features Used in This Book . xxxi

Text Conventions . xxxi

Design Conventions . xxxi

Syntax Conventions. xxxiii

Introduction . xxxv

Getting Familiar with Access 2007 . xxxv

About This Book .xxxvi

Part 1: Understanding Microsoft Access .1
Chapter 1: What Is Microsoft Access? . 3

What Is a Database?. 4

Relational Databases. 4

Database Capabilities . 5

Access as an RDBMS . 6

Data Defi nition and Storage . 6

Data Manipulation. 9

Data Control . 12

Access as an Application Development System . 13

Deciding to Move to Database Software . 15
vii

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

viii Table of Contents
Chapter 2: Exploring the New Look of Access 2007 . 19
Opening Access for the First Time. 19

Getting Started—A New Look for Access . 21

Opening an Existing Database . 22

Exploring the Microsoft Offi ce Button . 25

Taking Advantage of the Quick Access Toolbar . 27

Understanding Content Security . 34

Temporarily Enabling a Database That Is Not Trusted . 35

Understanding the Trust Center . 36

Enabling Content by Defi ning Trusted Locations. 39

Understanding the New Ribbon Feature . 41

Home Tab . 42

Create Tab. 42

External Data Tab . 43

Database Tools Tab . 44

Understanding the New Navigation Pane . 45

Exploring Navigation Pane Object Views . 48

Working with Custom Categories and Groups. 53

Sorting and Selecting Views in the Navigation Pane . 76

Manually Sorting Objects in the Navigation Pane. 77

Searching for Database Objects . 78

Using the Single-Document vs. Multiple-Document Interface . 83

Modifying Global Settings via the Access Options Dialog Box . 87

Chapter 3: Microsoft Offi ce Access 2007 Overview. 99
The Architecture of Access . 99

Exploring a Desktop Database—Housing Reservations . 102

Tables. 105

Queries . 110

Forms. 114

Reports . 120

Macros. 128

Modules . 130

Exploring a Project File—Conrad Systems Contacts . 132

Tables. 133

Views, Functions, and Stored Procedures . 135

The Many Faces of Access. 137

Part 2: Building an Access 2007 Desktop Application 139
Chapter 4: Creating Your Database and Tables. 141

Creating a New Database . 142

Using a Database Template to Create a Database. 142

Creating a New Empty Database . 147

Creating Your First Simple Table by Entering Data. 149

Creating a Table Using a Table Template . 151

 Table of Contents ix
Creating a Table in Design View . 155

Defi ning Fields . 156

Understanding Field Data Types. 157

Setting Field Properties . 161

Completing the Fields in the Companies Table . 166

Defi ning Simple Field Validation Rules . 168

Defi ning Input Masks . 170

Defi ning a Primary Key . 174

Defi ning a Table Validation Rule . 175

Understanding Other Table Properties . 178

Defi ning Relationships. 181

Defi ning Your First Relationship . 183

Creating a Relationship on Multiple Fields . 186

Adding Indexes. 188

Single-Field Indexes . 188

Multiple-Field Indexes . 190

Setting Table Design Options. 191

Creating a Default Template for New Databases . 195

Printing a Table Defi nition . 199

Database Limitations . 201

Chapter 5: Modifying Your Table Design. 203
Before You Get Started . 204

Making a Backup Copy. 205

Checking Object Dependencies . 207

Deleting Tables . 209

Renaming Tables . 211

Changing Field Names . 212

Moving Fields . 217

Inserting Fields . 220

Copying Fields . 222

Deleting Fields . 225

Changing Data Attributes . 225

Changing Data Types . 226

Changing Data Lengths . 230

Dealing with Conversion Errors. 231

Changing Other Field Properties . 232

Reversing Changes. 234

Using the Table Analyzer Wizard. 234

Taking a Look at Lookup Properties . 240

Working with Multi-Value Lookup Fields. 245

Changing the Primary Key . 248

Compacting Your Database . 250

x Table of Contents
Chapter 6: Importing and Linking Data. 253
A Word About Open Database Connectivity (ODBC) . 253

Creating a Data Source to Link to an ODBC Database . 255

Importing vs. Linking Database Files . 259

Importing Data and Databases . 260

Importing dBASE Files . 260

Importing Paradox Files . 265

Importing SQL Tables . 266

Importing Access Objects . 271

Importing Spreadsheet Data . 273

Preparing a Spreadsheet . 274

Importing a Spreadsheet . 275

Fixing Errors . 280

Importing Text Files . 282

Preparing a Text File . 282

Importing a Text File . 285

Fixing Errors . 290

Modifying Imported Tables . 292

Linking Files. 292

Security Considerations . 293

Performance Considerations . 293

Linking Access Tables . 295

Linking dBASE and Paradox Files . 298

Linking Text and Spreadsheet Files . 300

Linking SQL Tables . 301

Modifying Linked Tables . 302

Unlinking Linked Tables . 303

Using the Linked Table Manager . 303

Collecting Data via E-Mail. 304

Collecting Data via HTML Forms . 305

Collecting Data Using InfoPath Forms. 327

Chapter 7: Creating and Working with Simple Queries . 347
Selecting Data from a Single Table . 349

Specifying Fields . 351

Setting Field Properties . 353

Entering Selection Criteria . 355

Using Expressions . 362

Using the Expression Builder . 371

Specifying Field Names . 377

Sorting Data . 378

Testing Validation Rule Changes . 381

Checking a New Field Validation Rule . 381

Checking a New Table Validation Rule . 382

Working in Query Datasheet View . 384

Moving Around and Using Keyboard Shortcuts . 384

Working with Subdatasheets. 387

 Table of Contents xi
Changing Data . 390

Working with Hyperlinks . 397

Sorting and Searching for Data. 401

Chapter 8: Building Complex Queries . 413
Selecting Data from Multiple Tables. 414

Creating Inner Joins . 414

Building a Query on a Query. 421

Using Outer Joins . 425

Using a Query Wizard . 431

Summarizing Information with Totals Queries . 435

Totals Within Groups . 435

Selecting Records to Form Groups. 440

Selecting Specifi c Groups. 441

Building Crosstab Queries . 442

Using Query Parameters . 449

Customizing Query Properties. 452

Controlling Query Output . 452

Working with Unique Records and Values . 454

Defi ning a Subdatasheet . 458

Other Query Properties . 462

Editing and Creating Queries in SQL View. 463

Limitations on Using Select Queries to Update Data. 468

Creating PivotTables and PivotCharts from Queries . 469

Building a Query for a PivotTable. 470

Designing a PivotTable . 473

Designing a PivotChart. 478

Chapter 9: Modifying Data with Action Queries . 485
Updating Groups of Rows. 486

Testing with a Select Query . 486

Converting a Select Query to an Update Query . 488

Running an Update Query. 489

Updating Multiple Fields . 491

Creating an Update Query Using Multiple Tables or Queries 493

Creating a New Table with a Make-Table Query. 495

Creating a Make-Table Query . 496

Running a Make-Table Query . 500

Inserting Data from Another Table . 502

Creating an Append Query . 503

Running an Append Query . 506

Deleting Groups of Rows . 507

Testing with a Select Query . 507

Using a Delete Query . 510

Deleting Inactive Data . 510

Troubleshooting Action Queries . 512

Solving Common Action Query Errors and Problems. 512

Looking at an Error Example . 513

xii Table of Contents
Part 3: Creating Forms and Reports in a Desktop Application 515
Chapter 10: Using Forms . 517

Uses of Forms . 517

A Tour of Forms . 518

Headers, Detail Sections, and Footers . 518

Multiple-Page Forms . 520

Continuous Forms . 520

Split Forms . 522

Subforms. 522

Pop-Up Forms . 523

Modal Forms . 524

Special Controls . 526

PivotTables and PivotCharts . 536

Moving Around on Forms and Working with Data . 539

Viewing Data . 539

Adding Records and Changing Data. 543

Adding a New Record. 543

Changing and Deleting Data. 550

Searching for and Sorting Data . 551

Performing a Simple Search . 552

Using the Search Box . 553

Performing a Quick Sort on a Form Field . 554

Adding a Filter to a Form . 554

Printing Forms . 557

Chapter 11: Building a Form . 559
Forms and Object-Oriented Programming . 559

Starting from Scratch—A Simple Input Form . 563

Building a New Form with Design Tools . 563

Building a Simple Input Form for the tblCompanies Table . 578

Customizing Colors and Checking Your Design Results . 587

Working with Quick Create Commands and the Form Wizard . 590

Creating a Form with the Quick Create Commands . 590

Creating the Basic Products Form with the Form Wizard . 593

Modifying the Products Form. 598

Simplifying Data Input with a Form . 601

Taking Advantage of Combo Boxes and List Boxes. 601

Using Toggle Buttons, Check Boxes, and Option Buttons . 605

Chapter 12: Customizing a Form. 609
Aligning and Sizing Controls in Design View . 609

Sizing Controls to Fit Content . 612

Adjusting the Layout of Controls . 616

“Snapping” Controls to the Grid . 617

Lining Up Controls . 619

 Table of Contents xiii
Working in Layout View . 623

Understanding Control Layouts and Control Anchoring . 623

Lining Up Controls . 625

Moving Controls Within a Control Layout . 626

Formatting a Column of Controls. 630

Resizing Controls . 631

Removing a Control Layout. 632

Placing Controls into a Control Layout . 635

Adding Some Space with Control Padding. 638

Completing the Form . 640

Enhancing the Look of a Form. 642

Lines and Rectangles . 642

Colors and Special Effects . 645

Fonts . 648

Setting Control Properties . 651

Formatting Properties . 651

Adding a Scroll Bar . 661

Enabling and Locking Controls . 662

Setting the Tab Order . 662

Adding a Smart Tag. 663

Understanding Other Control Properties . 666

Setting Form Properties . 670

Allowing Different Views . 670

Setting Navigation Options . 671

Defi ning a Pop-Up and/or Modal Form . 672

Controlling Edits, Deletions, Additions, and Filtering . 673

Defi ning Window Controls . 675

Setting the Border Style . 675

Understanding Other Form Properties . 676

Setting Form and Control Defaults . 680

Changing Control Defaults . 680

Working with AutoFormat . 681

Defi ning a Template Form . 682

Chapter 13: Advanced Form Design. 685
Basing a Form on a Multiple-Table Query . 686

Creating a Many-to-One Form . 686

Creating and Embedding Subforms . 692

Specifying the Subform Source. 693

Designing the Innermost Subform . 696

Designing the First Level Subform . 701

Embedding a Subform . 703

Specifying the Main Form Source . 706

Creating the Main Form . 707

Creating a Subdatasheet Subform . 710

Displaying Values in an Option Group . 714

Using Conditional Formatting . 716

xiv Table of Contents
Working with the Tab Control . 719

Creating Multiple-Page Forms. 723

Introducing ActiveX Controls—The Calendar Control . 726

Working with PivotChart Forms. 730

Building a PivotChart Form . 731

Embedding a Linked PivotChart . 733

Chapter 14: Using Reports . 735
Uses of Reports. 735

A Tour of Reports . 736

Print Preview—A First Look . 737

Headers, Detail Sections, Footers, and Groups . 739

Subreports . 741

Objects in Reports. 744

Report View—A First Look. 745

Printing Reports . 750

Print Setup . 750

Chapter 15: Constructing a Report . 757
Starting from Scratch—A Simple Report . 757

Building the Report Query. 758

Designing the Report . 759

Grouping, Sorting, and Totaling Information . 761

Completing the Report. 769

Using the Report Command. 775

Using the Report Wizard. 777

Specifying Report Wizard Options. 778

Viewing the Result. 783

Modifying a Wizard-Created Report in Layout View . 784

Building a Report in Layout View . 790

Starting with a Blank Report . 790

Adding Grouping and Sorting. 792

Working with Control Layouts . 797

Adding Totals to Records . 804

Applying an AutoFormat . 807

Chapter 16: Advanced Report Design . 811
Building a Query for a Complex Report . 812

Creating the Basic Facility Occupancy By Date Report . 813

Defi ning the Grouping and Sorting Criteria . 816

Setting Section and Report Properties. 819

Section Properties . 819

Report Properties . 822

Using Calculated Values . 830

Adding the Print Date and Page Numbers . 830

Performing Calculations. 833

Hiding Redundant Values and Concatenating Text Strings . 840

 Table of Contents xv
Calculating Percentages . 843

Using Running Sum. 845

Taking Advantage of Conditional Formatting . 848

Creating and Embedding a Subreport . 851

Understanding Subreport Challenges . 851

Building a Report with a Subreport . 855

Adding a PivotChart to a Report . 860

Designing the PivotChart Form . 860

Embedding a PivotChart in a Report . 861

Part 4: Automating an Access Application 865
Chapter 17: Understanding Event Processing. 867

Access as a Windows Event-Driven Application . 867

Understanding Events in Windows. 867

Leveraging Access Events to Build an Application. 868

Summary of Form and Report Events. 869

Understanding Event Sequence and Form Editing. 882

Chapter 18: Automating Your Application with Macros . 887
Uses of Macros . 888

The Macro Design Facility—An Overview . 890

Working with the Macro Design Window. 890

Saving Your Macro . 893

Testing Your Macro . 894

Defi ning Multiple Actions . 895

Grouping Macros . 897

Understanding Conditional Expressions . 900

Using Embedded Macros . 901

Editing an Embedded Macro. 902

Creating an Embedded Macro . 904

Deleting an Embedded Macro . 906

Using Temporary Variables. 907

Trapping Errors in Macros. 910

Understanding Macro Actions That Are Not Trusted . 916

Making Your Application Come Alive with Macros . 918

Referencing Form and Report Objects . 919

Opening a Secondary Form. 921

Synchronizing Two Related Forms . 924

Validating Data and Presetting Values. 928

Converting Your Macros to Visual Basic. 938

Chapter 19: Understanding Visual Basic Fundamentals . 941
The Visual Basic Development Environment . 942

Modules . 942

The Visual Basic Editor Window . 945

Working with Visual Basic Debugging Tools . 951

xvi Table of Contents
Variables and Constants . 961

Data Types . 961

Variable and Constant Scope . 963

Declaring Constants and Variables . 965

Const Statement . 965

Dim Statement . 966

Enum Statement . 969

Event Statement. 971

Private Statement . 972

Public Statement . 973

ReDim Statement. 974

Static Statement. 975

Type Statement . 977

Collections, Objects, Properties, and Methods. 978

The Access Application Architecture . 978

The Data Access Objects (DAO) Architecture . 981

The ActiveX Data Objects (ADO) Architecture . 985

Referencing Collections, Objects, and Properties . 987

Assigning an Object Variable—Set Statement . 991

Object Methods. 993

Functions and Subroutines . 1005

Function Statement. .1006

Sub Statement . 1007

Understanding Class Modules .1009

Property Get. 1010

Property Let . 1012

Property Set . 1014

Controlling the Flow of Statements . 1016

Call Statement . 1017

Do…Loop Statement . 1017

For…Next Statement . 1018

For Each…Next Statement . 1019

GoTo Statement . 1020

If…Then…Else Statement. 1021

RaiseEvent Statement . 1022

Select Case Statement . 1023

Stop Statement . 1024

While…Wend Statement. 1025

With…End Statement . 1025

Running Macro Actions and Menu Commands . 1026

DoCmd Object . 1026

Executing an Access Command . 1027

Actions with Visual Basic Equivalents. 1028

Trapping Errors . 1028

On Error Statement . 1029

Some Complex Visual Basic Examples . 1030

A Procedure to Randomly Load Data . 1030

A Procedure to Examine All Error Codes .1044

 Table of Contents xvii
Chapter 20: Automating Your Application with Visual Basic 1051
Why Aren’t We Using Macros?. 1051

When to Use Macros. 1052

When to Use Visual Basic . 1052

Assisting Data Entry . 1053

Filling In Related Data. 1053

Handling the NotInList Event . 1058

Fixing an E-Mail Hyperlink. 1061

Providing a Graphical Calendar . 1063

Working with Linked Photos . 1069

Validating Complex Data . 1071

Checking for Possible Duplicate Names . 1071

Testing for Related Records When Deleting a Record . 1074

Verifying a Prerequisite . 1075

Maintaining a Special Unique Value. 1077

Checking for Overlapping Data . 1078

Controlling Tabbing on a Multiple-Page Form . 1080

Automating Data Selection . 1082

Working with a Multiple-Selection List Box . 1082

Providing a Custom Query By Form. 1086

Selecting from a Summary List . 1094

Filtering One List with Another . 1095

Linking to Related Data in Another Form or Report . 1098

Linking Forms Using a Filter . 1098

Linking to a Report Using a Filter . 1099

Synchronizing Two Forms Using a Class Event . 1101

Automating Complex Tasks . 1105

Triggering a Data Task from a Related Form . 1105

Linking to a Related Task . 1109

Calculating a Stored Value . 1114

Automating Reports . 1114

Allowing for Used Mailing Labels . 1115

Drawing on a Report. 1118

Dynamically Filtering a Report When It Opens . 1121

Part 5: Linking Access and the Web .1125
Chapter 21: Publishing Data on the Web . 1127

Working with the Web . 1127

Understanding HTML . 1128

Introducing XML . 1135

Understanding Static Web Pages . 1137

Viewing Static HTML Pages . 1139

Creating a Static HTML Document . 1140

Improving the Look of Exported Data in HTML. 1143

Generating an HTML Page from an Access Report . 1151

Writing HTML from Visual Basic . 1154

xviii Table of Contents
Creating Dynamic Web Pages . 1158

Delivering Dynamic Query Results . 1158

Processing Live Data with HTML Forms. 1160

Using Visual Studio .NET and ASP.NET . 1160

Sharing Your Data with SharePoint . 1161

Introducing Windows SharePoint Services . 1161

Offi ce and Windows SharePoint Services . 1162

Chapter 22: Working with Windows SharePoint Services. 1165
Working Within the Windows SharePoint Services User Interface 1167

Editing Data in Lists. 1168

Creating New Views . 1172

Adding Columns to Lists . 1175

Recycle Bin . 1179

Using Windows SharePoint Services from Access. 1182

Exporting Data to Windows SharePoint Services. 1182

Importing a List from Windows SharePoint Services . 1186

Linking a Windows SharePoint Services List into Access . 1191

Using SharePoint List Options with Linked Lists. 1196

Creating a New Windows SharePoint Services List from Within Access 1198

Migrating an Access Database to a Windows SharePoint Services Site 1207

Publishing Your Database to a Windows SharePoint Services Site1208

Moving Your Database to a Windows SharePoint Services Site 1212

Republish a Database to a Windows SharePoint Services Site 1219

Opening the Database from Windows SharePoint Services 1223

Working Offl ine . 1226

Synchronizing Changes After Working Offl ine . 1230

Chapter 23: Using XML . 1235
Exploring XML . 1236

Well-Formed XML . 1236

Understanding XML File Types . 1237

Using XML in Microsoft Access . 1245

Exporting and Importing XML from the User Interface . 1245

Importing and Exporting XML in Visual Basic . 1256

Modifying Table Templates . 1260

Adding a New Field to a Table Template. 1261

Modifying a Field in a Table Template. .1264

Customizing the Ribbon with XML . 1266

Creating a USysRibbons Table . 1266

Creating a Test Form. 1270

Building the Ribbon XML . 1270

 Table of Contents xix
Part 6: After Completing Your Application 1281
Chapter 24: The Finishing Touches . 1283

Creating Custom Ribbons . 1283

Loading Ribbon XML .1284

Using Ribbon Attributes . 1287

Creating VBA Callbacks .1296

Dynamically Updating Ribbon Elements . 1297

Loading Images into Custom Controls . 1299

Hiding Options on the Microsoft Offi ce Button .1300

Setting Focus to a Tab . 1301

Fine-Tuning with Performance Analyzer . 1302

Disabling Layout View. .1304

Defi ning Switchboard Forms . 1305

Designing a Switchboard Form from Scratch . 1305

Using the Switchboard Manager to Design Switchboard Forms.1306

Controlling How Your Application Starts and Runs . 1310

Setting Startup Properties for Your Database . 1310

Starting and Stopping Your Application . 1312

Creating an AutoKeys Macro. 1315

Performing a Final Visual Basic Compile . 1316

Chapter 25: Distributing Your Application . 1319
Using Linked Tables in a Desktop Database . 1320

Taking Advantage of the Database Splitter Wizard. 1320

Creating Startup Code to Verify and Correct Linked Table Connections 1323

Understanding Runtime Mode . 1328

Creating an Execute-Only Database . 1329

Creating an Application Shortcut . 1331

Encrypting Your Database . 1334

Packaging and Signing Your Database. 1336

Understanding the Access 2007 Developer Extensions and Runtime.1340

 See the companion CD for bonus content Parts 7 and 8

Appendix: Installing Your Software . 1341
Installing the Microsoft Offi ce System . 1342

Choosing Options When You Have No Previous Version of Microsoft Offi ce 1342

Choosing Options to Upgrade a Previous Version of Microsoft Offi ce 1347

Installing SQL Server 2005 Express Edition . 1349

Converting from a Previous Release of Access . 1358

Conversion Issues . 1359

xx Table of Contents
Index to Troubleshooting Topics . 1361

Index . 1363

 Bonus Content on the Companion CD

Part 7: Designing an Access Project . 1445
Chapter 26: Building Tables in an Access Project . 1447

Creating a New Project File .1448

Building a New SQL Server Database .1448

Connecting to an Existing SQL Server Database . 1452

Creating a Table in Design View . 1457

Defi ning Columns. 1459

Column Data Types . 1461

Completing the Columns in the Companies Table . 1465

Understanding Column Properties. 1467

Defi ning a Primary Key . 1470

Adding Indexes. 1471

Creating Additional Tables in Contact Tracking . 1475

Defi ning Check Constraints . 1477

Creating Additional Constraint Expressions . 1481

Defi ning Relationships. 1482

Defi ning Relationships in Table Design View . 1482

Defi ning Relationships Using Database Diagrams . 1485

Setting Table Design Options. 1488

Chapter 27: Building Queries in an Access Project. 1491
Viewing Queries in an Access Project . 1492

Building Queries Using the Query Designer . 1495

Understanding the Query Designer. 1495

Working with Views . 1507

Working with In-Line Functions . 1513

Working with Stored Procedures . 1519

Building Queries Using a Text Editor . 1524

Building a Text Stored Procedure . 1526

Building a Text Scalar Function . 1541

Building a Text Table-Valued Function . 1543

 Table of Contents xxi
Chapter 28: Designing Forms in an Access Project . 1547
Understanding Form Differences in an Access Project . 1547

Choosing Option Settings . 1549

Setting Project Form Properties . 1552

Setting Recordset Type . 1554

Understanding Max Records . 1555

Working with Server Filters . 1558

Setting Input Parameters . 1561

Chapter 29: Building Reports in an Access Project . 1567
Understanding Report Differences in an Access Project. 1567

Setting Project Report Properties . 1569

Working with Server Filters . 1570

Working with Input Parameters. 1572

Part 8: Articles . A1
Article 1: Designing Your Database Application . A3

Application Design Fundamentals. .A3

Step 1: Identifying Tasks. .A4

Step 2: Charting Task Flow .A4

Step 3: Identifying Data Elements .A5

Step 4: Organizing the Data .A5

Step 5: Designing a Prototype and a User Interface .A5

Step 6: Constructing the Application .A5

Step 7: Testing, Reviewing, and Refi ning . A6

An Application Design Strategy. A7

Analyzing the Tasks. A7

Selecting the Data .A11

Organizing Tasks .A11

Data Analysis .A13

Choosing the Database Subjects .A13

Mapping Subjects to Your Database .A16

Database Design Concepts. .A16

Waste Is the Problem .A17

Normalization Is the Solution .A19

Effi cient Relationships Are the Result. .A27

When to Break the Rules. .A28

Improving Performance of Critical Tasks. .A29

Capturing Point-in-Time Data .A29

Creating Report Snapshot Data .A31

xxii Table of Contents
Article 2: Understanding SQL . A33
SQL SELECT Queries. .A34

Aggregate Functions: AVG, CHECKSUM_AGG, COUNT, MAX, MIN, STDEV,

 STDEVP, SUM, VAR, VARP. .A35

BETWEEN Predicate .A35

Column-Name .A35

Comparison Predicate .A37

EXISTS Predicate .A38

Expression. .A39

FROM Clause .A41

Syntax .A41

GROUP BY Clause .A44

HAVING Clause .A45

IN Clause .A46

IN Predicate .A47

LIKE Predicate .A48

NULL Predicate .A50

ORDER BY Clause. .A50

PARAMETERS Declaration .A52

Quantifi ed Predicate .A54

Search-Condition. .A55

SELECT Statement .A57

Subquery. .A64

TRANSFORM Statement. .A67

UNION Query Operator .A68

WHERE Clause .A70

SQL Action Queries .A71

DELETE Statement .A72

INSERT Statement (Append Query) .A73

SELECT . . . INTO Statement (Make-Table Query) .A75

UPDATE Statement .A77

Article 3: Exporting Data . A79
Exporting to Another Access Database .A79

Exporting to a Spreadsheet or to a dBASE or Paradox File .A80

Exporting to a Text File .A81

Exporting to a Mail Merge Document in Word .A81

Exporting to an ODBC Database .A82

Article 4: Function Reference . A85

Article 5: Color Names and Codes . A93

 Table of Contents xxiii
Article 6: Macro Actions. A101
Opening and Closing Access Objects .A102

Printing Data .A105

Executing a Query .A106

Testing Conditions and Controlling Action Flow .A107

Setting Values .A109

Searching for Data. .A111

Building a Custom Menu and Executing Menu Commands A112

Controlling Display and Focus. .A113

Informing the User of Actions .A115

Renaming, Copying, Deleting, Saving, Importing, and Exporting ObjectsA115

Using Temporary Variables .A117

Handling Errors .A118

Running Another Application .A118
Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

Acknowledgments
The folks on the Microsoft Offi ce Access development team provided invaluable
 technical support as we worked with the beta software and tried to fi gure out some
of the challenging technical details in Microsoft Offi ce Access 2007. Special thanks to
Clint Covington, Tim Getsch, Zac Woodall, Suraj Poozhiyil, Neil Black, Viki Selca, and
Rob Cooper. You folks make an author’s job so much easier. But any errors or omissions
in this book are ultimately ours.

A book this large and complex requires a top-notch team to get what we put into
 Microsoft Offi ce Word documents onto the printed pages you are now holding. We
had some of the best in the business at both Microsoft Press and Publishing.com to
get the job done. Many thanks to Sandra Haynes and Melissa von Tschudi-Sutton at
Microsoft Press. Special thanks to Curt Philips, Rozanne Murphy Whalen, Andrea Fox,
Kim Wimpsett, and Publishing.com. We couldn’t have done it without you!

And last, but certainly not least, we thank our wives and soul mates. They not only
patiently stood by us as we cranked through nearly 3,000 pages of manuscript but also
helped behind the scenes reviewing and editing what we did.

John Viescas Jeff Conrad
Paris, France Bend, Oregon
 February 2007
 xxv

About the CD
The companion CD that ships with this book contains many tools and resources to
help you get the most out of your Inside Out book.

CAUTION!
If you install the sample fi les on a Microsoft Windows Vista system, a Windows XP sys-

tem, or a Windows Server 2003 or later system, you must run the installation program

as an Administrator to install the fi les in the default location. If you do not do that,

 Microsoft Offi ce Access 2007 opens all the database fi les as read-only. If you are unable

to run the installation program as an Administrator, change the default installation loca-

tion to a subfolder in My Documents.

What’s on the CD
Your Inside Out CD includes the following:

O Sample fi les Click the Install Sample Files button on the Welcome tab to install
the sample fi les and resources referenced in the book.

O Additional eBooks In this section you’ll fi nd the following resources:

Microsoft Computer Dictionary, Fifth Edition
First Look 2007 Microsoft Offi ce System (Katherine Murray,
2006)
Sample chapter and poster from Look Both Ways: Help Protect
Your Family on the Internet (Linda Criddle, 2007)
Windows Vista Product Guide

O Extending Offi ce Here you’ll fi nd links to Microsoft and other third-party tools
that will help you get the most out of your software experience.

O Resources In this section, you’ll fi nd links to white papers, users assistance
 articles, product support information, insider blogs, tools, and much more.

O Bonus content In the Bonus Content section, you’ll fi nd four chapters that will
teach you additional skills for creating client/server applications in an Access
project. You’ll also fi nd six articles that contain important reference materials.

•
•

•

•

C U O !
 xxvii

xxviii About the CD
Sample Applications
Throughout this book, you’ll see examples from three sample Offi ce Access 2007 appli-
cations included on the companion CD:

O Wedding List (WeddingMC.accdb and WeddingList.accdb). This application is an
example of a simple database that you might build for your personal use. It has
a single main table where you can track the names and addresses of invitees,
whether they’ve said that they will attend, the description of any gift they sent,
and whether a thank you note has been sent. Although you might be tempted
to store such a simple list in a Microsoft Excel spreadsheet or a Microsoft Word
document, this application demonstrates how storing the information in Access
makes it easy to search and sort the data and produce reports. The WeddingMC
database is automated entirely using macros, and the WeddingList database is the
same application automated with Microsoft Visual Basic.

O Housing Reservations (Housing.accdb). This application demonstrates how a
 company housing department might track and manage reservations in company-
owned housing facilities for out-of-town employees and guests. This application
includes data access pages that could be published on a company intranet for
use by employees logging in from remote locations. You’ll also fi nd Housing Data-
Copy.accdb and HousingDataCopy2.accdb fi les that contain many of the query,
form, and report examples.

O Conrad Systems Contacts (Contacts.accdb, ContactsData.accdb, Contacts.adp, and
 ContactsSQL.mdf). This application is both a contacts management and order
entry database—two samples for the price of one! This sample database demon-
strates how to build a client/server application using only desktop tools as well as
how to “upsize” an application to create an Offi ce Access 2007 project and related
Microsoft SQL Server tables, views, stored procedures, and functions. You will
need to install Microsoft SQL Server 2005 Express Edition to be able to fully use
the project version of this database. You’ll also fi nd a ContactsDataCopy.accdb fi le
that contains additional query, form, and report examples.

Please note that the person names, company names, e-mail addresses, and Web site
addresses in these databases are fi ctitious. Although we preloaded both databases
with sample data, the Housing Reservations and Conrad Systems Contacts databases
also include a special form (zfrmLoadData) that has code to load random data into the
 sample tables based on parameters that you supply.

The examples in this book assume you have installed the 2007 Microsoft Offi ce system,
not just Access 2007. Several examples also assume that you have installed all optional
features of Access through the 2007 Offi ce release setup program. If you have not
installed these additional features, your screen might not match the illustrations in this
book or you might not be able to run the samples from the companion CD.

 About the CD xxix
System Requirements
The following are the minimum system requirements necessary to run the CD:

O Microsoft Windows Vista, Windows XP with Service Pack (SP) 2, Windows Server
2003 with SP1, or newer operating system

O 500 megahertz (MHz) processor or higher

O 2 gigabytes (GB) storage space (a portion of this disk space will be freed after
installation if the original download package is removed from the hard drive)

O 256 megabytes (MB) RAM

O CD-ROM or DVD-ROM drive

O 1024×768 or higher resolution monitor

O Microsoft Windows or Windows Vista–compatible sound card and speakers

O Microsoft Internet Explorer 6 or newer

O Microsoft Mouse or compatible pointing device

Note
An Internet connection is necessary to access the hyperlinks on the companion CD. Con-

nect time charges may apply.

Support Information
Every effort has been made to ensure the accuracy of the contents of the book and
of this CD. As corrections or changes are collected, they will be added to a Microsoft
Knowledge Base article. Microsoft Press provides support for books and companion
CDs at the following Web site: www.microsoft.com/learning/support/books/.

If you have comments, questions, or ideas regarding the book or this CD, or ques-
tions that are not answered by visiting the site above, please send them via e-mail to
mspinput@microsoft.com.

You can also click the Feedback or CD Support links on the Welcome page. Please note
that Microsoft software product support is not offered through the above addresses.

If your question is about the software, and not about the content of this book, please
visit the Microsoft Help and Support page or the Microsoft Knowledge Base at
http://support.microsoft.com.

Note
An Internet connection is necessary to access the hyperlinks on the companion CD. Con-

nect time charges may apply.

xxx About the CD
In the United States, Microsoft software product support issues not covered
by the Microsoft Knowledge Base are addressed by Microsoft Product Support
Services. Location-specifi c software support options are available from
http://support.microsoft.com/gp/selfoverview/.

Microsoft Press provides corrections for books through the World Wide Web at
www.microsoft.com/mspress/support/. To connect directly to the Microsoft Press
 Knowledge Base and enter a query regarding a question or issue that you may have,
go to www.microsoft.com/mspress/support/search.htm.

Note
This companion CD relies on scripting for some interface enhancements. If scripting is

disabled or unavailable in your browser, follow these steps to run the CD:

1. From My Computer, double-click the drive that contains this companion CD.

2. Open the Webfi les folder.

3. Double-click Welcome.htm to open the CD in your default browser.

Note
This companion CD relies on scripting for some interface enhancements. If scripting is

disabled or unavailable in your browser, follow these steps to run the CD:

1. From My Computer, double-click the drive that contains this companion CD.

2. Open the Webfi les folder.

3. Double-click Welcome.htm to open the CD in your default browser.

Conventions and Features Used in This Book
This book uses special text and design conventions to make it easier for you to fi nd the
information you need.

Text Conventions
Convention Meaning

Abbreviated
 commands for
navigating the
Ribbon

For your convenience, this book uses abbreviated commands. For ex-
ample, “Click Home, Insert, Insert Cells” means that you should click
the Home tab on the Ribbon, then click the Insert button, and fi nally
click the Insert Cells command.

Boldface type Boldface type is used to indicate text that you type.

Initial Capital
 Letters

The fi rst letters of the names of tabs, dialog boxes, dialog box
 elements, and commands are capitalized. Example: the Save As
dialog box.

Italicized type Italicized type is used to indicate new terms.

Plus sign (+) in text Keyboard shortcuts are indicated by a plus sign (+) separating two
key names. For example, Alt+Shift+Tab means that you press the Alt,
Shift, and Tab keys at the same time.

Design Conventions

These are the book’s signature tips. In these tips, you’ll get the straight scoop on what’s

going on with the software—inside information about why a feature works the way it

does. You’ll also fi nd handy workarounds to deal with software problems.

Sidebars
Sidebars provide helpful hints, timesaving tricks, or alternative procedures related to the

task being discussed.

SIDE OUT This Statement Illustrates an Example of an “Inside Out”
Heading

These are the book’s signature tips. In these tips, you’ll get the straight scoop on what’s

going on with the software—inside information about why a feature works the way it

does. You’ll also fi nd handy workarounds to deal with software problems.

Sidebars
Sidebars provide helpful hints, timesaving tricks, or alternative procedures related to the

task being discussed.
 xxxi

xxxii Conventions and Features Used in This Book
TROUBLESHOOTING
This statement illustrates an example of a “Troubleshooting” problem
statement.
Look for these sidebars to fi nd solutions to common problems you might encounter.

Troubleshooting sidebars appear next to related information in the chapters. You can

also use “Index to Troubleshooting Topics” at the back of the book to look up problems

by topic.

Cross-references point you to other locations in the book that offer additional information
about the topic being discussed.

CAUTION!
Cautions identify potential problems that you should look out for when you’re complet-

ing a task or problems that you must address before you can complete a task.

Note
Notes offer additional information related to the task being discussed.

When an example has a related fi le that is included on the companion CD, this icon
appears in the margin. You can use these fi les to follow along with the book’s examples.

TROUBLESHOOTING

C U O !

Note
Notes offer additional information related to the task being discussed.

 Conventions and Features Used in This Book xxxiii
Syntax Conventions
The following conventions are used in the syntax descriptions for Visual Basic state-
ments in Chapter 19, “Understanding Visual Basic Fundamentals,” Chapter 20,
“Automating Your Application with Visual Basic,” SQL statements in Article 2, “Under-
standing SQL,” and any other chapter where you fi nd syntax defi ned. These conven-
tions do not apply to code examples listed within the text; all code examples appear
exactly as you’ll fi nd them in the sample databases.

You must enter all other symbols, such as parentheses and colons, exactly as they
appear in the syntax line. Much of the syntax shown in the Visual Basic chapter has
been broken into multiple lines. You can format your code all on one line, or you can
write a single line of code on multiple lines using the Visual Basic line continuation
character (_).

Convention Meaning

Bold Bold type indicates keywords and reserved words that you
must enter exactly as shown. Visual Basic understands keywords
 entered in uppercase, lowercase, and mixed case type. Access
stores SQL keywords in queries in all uppercase, but you can
enter the keywords in any case.

Italic Italicized words represent variables that you supply.

Angle brackets < > Angle brackets enclose syntactic elements that you must supply.
The words inside the angle brackets describe the element but
do not show the actual syntax of the element. Do not enter the
angle brackets.

Brackets [] Brackets enclose optional items. If more than one item is listed,
the items are separated by a pipe character (|). Choose one or
none of the elements. Do not enter the brackets or the pipe;
they’re not part of the element. Note that Visual Basic and SQL
in many cases require that you enclose names in brackets. When
brackets are required as part of the syntax of variables that you
must supply in these examples, the brackets are italicized, as in
[MyTable].[MyField].

Braces { } Braces enclose one or more options. If more than one option is
listed, the items are separated by a pipe character (|). Choose one
item from the list. Do not enter the braces or the pipe.

Ellipsis … Ellipses indicate that you can repeat an item one or more times.
When a comma is shown with an ellipsis (,…), enter a comma
between items.

Underscore _ You can use a blank space followed by an underscore to con-
tinue a line of Visual Basic code to the next line for readability.
You cannot place an underscore in the middle of a string lit-
eral. You do not need an underscore for continued lines in SQL,
but you cannot break a literal across lines.

Introduction
Microsoft Offi ce Access 2007 is just one part of Microsoft’s overall data management
product strategy. Like all good relational databases, it allows you to link related infor-
mation easily—for example, customer and order data that you enter. But Offi ce Access
2007 also complements other database products because it has several powerful con-
nectivity features. As its name implies, Access 2007 can work directly with data from
other sources, including many popular personal computer database programs (such
as dBASE and Paradox), with many SQL (Structured Query Language) databases on
the desktop, on servers, on minicomputers, or on mainframes, and with data stored
on Internet or intranet Web servers. Access 2007 also fully supports Microsoft’s
ActiveX technology, so an Access application can be either a client or a server for all the
other 2007 Microsoft Offi ce system applications, including Word, Excel, PowerPoint,
 Outlook, FrontPage, Publisher, and OneNote.

Access provides a very sophisticated application development system for the Microsoft
Windows operating system. This helps you build applications quickly, whatever the
data source. In fact, you can build simple applications by defi ning forms and reports
based on your data and linking them with a few macros or Microsoft Visual Basic
statements; there’s no need to write complex code in the classic programming sense.
Because Access uses Visual Basic, you can use the same set of skills with other applica-
tions in the Microsoft Offi ce system or with Visual Basic.

For small businesses (and for consultants creating applications for small businesses),
the Access desktop development features are all that’s required to store and manage
the data used to run the business. Access coupled with Microsoft SQL Server—on the
desktop or on a server—is an ideal way for many medium-size companies to build
new applications for Windows quickly and inexpensively. To enhance workgroup
produc tivity, you can use Access to create an application linked to data on a Microsoft
Windows SharePoint Services server. For large corporations with a big investment in
mainframe relational database applications as well as a proliferation of desktop applica-
tions that rely on personal computer databases, Access provides the tools to easily link
mainframe and personal computer data in a single Windows-based application. Access
2007 includes features to allow you to export or import data in XML format (the lingua
franca of data stored on the Web).

Getting Familiar with Access 2007
If you have never used a database program—including Access—you’ll fi nd Access 2007
very approachable. Using the results of extensive productivity lab tests, Microsoft has
completely revamped the user interface in all the Microsoft Offi ce programs. The new
Ribbon technology makes it much easier for novice users to get acquainted with Access
and easily discover its most useful features. To get a new user jump-started, Microsoft
has provided nearly a dozen local database templates that load onto your hard disk
when you install Access. In addition, you’ll fi nd many additional database templates
available for easy download from the Microsoft Offi ce Web site directly from within
 xxxv

xxxvi Introduction
Access. Microsoft plans to continue to add templates after Access 2007 is released to
further enhance your productivity.

Note
The Microsoft Offi ce Fluent user interface is the term used to describe the new UI for

the 2007 Microsoft Offi ce system. The Ribbon is a component of the Microsoft Offi ce

Fluent user interface and the term used throughout this book to refer to the Ribbon

 component.

But if you have used any prior version of Access, you’re in for a big surprise. Menus
and toolbars are gone—all replaced by the new Ribbon. The Database window has been
replaced by the Navigation Pane. When you fi rst start using Access 2007, you’ll prob-
ably notice a decrease in productivity—we certainly did—but it won’t take you long to
get comfortable with the new interface. You’ll probably soon discover features that you
didn’t know were there. Nearly all the old familiar objects are around—tables, queries,
forms, reports, macros, and modules, and you’ll fi nd that the standard design and data
views you’ve come to know and love are still around. You’ll also quickly learn that the
new Layout and Report views rapidly increase your productivity.

About This Book
If you’re developing a database application with the tools in Access 2007, this book
gives you a thorough understanding of “programming without pain.” It provides a
solid foundation for designing databases, forms, and reports and getting them all to
work together. You’ll learn that you can quickly create complex applications by linking
design elements with macros or Visual Basic. This book will also show you how to take
advantage of some of the more advanced features of Access 2007. You’ll learn how to
build an Access project that links directly to an SQL Server database. You’ll also learn
how to use Access tools to link to your Access data from the Web or link your Access
application to data stored on the Web.

If you’re new to developing applications, particularly database applications, this prob-
ably should not be the fi rst book you read about Access. We recommend that you fi rst
take a look at Microsoft Access 2007 Plain and Simple or Microsoft Access 2007 Step by Step.

Microsoft Offi ce Access 2007 Inside Out is divided into seven major parts:

O Part 1 provides an overview of Access 2007 and provides you with a detailed look
at the new user interface.

Chapter 1 explains the major features that a database should provide,
explores those features in Access, and discusses some of the main reasons
why you should consider using database software.

•

Note
The Microsoft Offi ce Fluent user interface is the term used to describe the new UI for

the 2007 Microsoft Offi ce system. The Ribbon is a component of the Microsoft Offi ce

Fluent user interface and the term used throughout this book to refer to the Ribbon

component.

 Introduction xxxvii
Chapter 2 thoroughly explores the new user interface introduced in the
2007 Offi ce release. The chapter also explains content security, working
with the Ribbon and the Navigation Pane, and setting options that custom-
ize how you work with Access 2007.

Chapter 3 describes the architecture of Access 2007, gives you an overview
of the major objects in an Access database by taking you on a tour through
two of the sample databases, and explains the many ways you can use
Access to create an application.

O Part 2 shows you how to create your desktop application database and tables and
build queries to analyze and update data in your tables.

Chapter 4 teaches you how to create databases and tables.

Chapter 5 shows you the ins and outs of modifying tables even after you’ve
already begun to load data and build other parts of your application.

Chapter 6 explains how to link to or import data from other sources.

Chapter 7 shows you how to build simple queries and how to work with
data in Datasheet view.

Chapter 8 discusses how to design queries to work with data from multiple
tables, summarize information, build queries that require you to work in
SQL view, and work with the PivotTable and PivotChart views of queries.

Chapter 9 focuses on modifying sets of data with queries—updating data,
inserting new data, deleting sets of data, or creating a new table from a
selection of data from existing tables.

O Part 3 discusses how to build and work with forms and reports in a desktop
 application.

Chapter 10 introduces you to forms—what they look like and how they
work.

Chapters 11, 12, and 13 teach you all about form design in a desktop appli-
cation, from simple forms you build with a wizard to complex, advanced
forms that use embedded forms or ActiveX controls.

Chapter 14 leads you on a guided tour of reports and explains their major
features.

Chapters 15 and 16 teach you how to design, build, and implement both
simple and complex reports in your desktop application.

O Part 4 shows you how to use the programming facilities in Visual Basic to inte-
grate your database objects and make your application “come alive.”

Chapter 17 discusses the concept of event processing in Access, provides
a comprehensive list of events, and explains the sequence in which critical
events occur.

Chapter 18 covers macro design in depth and explains how to use the new
error trapping and embedded macro features.

•

•

•
•

•
•

•

•

•

•

•

•

•

•

xxxviii Introduction
Chapter 19 is a comprehensive reference to the Visual Basic language and
object models implemented in Access. The fi nal section of the chapter pre-
sents two complex coding examples with a line-by-line discussion of the
code.

Chapter 20 thoroughly discusses some of the most common tasks that you
might want to automate with Visual Basic. Each section describes a prob-
lem, shows you specifi c form or report design techniques you must use to
solve the problem, and walks you through the code from one or more of the
sample databases that implements the solution.

O Part 5 is all about using Access tools with the Web.

Chapter 21 provides an overview of the ways you can publish data on a
Web site.

Chapter 22 discusses specifi c ways to publish your Access applications
using Windows SharePoint Services (version 3).

Chapter 23 covers the features in Access that handle XML, including
importing, updating, and publishing data. The chapter also shows you how
to use XML to modify table templates and design custom Ribbons.

O Part 6 covers tasks you might want to perform after completing your application.

Chapter 24 teaches you how to automate custom Ribbons, how to use the
Performance Analyzer tool, how to design a switchboard, and how to set
Startup properties.

Chapter 25 teaches you tasks for setting up your application so that you can
distribute it to others.

O Part 7 expands on what you learned in Parts 2 and 3 by teaching you the addi-
tional skills you need to create client/server applications in an Access project.

Chapter 26 shows you how to build a new project fi le and explains how to
defi ne SQL Server tables from the project.

Chapter 27 teaches you how to design the project equivalent of desktop
queries—views, stored procedures, and functions.

Chapter 28 builds on what you learned in Chapters 11–13 and shows you
how forms work differently in an Access project.

Chapter 29 leverages what you learned in Chapters 15–16 and teaches you
how to design reports in an Access project.

O The Appendix explains how to install the 2007 Offi ce release, including which
options you should choose for Access 2007 to be able to open all the samples in
this book. It also discusses how to install Microsoft SQL Server 2005 Express
Edition.

•

•

•

•

•

•

•

•

•

•

•

 Introduction xxxix
The CD also provides six Articles that contain important reference information:

Article 1 explains a simple technique that you can use to design a good rela-
tional database application with little effort. Even if you’re already familiar
with Access or creating database applications in general, getting the table
design right is so important that this article is a “must read” for everyone.

Article 2 is a complete reference to SQL as implemented in desktop data-
bases. It also contains notes about differences between SQL supported
natively by Access and SQL implemented in SQL Server.

Article 3 discusses how to export data and Access objects to various types
of other data formats from your Access application.

Article 4 lists the functions most commonly used in an Access application
categorized by function type.

Article 5 lists the color names and codes you can use in Access.

Article 6 lists the macro actions you can use in Access.

•

•

•

•

•
•

PART 1

Understanding
Microsoft Access

CHAPTER 1

What Is Microsoft Access? 3

CHAPTER 2

Exploring the New Look of Access 2007 19

CHAPTER 3

Microsoft Offi ce Access 2007 Overview.99
 1

CHAPTER 1

What Is Microsoft Access?

If you’re a serious user of a personal computer, you’ve probably been using word
processing or spreadsheet applications to help you solve problems. You might have

started a long time ago with character-based products running under MS-DOS but
subsequently upgraded to software that runs under the Microsoft Windows operating
system. You might also own some database software, either as part of an integrated
package such as Microsoft Works or as a separate program.

Database programs have been available for personal computers for a long time. Unfor-
tunately, many of these programs have been either simple data storage managers that
aren’t suitable for building applications or complex application development systems
that are diffi cult to learn and use. Even many computer-literate people have avoided
the more complex database systems unless they have been handed a complete, custom-
built database application. The introduction of Microsoft Access more than a decade
ago represented a signifi cant turnaround in ease of use. Many people are drawn to it to
create both simple databases and sophisticated database applications.

Now that Access is in its eighth release and has become an even more robust prod-
uct in the sixth edition designed for 32-bit versions of Windows, perhaps it’s time to
take another look at how you work with your personal computer to get the job done.
If you’ve previously shied away from database software because you felt you needed
programming skills or because it would take you too much time to become a profi cient
user, you’ll be pleasantly surprised at how easy it is to work with all the new features
rolled into Microsoft Offi ce Access 2007.

Offi ce Access 2007 comes loaded with many existing database templates to solve busi-
ness and personal needs. These templates are fully functioning applications that can
be used as is without having to make any modifi cations. For users who do want to
modify the templates or even start from scratch, this latest version of Access comes with
new table templates, new form and report What-You-See-Is-What-You-Get (WYSIWYG)
authoring tools, including improved AutoFormats, Quick Create object operations, and
a fully revamped user interface (UI) to visually assist the development process.

But how do you decide whether you’re ready to move up to a database system such as
Access? To help you decide, let’s take a look at the advantages of using database applica-
tion development software.

What Is a Database? .4

Access as an RDBMS .6

Access as an Application Development System 13

Deciding to Move to Database Software 15
 3

Chapter 1

4 Chapter 1 What Is Microsoft Access?
What Is a Database?
In the simplest sense, a database is a collection of records and fi les that are organized
for a particular purpose. On your computer system, you might keep the names and
addresses of all your friends or customers. Perhaps you collect all the letters you write
and organize them by recipient. You might have another set of fi les in which you keep
all your fi nancial data—accounts payable and accounts receivable or your checkbook
entries and balances. The word processor documents that you organize by topic are,
in the broadest sense, one type of database. The spreadsheet fi les that you organize
according to their uses are another type of database. Shortcuts to all your programs on
your Windows Start menu are a kind of database. Internet shortcuts organized in your
Favorites folder are a database.

If you’re very organized, you can probably manage several hundred spreadsheets or
shortcuts by using folders and subfolders. When you do this, you’re the database man-
ager. But what do you do when the problems you’re trying to solve get too big? How
can you easily collect information about all customers and their orders when the data
might be stored in several document and spreadsheet fi les? How can you maintain links
between the fi les when you enter new information? How do you ensure that data is
being entered correctly? What if you need to share your information with many people
but don’t want two people to try updating the same data at the same time? How do
you keep duplicate copies of data from proliferating when people can’t share the same
data at the same time? Faced with these challenges, you need a database management
system (DBMS).

Relational Databases
Nearly all modern database management systems store and handle information using
the relational database management model. In a relational database management sys-
tem, sometimes called an RDBMS, the system manages all data in tables. Tables store
information about a single subject (such as customers or products) and have columns
(or fi elds) that contain the different kinds of information about the subject (for example,
customers’ addresses or phone numbers) and rows (or records) that describe all the
attributes of a single instance of the subject (for example, data on a specifi c customer
or product). Even when you query the database (fetch information from one or more
tables), the result is always something that looks like another table.

The term relational stems from the fact that each table in the database contains informa-
tion related to a single subject and only that subject. If you study the relational database
management model, you’ll fi nd the term relation applied to a set of rows (a table) about
a single subject. Also, you can manipulate data about two classes of information (such
as customers and orders) as a single entity based on related data values. For example, it
would be redundant to store customer name and address information with every order
that the customer places. In a relational database management system, the information
about orders contains a fi eld that stores data, such as a customer number, which can be
used to connect each order with the appropriate customer information.

 What Is a Database? 5

Ch
ap

te
r 1
You can also join information on related values from multiple tables or queries. For
example, you can join company information with contact information to fi nd out the
contacts for a particular company. You can join employee information with department
information to fi nd out the department in which an employee works.

Some Relational Database Terminology
Relation. Information about a single subject such as customers, orders, employees,

products, or companies. A relation is usually stored as a table in a relational database

management system.

Attribute. A specifi c piece of information about a subject, such as the address for a cus-

tomer or the dollar amount of an order. An attribute is normally stored as a data column,

or fi eld, in a table.

Instance. A particular member of a relation—an individual customer or product. An

instance is usually stored in a table as a record, or row.

Relationship. The way information in one relation is related to information in another

relation. For example, customers have a one-to-many relationship with orders because

one customer can place many orders, but any order belongs to only one customer. Com-

panies might have a many-to-many relationship with contacts because there might be

multiple contacts for a company, and a contact might be associated with more than one

company.

Join. The process of linking tables or queries on tables via their related data values. For

example, customers might be joined to orders by matching customer ID in a customers

table and an orders table.

Database Capabilities
An RDBMS gives you complete control over how you defi ne your data, work with it, and
share it with others. The system also provides sophisticated features that make it easy
to catalog and manage large amounts of data in many tables. An RDBMS has three main
types of capabilities: data defi nition, data manipulation, and data control.

O Data defi nition. You can defi ne what data is stored in your database, the type of
data (for example, numbers or characters), and how the data is related. In some
cases, you can also defi ne how the data should be formatted and how it should
be validated.

O Data manipulation. You can work with the data in many ways. You can select
which data fi elds you want, fi lter the data, and sort it. You can join data with
related information and summarize (total) the data. You can select a set of infor-
mation and ask the RDBMS to update it, delete it, copy it to another table, or cre-
ate a new table containing the data.

Some Relational Database Terminology
Relation. Information about a single subject such as customers, orders, employees,

products, or companies. A relation is usually stored as a table in a relational database

management system.

Attribute. A specifi c piece of information about a subject, such as the address for a cus-

tomer or the dollar amount of an order. An attribute is normally stored as a data column,

or fi eld,d in a table.

Instance. A particular member of a relation—an individual customer or product. An

instance is usually stored in a table as a record, or d row.ww

Relationship. The way information in one relation is related to information in another

relation. For example, customers have a one-to-many relationship with orders because y
one customer can place many orders, but any order belongs to only one customer. Com-

panies might have a many-to-many relationship with contacts because there might be y
multiple contacts for a company, and a contact might be associated with more than one

company.

Join. The process of linking tables or queries on tables via their related data values. For

example, customers might be joined to orders by matching customer ID in a customers

table and an orders table.

Chapter 1

6 Chapter 1 What Is Microsoft Access?
O Data control. You can take advantage of features that help ensure that the right
type of data goes into the correct places. In many cases, you can also defi ne how
data can be shared and updated by multiple users using the database.

All this functionality is contained in the powerful features of Access. Let’s take a look at
how Access implements these capabilities and compare them to what you can do with
spreadsheet or word processing programs.

Access as an RDBMS
An Access desktop database is a fully functional RDBMS. It provides all the data defi ni-
tion, data manipulation, and data control features you need to manage large volumes of
data.

You can use an Access desktop database (.accdb) either as a stand-alone RDBMS on a
single workstation or in a shared client/server mode across a network. A desktop data-
base can also act as the data source for data displayed on Web pages on your company
intranet. When you build an application with an Access desktop database, Access is the
RDBMS. You can also use Access to build applications in a project fi le (.adp) connected
to Microsoft SQL Server, and you can share the server data with other applications
or with users on the Web. When you create an Access project fi le, SQL Server (or the
Microsoft SQL Server Desktop Engine—MSDE) is the RDBMS.

Note
Access 2000, 2002 (XP), and 2003 databases use the .mdb fi le format, but Offi ce Access

2007 introduces a new fi le format with an .accdb extension. To maintain maximum back-

ward compatibility, Access 2007 can still open, run, and save .mdb databases created in

the Access 2000 or Access 2002-2003 .mdb formats, but in order to take advantage of all

the new features in Access 2007, you need to use the new .accdb fi le format. If you have

to create an Access application that will be run by users with previous versions of Access,

you should use the Access 2000 or Access 2002-2003 .mdb fi le formats.

Data Defi nition and Storage
As you work with a document or a spreadsheet, you generally have complete freedom
to defi ne the contents of the document or each cell in the spreadsheet. Within a given
page in a document, you might include paragraphs of text, a table, a chart, or multiple
columns of data displayed with multiple fonts. Within a given column on a spread-
sheet, you might have text data at the top to defi ne a column header for printing or dis-
play, and you might have various numeric formats within the same column, depending
on the function of the row. You need this fl exibility because your word processing docu-
ment must be able to convey your message within the context of a printed page, and

Note
Access 2000, 2002 (XP), and 2003 databases use the .mdb fi le format, but Offi ce Access

2007 introduces a new fi le format with an .accdb extension. To maintain maximum back-

ward compatibility, Access 2007 can still open, run, and save .mdb databases created in

the Access 2000 or Access 2002-2003 .mdb formats, but in order to take advantage of all

the new features in Access 2007, you need to use the new .accdb fi le format. If you have

to create an Access application that will be run by users with previous versions of Access,

you should use the Access 2000 or Access 2002-2003 .mdb fi le formats.

 Access as an RDBMS 7

Ch
ap

te
r 1
your spreadsheet must store the data you’re analyzing as well as provide for calculation
and presentation of the results.

This fl exibility is great for solving relatively small, well-defi ned business problems.
But a document becomes unwieldy when it extends beyond a few dozen pages, and a
spreadsheet becomes diffi cult to manage when it contains more than a few hundred
rows of information. As the amount of data grows, you might also fi nd that you exceed
the data storage limits of your word processing or spreadsheet program or of your com-
puter system. If you design a document or spreadsheet to be used by others, it’s diffi cult
(if not impossible) to control how they will use the data or enter new data. For example,
on a spreadsheet, even though one cell might need a date and another a currency value
to make sense, a user might easily enter character data in error.

Some spreadsheet programs allow you to defi ne a “database” area within a spreadsheet
to help you manage the information you need to produce the desired result. However,
you are still constrained by the basic storage limitations of the spreadsheet program,
and you still don’t have much control over what’s entered in the rows and columns of
the database area. Also, if you need to handle more than number and character data,
you might fi nd that your spreadsheet program doesn’t understand such data types as
pictures or sounds.

An RDBMS allows you to defi ne the kind of data you have and how the data should be
stored. You can also usually defi ne rules that the RDBMS can use to ensure the integrity
of your data. In its simplest form, a validation rule might ensure that the user can’t acci-
dentally store alphabetic characters in a fi eld that should contain a number. Other rules
might defi ne valid values or ranges of values for your data. In the most sophisticated
systems, you can defi ne the relationship between collections of data (usually tables or
fi les) and ask the RDBMS to ensure that your data remains consistent. For example, you
can have the system automatically check to ensure that every order entered is for a valid
customer.

With an Access desktop database (.accdb), you have complete fl exibility to defi ne your
data (as text, numbers, dates, times, currency, Internet hyperlinks, pictures, sounds,
documents, and spreadsheets), to defi ne how Access stores your data (string length,
number precision, and date/time precision), and to defi ne what the data looks like
when you display or print it. You can defi ne simple or complex validation rules to
ensure that only accurate values exist in your database. You can request that Access
check for valid relationships between fi les or tables in your database. When you con-
nect an Access project (.adp) to an SQL Server database, SQL Server provides all these
capabilities.

Because Access is a state-of-the-art application for Windows, you can use all the facili-
ties of ActiveX objects and ActiveX custom controls. ActiveX controls extend the power
of Access by allowing you to integrate custom objects created by Microsoft and other
software vendors into your database applications. Within your Access forms and
reports, for example, you can include ActiveX custom controls to enhance the operation
of your application for your users. ActiveX controls provide sophisticated design objects
that allow you to present complex data in a simpler, more graphical way. Most ActiveX
controls provide a rich set of “actions” (called methods in object terminology) that you

Chapter 1

8 Chapter 1 What Is Microsoft Access?
can call from a procedure and properties you can set to manage how the control looks
and behaves. For example, you might want to let your user enter a date by selecting it
from a calendar picture. One of the ActiveX controls that you can use in an Access appli-
cation is the calendar control that provides just such a graphical interface. This control
is used in a pop-up form in the Conrad Systems Contacts database that is included with
this book. You can see this form in Figure 1-1.

Figure 1-1 Choose a date using the ActiveX calendar control.

The user can type dates anywhere in the application or click a button next to any date
value to open the ActiveX calendar pop-up form.The user can choose a different month
or year from the drop-down list boxes on the control, and the control displays the
appropriate month. When the user clicks a specifi c date on the calendar and then clicks
Save in the pop-up form, the control passes the date back to the form to update the date
fi eld in the record. If you purchase the Offi ce Access 2007 Developer Extensions, you
will have several additional ActiveX controls available to use in your applications. Many
third-party software vendors have built libraries of ActiveX controls that you can pur-
chase for use with Access.

Offi ce Access 2007 includes a new Attachment data type that can store images and
other fi le types within the record. The Attachment data type can handle multiple
attachment fi les per record via the use of a concept called Complex Data. In previous
versions of Access, storing images and fi les through OLE Object data types caused sig-
nifi cant bloat of the database fi le, but in version 2007, Access compresses these fi les to
minimize the size overhead. Examples of fi les that could be attached to a record using
the Attachment data type include a cover letter created in Microsoft Word for each
business contact, a bitmap picture of the contact person, or various sales worksheets
created in Microsoft Excel. Figure 1-2 shows an example of a form using the Attach-
ment data type to display a contact picture in the Issues template database that comes
with Access. (You can fi nd a database created using this template, IssuesSample.accdb,
loaded with sample data on the companion CD.)

 Access as an RDBMS 9

Ch
ap

te
r 1
Figure 1-2 The Attachment data type displays a picture in a form.

Access can also understand and use a wide variety of other data formats, including
many other database fi le structures. You can export data to and import data from word
processing fi les or spreadsheets. You can directly access Paradox, dBASE III, dBASE IV,
Microsoft FoxPro, and other database fi les. You can also import data from these fi les
into an Access table. In addition, Access can work with most popular databases that
support the Open Database Connectivity (ODBC) standard, including SQL Server, Ora-
cle, and DB2. Access 2007 has added enhanced functionality to work with Microsoft
Windows SharePoint Services (version 3).

Data Manipulation
Working with data in an RDBMS is very different from working with data in a word
processing or spreadsheet program. In a word processing document, you can include
tabular data and perform a limited set of functions on the data in the document. You
can also search for text strings in the original document and, with ActiveX, include
tables, charts, or pictures from other applications. In a spreadsheet, some cells contain
functions that determine the result you want, and in other cells you enter the data that
provides the source information for the functions. The data in a given spreadsheet
serves one particular purpose, and it’s cumbersome to use the same data to solve a dif-
ferent problem. You can link to data in another spreadsheet to solve a new problem,
or you can use limited search capabilities to copy a selected subset of the data in one
spreadsheet to use in problem solving in another spreadsheet.

Chapter 1

10 Chapter 1 What Is Microsoft Access?
An RDBMS provides you with many ways to work with your data. You can, for example,
search a single table for information or request a complex search across several related
tables. You can update a single fi eld or many records with a single command. You can
write programs that use RDBMS commands to fetch data you want to display and allow
the user to update.

Access uses the powerful SQL database language to process data in your tables. (SQL is
an acronym for Structured Query Language.) Using SQL, you can defi ne the set of infor-
mation that you need to solve a particular problem, including data from perhaps many
tables. But Access simplifi es data manipulation tasks. You don’t even have to under-
stand SQL to get Access to work for you. Access uses the relationship defi nitions you
provide to automatically link the tables you need. You can concentrate on how to solve
information problems without having to worry about building a complex navigation
system that links all the data structures in your database. Access also has an extremely
simple yet powerful graphical query defi nition facility that you can use to specify the
data you need to solve a problem. Using point and click, drag and drop, and a few key-
strokes, you can build a complex query in a matter of seconds.

Figure 1-3 shows a complex query used in the desktop database version of the Conrad
Systems Contacts application. You can fi nd this query in the Contacts.accdb sample
database on the companion CD included with this book. Access displays fi eld lists from
selected tables in the upper part of the window; the lines between fi eld lists indicate the
automatic links that Access will use to solve the query.

Figure 1-3 This query will retrieve information about products owned by contacts in the Conrad
Systems Contacts sample application.

To create the query, you add the tables containing the data you need to the top of the
query design grid, select the fi elds you want from each table, and drag them to the
design grid in the lower part of the window. Choose a few options, type any criteria,
and you’re ready to have Access select the information you want.

Figure 1-4 shows the same query in the project fi le version of the Conrad Systems Con-
tacts application, Contacts.adp. You can see that the design interface is similar but also
provides an SQL pane so that you can watch Access build the SQL for your query as you

 Access as an RDBMS 11

Ch
ap

te
r 1
work. You don’t need to be an expert to correctly construct the SQL syntax you need to
solve your problem, but you can learn a lot about SQL in Chapter 27, “Building Queries
in an Access Project,” and in Article 2, “Understanding SQL,” both found on the com-
panion CD. For certain advanced types of queries, you’ll need to learn the basics of SQL.

Figure 1-4 Here is the project fi le version of a query to retrieve information about products owned
by contacts.

Figure 1-5 shows the result of asking the query to return its data.

Figure 1-5 The query returns a list of contacts and the products they own.

Chapter 1

12 Chapter 1 What Is Microsoft Access?
Data Control
Spreadsheets and word processing documents are great for solving single-user prob-
lems, but they are diffi cult to use when more than one person needs to share the data.
Although spreadsheets are useful for providing templates for simple data entry, they
don’t do the job well if you need to perform complex data validation. For example, a
spreadsheet works well as a template for an invoice for a small business with a single
proprietor. But if the business expands and a number of salespeople are entering
orders, the company needs a database. Likewise, a spreadsheet can assist employees
with expense reports in a large business, but the data eventually must be captured and
placed in a database for corporate accounting.

When you need to share your information with others, true relational database man-
agement systems give you the fl exibility to allow multiple users to read or update your
data. An RDBMS that is designed to allow data sharing also provides features to ensure
that no two people can change the same data at the same time. The best systems also
allow you to group changes (a series of changes is sometimes called a transaction) so
that either all of the changes or none of the changes appear in your data. For example,
while confi rming a new order for a customer, you probably want to know that both the
inventory for ordered products is updated and the order confi rmation is saved or, if you
encounter an error, that none of the changes are saved. You probably also want to be
sure that no one else can view any part of the order until you have entered all of it.

Important Changes to User-Level Security
The new .accdb fi le format in Offi ce Access 2007 no longer supports user-level security

through workgroup fi les for data control. Properly securing an Access database using

user-level security was a diffi cult process for most users to undertake. If any important

steps in the process were missed or applied incorrectly, the database would not be

properly secured. In some cases it was easy to overlook that a step was missed, which

would leave an unknown security hole in the Access database fi le. Although diffi cult to

set up, user-level security was unfortunately extremely easy to break with tools and utili-

ties available on the Internet. It was simply not possible to fi x Access user-level security

to comply with Microsoft’s current software security standards. For backward compat-

ibility, user-level security defi ned in databases left in the older .mdb format will continue

to be supported. Access 2007 will still allow you to design and modify database object

permissions with user-level security if the fi le is left in the .mdb format. Access 2007 will

even continue to honor existing security settings in .mdb and .adp fi les, but it will not

support any of these features in the new .accdb fi le format. To provide the best security

for shared data, Microsoft recommends moving your data to SQL Server or to Microsoft

Offi ce SharePoint Server.

Important Changes to User-Level Security
The new .accdb fi le format in Offi ce Access 2007 no longer supports user-level security

through workgroup fi les for data control. Properly securing an Access database using

user-level security was a diffi cult process for most users to undertake. If any important

steps in the process were missed or applied incorrectly, the database would not be

properly secured. In some cases it was easy to overlook that a step was missed, which

would leave an unknown security hole in the Access database fi le. Although diffi cult to

set up, user-level security was unfortunately extremely easy to break with tools and utili-

ties available on the Internet. It was simply not possible to fi x Access user-level security

to comply with Microsoft’s current software security standards. For backward compat-

ibility, user-level security defi ned in databases left in the older .mdb format will continue

to be supported. Access 2007 will still allow you to design and modify database object

permissions with user-level security if the fi le is left in the .mdb format. Access 2007 will

even continue to honor existing security settings in .mdb and .adp fi les, but it will not

support any of these features in the new .accdb fi le format. To provide the best security

for shared data, Microsoft recommends moving your data to SQL Server or to Microsoft

Offi ce SharePoint Server.

 Access as an Application Development System 13

Ch
ap

te
r 1
Because you can share your Access data with other users, you might need to set some
restrictions on what various users are allowed to see or update. Access 2007 has greatly
improved the ability to share data with secured Windows SharePoint Services Version 3
lists to ensure data security. With SharePoint-to-Access integration, users can take
advantage of improved workfl ow support, offl ine SharePoint lists, and a Recycle Bin to
undo changes. Access 2007 also has improved data encryption with tougher encryp-
tion algorithms. Access automatically provides locking mechanisms to ensure that no
two people can update an object at the same time, and Access also understands and
honors the locking mechanisms of other database structures (such as Paradox, FoxPro,
and SQL databases) that you attach to your database.

Access as an Application Development System
Being able to defi ne exactly what data you need, how it should be stored, and how you
want to access it solves the data management part of the problem. However, you also
need a simple way to automate all the common tasks you want to perform. For example,
each time you need to enter a new order, you don’t want to have to run a query to search
the Customers table, execute a command to open the Orders table, and then create a
new record before you can enter the data for the order. And after you’ve entered the data
for the new order, you don’t want to have to worry about scanning the table that con-
tains all your products to verify the order’s sizes, colors, and prices.

Advanced word processing software lets you defi ne templates and macros to automate
document creation, but it’s not designed to handle complex transaction processing. In a
spreadsheet, you enter formulas that defi ne what automatic calculations you want per-
formed. If you’re an advanced spreadsheet user, you might also create macros or Visual
Basic procedures to help automate entering and validating data. If you’re working with
a lot of data, you’ve probably fi gured out how to use one spreadsheet as a “database”
container and use references to selected portions of this data in your calculations.

Although you can build a fairly complex application using spreadsheets, you really
don’t have the debugging and application management tools you need to easily con-
struct a robust data management application. Even something as simple as a wedding
guest invitation and gift list is much easier to handle in a database. (See the Wedding
List sample database included with this book.) Database systems are specifi cally
designed for application development. They give you the data management and control
tools that you need and also provide facilities to catalog the various parts of your appli-
cation and manage their interrelationships. You also get a full programming language
and debugging tools with a database system.

When you want to build a more complex database application, you need a powerful
relational database management system and an application development system to help
you automate your tasks. Virtually all database systems include application develop-
ment facilities to allow programmers or users of the system to defi ne the procedures
needed to automate the creation and manipulation of data. Unfortunately, many data-
base application development systems require that you know a programming language,
such as C or Xbase, to defi ne procedures. Although these languages are very rich and

Chapter 1

14 Chapter 1 What Is Microsoft Access?
powerful, you must have experience before you can use them properly. To really take
advantage of some database systems, you must learn programming, hire a programmer,
or buy a ready-made database application (which might not exactly suit your needs)
from a software development company.

Fortunately, Access makes it easy to design and construct database applications with-
out requiring that you know a programming language. Although you begin in Access by
defi ning the relational tables and the fi elds in those tables that will contain your data,
you will quickly branch out to defi ning actions on the data via forms, reports, macros,
and Visual Basic.

You can use forms and reports to defi ne how you want to display the data and what
additional calculations you want to perform—very much like spreadsheets. In this case,
the format and calculation instructions (in the forms and reports) are separate from
the data (in the tables), so you have complete fl exibility to use your data in different
ways without affecting the data. You simply defi ne another form or report using the
same data.

When you want to automate actions in a simple application, Access provides a macro
defi nition facility to make it easy to respond to events (such as clicking a button to open
a related report) or to link forms and reports together. Access 2007 makes using macros
even easier by letting you embed macro defi nitions in your forms and reports. When
you want to build something a little more complex (like the Housing Reservations data-
base included with this book), you can quickly learn how to create simple Visual Basic
event procedures for your forms and reports. If you want to create more sophisticated
applications, such as contact tracking, order processing, and reminder systems (see the
Conrad Systems Contacts sample database), you can employ more advanced techniques
using Visual Basic and module objects.

Access 2007 includes features to make it easy to provide access to your data over your
company’s local intranet or on the Web. You can share and link to data on a Windows
SharePoint Services site. You can also export selected data as a static HTML Web page
or link a Microsoft Active Server Page from the Web to your database.

Offi ce Access 2007 no longer supports designing data access pages (DAPs). Usability

studies conducted by Microsoft show that DAPs are not a widely used feature within

Access, and Microsoft is focusing more of their efforts on Windows SharePoint Services

for sharing data in corporate environments. To maintain backward compatibility with

previous versions, Access 2007 will continue to support existing .mdb applications that

contain DAPs, but you cannot create new data access pages or modify existing pages

from within Access 2007.

SIDE OUT What Happened to Data Access Pages?

Offi ce Access 2007 no longer supports designing data access pages (DAPs). Usability

studies conducted by Microsoft show that DAPs are not a widely used feature within

Access, and Microsoft is focusing more of their efforts on Windows SharePoint Services

for sharing data in corporate environments. To maintain backward compatibility with

previous versions, Access 2007 will continue to support existing .mdb applications that

contain DAPs, but you cannot create new data access pages or modify existing pages

from within Access 2007.

 Deciding to Move to Database Software 15

Ch
ap

te
r 1
Access provides advanced database application development facilities to process not
only data in its own database structures but also information stored in many other
popular database formats. Perhaps Access’s greatest strength is its ability to handle data
from spreadsheets, text fi les, dBASE fi les, Paradox and FoxPro databases, and any SQL
database that supports the ODBC standard. This means you can use Access to create a
Windows-based application that can process data from a network SQL server or from a
mainframe SQL database.

For advanced developers, Access provides the ability to create an Access application in a
project fi le (.adp) that links directly to SQL Server (version 7.0 and later). You store your
tables and queries (as views, functions, or stored procedures) directly in SQL Server
and create forms for data entry and reports for data output in Access.

Deciding to Move to Database Software
When you use a word processing document or a spreadsheet to solve a problem, you
defi ne both the data and the calculations or functions you need at the same time. For
simple problems with a limited set of data, this is an ideal solution. But when you start
collecting lots of data, it becomes diffi cult to manage in many separate document or
spreadsheet fi les. Adding one more transaction (another contact or a new investment
in your portfolio) might push you over the limit of manageability. It might even exceed
the memory limits of your system or the data storage limits of your software program.
Because most spreadsheet programs must be able to load an entire spreadsheet fi le into
memory, running out of memory will probably be the fi rst thing that forces you to con-
sider switching to a database.

If you need to change a formula or the way certain data is formatted, you might fi nd you
have to make the same change in many places. When you want to defi ne new calcula-
tions on existing data, you might have to copy and modify an existing document or cre-
ate complex links to the fi les that contain the data. If you make a copy, how do you keep
the data in the two copies synchronized?

Before you can use a database program such as Access to solve problems that require a
lot of data or that have complex and changing requirements, you must change the way
you think about solving problems with word processing or spreadsheet applications. In
Access, you store a single copy of the data in the tables you design. Perhaps one of the
hardest concepts to grasp is that you store only your basic data in database tables. For
example, in a database, you would store the quantity of items ordered and the price of
the items, but you would not usually store the extended cost (a calculated value). You
use a query, a form, or a report to defi ne the quantity-times-price calculation.

You can use the query facility to examine and extract the data in many ways. This
allows you to keep only one copy of the basic data, yet use it over and over to solve
 different problems. In a sales database, you might create one form to display vendors
and the products they supply. You can create another form to enter orders for these
products. You can use a report defi ned on the same data to graph the sales of products
by vendor during specifi ed time periods. You don’t need a separate copy of the data
to do this, and you can change either the forms or the report independently, without

Chapter 1

16 Chapter 1 What Is Microsoft Access?
destroying the structure of your database. You can also add new product or sales
information easily without having to worry about the impact on any of your forms or
reports. You can do this because the data (tables) and the routines you defi ne to operate
on the data (queries, forms, reports, macros, or modules) are completely independent of
each other. Any change you make to the data via one form is immediately refl ected by
Access in any other form or query that uses the same data.

Reasons to Switch to a Database
Reason 1: You have too many separate fi les or too much data in individual fi les. This

makes it diffi cult to manage the data. Also, the data might exceed the limits of the soft-

ware or the capacity of the system memory.

Reason 2: You have multiple uses for the data—detailing transactions (invoices, for exam-

ple), and analyzing summaries (such as quarterly sales summaries) and “what if” scenarios.

Therefore, you need to be able to look at the data in many different ways, but you fi nd it

diffi cult to create multiple “views” of the data.

Reason 3: You need to share data. For example, numerous people are entering and

updating data and analyzing it. Only one person at a time can update a word process-

ing document, and although an Excel 2003 and later spreadsheet can be shared among

several people, there is no mechanism to prevent two users from updating the same

row simultaneously on their local copies of the spreadsheet, requiring the changes to be

reconciled later. In contrast, Access locks the row of a table being edited by one person

so that no confl icting changes can be made by another user, while still permitting many

other users to access or update the remaining rows of the database table. In this way,

each person is working from the same data and always sees the latest saved updates

made by any other user.

Reason 4: You must control the data because different users access the data, because the

data is used to run your business, and because the data is related (such as data for cus-

tomers and orders). This means you must control data values, and you must ensure data

consistency.

If you’re wondering how you’ll make the transition from word processing documents
and spreadsheets to Access, you’ll be pleased to fi nd features in Access to help you out.
You can use the import facilities to copy the data from your existing text or spreadsheet
fi les. You’ll fi nd that Access supports most of the same functions you have used in your
spreadsheets, so defi ning calculations in a form or a report will seem very familiar.
Within the Help facility, you can fi nd “how do I” topics that walk you through key tasks
you need to learn to begin working with a database and “tell me about” and reference
topics that enhance your knowledge. In addition, Access provides powerful wizard
facilities to give you a jump-start on moving your spreadsheet data to an Access data-
base, such as the Import Spreadsheet Wizard and the Table Analyzer Wizard to help
you design database tables to store your old spreadsheet data.

Reasons to Switch to a Database
Reason 1: You have too many separate fi les or too much data in individual fi les. This

makes it diffi cult to manage the data. Also, the data might exceed the limits of the soft-

ware or the capacity of the system memory.

Reason 2: You have multiple uses for the data—detailing transactions (invoices, for exam-

ple), and analyzing summaries (such as quarterly sales summaries) and “what if” scenarios.

Therefore, you need to be able to look at the data in many different ways, but you fi nd it

diffi cult to create multiple “views” of the data.

Reason 3: You need to share data. For example, numerous people are entering and

updating data and analyzing it. Only one person at a time can update a word process-

ing document, and although an Excel 2003 and later spreadsheet can be shared among

several people, there is no mechanism to prevent two users from updating the same

row simultaneously on their local copies of the spreadsheet, requiring the changes to be

reconciled later. In contrast, Access locks the row of a table being edited by one person

so that no confl icting changes can be made by another user, while still permitting many

other users to access or update the remaining rows of the database table. In this way,

each person is working from the same data and always sees the latest saved updates

made by any other user.

Reason 4: You must control the data because different users access the data, because the

data is used to run your business, and because the data is related (such as data for cus-

tomers and orders). This means you must control data values, and you must ensure data

consistency.

 Deciding to Move to Database Software 17

Ch
ap

te
r 1

You can obtain free assistance from us and many other Microsoft MVPs (Most Valuable

Professionals) in the Access newsgroups. Some of the most diffi cult problems arise in

databases that have been created by directly copying spreadsheet data into an Access

table. The typical advice in this situation is to design the database tables fi rst, then

import and split up the spreadsheet data.

You can access the newsgroups using Microsoft Outlook Express or Windows Mail; or

you can go to http://support.microsoft.com/newsgroups/default.aspx, and in the Com-

munity Newsgroups column on the left, expand the Offi ce category and then the Access

category to see the available newsgroups. Click one of the links to go to that newsgroup

within your Web browser where you can post questions and read answers to questions

posted by others.

Take a long look at the kind of work you’re doing today. The sidebar, “Reasons to Switch
to a Database,” summarizes some of the key reasons why you might need to move to
Access. Is the number of fi les starting to overwhelm you? Do you fi nd yourself creating
copies of old fi les when you need to answer new questions? Do others need to share the
data and update it? Do you fi nd yourself exceeding the limits of your current software
or the memory on your system? If the answer to any of these is yes, you should be solv-
ing your problems with a relational database management system like Access.

In the next chapter, “Exploring the New Look of Access 2007,” you’ll learn about all the
new user interface changes in Access 2007 including the new Ribbon interface element.
You’ll also open some of the built-in Access template databases and explore the new
Getting Started screen for Access 2007. Finally, you’ll learn about the new Navigation
Pane to interact with all your various database objects.

SIDE OUT Design Considerations When Converting from a Spreadsheet
to a Database

You can obtain free assistance from us and many other Microsoft MVPs (Most Valuable

Professionals) in the Access newsgroups. Some of the most diffi cult problems arise in

databases that have been created by directly copying spreadsheet data into an Access

table. The typical advice in this situation is to design the database tables fi rst, then

import and split up the spreadsheet data.

You can access the newsgroups using Microsoft Outlook Express or Windows Mail; or

you can go to http://support.microsoft.com/newsgroups/default.aspx, and in the Com-x
munity Newsgroups column on the left, expand the Offi ce category and then the Access

category to see the available newsgroups. Click one of the links to go to that newsgroup

within your Web browser where you can post questions and read answers to questions

posted by others.

CHAPTER 2

Exploring the New Look of
Access 2007

Before you explore the many features of Microsoft Offi ce Access 2007, it’s worth
spending a little time looking it over and “kicking the tires.” Like a new model of a

favorite car, this latest version of Access has major changes to the body (user interface)
as well as a new engine under the hood (Access Data Engine). In this chapter and the
next, we explore the changes to the user interface, show you how to navigate through
Microsoft’s new replacement for toolbars and menus called the Ribbon, and discuss the
various components of an Access database and how they interact.

Opening Access for the First Time
The fi rst time you open Offi ce Access 2007, you are presented with two preliminary
option screens. The fi rst of these, the Privacy Options dialog box seen in Figure 2-1,
lists three check boxes, which are selected by default. Note that you must have an active
connection to the Internet to use these options. The Get Online Help check box, when
selected, allows Access to search Microsoft Offi ce Online’s vast resources for content
relevant to your search. Access downloads this information to your local computer for
faster searching when you search for items in the Help section. Selecting this check
box also means you will have the latest Help information at your disposal. The second
check box, called Keep Your System Running, is a special tool you can download that
interfaces with the 2007 Microsoft Offi ce system. You can use this diagnostic tool to
help identify problems with your Offi ce installation. Although not required to run the
2007 Offi ce release or Access 2007, this tool might assist you with locating the cause of
any unforeseen system crashes.

The third check box in the Privacy Options dialog box, Make Offi ce Better, allows you
to sign up for Microsoft’s Customer Experience Improvement Program. This utility
tracks various statistics while you use Access 2007 and the 2007 Offi ce release and
sends that information to Microsoft. Note that this option does not send any per-
sonal information to Microsoft. By tracking how customers are using their products,
 Microsoft can improve its Offi ce line of products for future releases. Click the Read Our
Privacy Statement link in the lower-left corner to read Microsoft’s privacy statement.
After you make your selections or clear the check boxes you do not want, click the OK
button to start using Access 2007.

Opening Access for the First Time 19

Getting Started—A New Look for Access 21

Understanding Content Security 34

Understanding the New Ribbon Feature 41

Understanding the New Navigation Pane 45

Using the Single-Document vs. Multiple-Document
Interface . 83

Modifying Global Settings via the Access Options
Dialog Box . 87
 19

Chapter 2

20 Chapter 2 Exploring the New Look of Access 2007
Figure 2-1 You can choose privacy options when you fi rst launch Access 2007.

Note
The dialog box shown in Figure 2-1 is what we saw when opening Access 2007 for the

fi rst time using Microsoft Windows Vista. You might see a slightly different sequence of

prompts if you install the 2007 Offi ce release on Windows XP.

After selecting your options in the Privacy Options dialog box, you can always alter
these settings later. For more information on changing these settings, see “Modifying
Global Settings via the Access Options Dialog Box” on page 87.

CAUTION!
If you are in a corporate network environment, you should check with your Information

Technology department to determine whether your company has established guidelines

before making selections in the Privacy Options dialog box.

Note
The dialog box shown in Figure 2-1 is what we saw when opening Access 2007 for the

fi rst time using Microsoft Windows Vista. You might see a slightly different sequence of

prompts if you install the 2007 Offi ce release on Windows XP.

C U O !

 Getting Started—A New Look for Access 21

Ch
ap

te
r 2
Getting Started—A New Look for Access
If you are a seasoned developer with previous versions of Access, be prepared for quite a
shock when you fi rst open Access 2007. Microsoft has revamped the entire look and feel
of Access as well as the other products in the 2007 Offi ce release. To some degree, users
of previous versions of Access will have a challenging task adjusting to all the changes
the development team has incorporated into this version. If you are one of these users,
you might even experience a short-term decrease in productivity as you become accus-
tomed to where commands and tools are located on the new user interface element
called the Ribbon. (See “Understanding the New Ribbon Feature” on page 41 for details
about the Ribbon.) For fi rst-time users of Access, Microsoft has spent a great deal of
development effort trying to make the “Access experience” easier and more intuitive in
this version. With a new Getting Started screen, a host of ready-to-use database applica-
tions available, and a context-driven, rich graphical Ribbon, users will have an easier
and quicker time creating professional-looking database applications.

On fi rst launching Access, you see a new Getting Started screen as shown in Figure 2-2.
The Featured Online Templates section in the center of the screen displays database
templates created by the Microsoft Access development team. These templates represent
some of the more common uses for a database and are therefore presented to you fi rst.
On the left side of the screen you can fi nd several different template categories grouped
by subject. Click on one of these categories to change the display in the center of the
screen to a list of templates in that category. The Local Templates category features
database templates available on your local drive that were installed with Access. The
From Microsoft Offi ce Online category features database templates that you can down-
load—but you must be connected to the Internet to see and download any templates in
each of these categories. Microsoft is continually adding and modifying the selections
available in the Microsoft Offi ce Online categories, so the list you see might be different
from that shown in Figure 2-2. If you have enabled your privacy options to have Access
update these featured links, make sure to check these groups from time to time to see if
a new template exists for your specifi c needs. For more information on Privacy Options,
see “Understanding the Trust Center” on page 36.

Just above Featured Online Templates in the middle of the screen is a button labeled
Blank Database. You use this button to start the process of creating a new empty data-
base with no objects. See Chapter 4, “Creating Your Database and Tables,” for details on
how to create a new blank database.

The right task pane on the Getting Started screen displays a list of the Access databases
you recently opened. To quickly open any of these databases, click on the fi le name in
the list. Click More to see the Open dialog box where you can search for and open any
database not in the list.

Chapter 2

22 Chapter 2 Exploring the New Look of Access 2007
Figure 2-2 You can create a database from a template, create a new blank database, or search for
a database fi le to open on the Getting Started screen in Access 2007.

At the bottom of the Getting Started screen, you see specifi c information related to
Access 2007 such as articles, additional templates, and downloads available from
Microsoft Offi ce Online. The downloads can include tutorials, updates to your Help
fi les, or white papers on advanced topics. Most of this content is aimed at showing you
all the new features available in Access 2007 as well as pointing out online training
materials that Microsoft has created. If you have enabled your privacy options to have
Access update these featured links, this area of the Getting Started screen is automati-
cally updated when new content becomes available. Updating the content occurs only if
you have an active Internet connection established.

Opening an Existing Database
To showcase the new user interface (UI), let’s take one of the template databases out for
a test drive. Using the IssuesSample.accdb database on the companion CD, based on
the Microsoft Issues template, we will highlight some specifi c areas of Access 2007.
First, follow the instructions at the beginning of this book for installing the sample fi les

 Getting Started—A New Look for Access 23

Ch
ap

te
r 2
on your hard drive. If necessary, start Access again to display the Getting Started screen
shown in Figure 2-2. Click More under Open Recent Database in the right task pane to
see the Open dialog box shown in Figure 2-3.

Figure 2-3 You can use the Open dialog box to fi nd and open any existing database fi le.

In the Open dialog box, select the IssuesSample.accdb fi le from the folder in which you
installed the sample databases, and then click Open. You can also double-click the fi le
name to open the database. (If you haven’t set options in Windows Explorer to show fi le
name extensions for registered applications, you won’t see the .accdb extension for your
database fi les.) The Issues sample application will start, and you’ll see the startup form
for the Issues Sample database along with all the various database objects listed on the
left side, as shown in Figure 2-4.

Note
If you installed the sample fi les for this book in the default location from the companion

CD, you can fi nd the fi les in the Microsoft Press\Access 2007 Inside Out folder on your

C drive.

Note
If you installed the sample fi les for this book in the default location from the companion

CD, you can fi nd the fi les in the Microsoft Press\Access 2007 Inside Out folder on your

C drive.

Chapter 2

24 Chapter 2 Exploring the New Look of Access 2007
Issue List form

Quick Access Toolbar

Microsoft Office Button

Navigation Pane

Ribbon

Figure 2-4 When you open the Issues Sample database, you can see the new user interface for
Access 2007.

If you have used previous versions of Access, you immediately notice that Access 2007
has signifi cant changes. We will discuss each of these user interface elements in greater
detail in the following sections, but for now, here is a brief overview of the different ele-
ments. The upper-left corner of the screen contains a large button with the Microsoft
Offi ce logo on it. This button, called the Microsoft Offi ce Button, replaces the File menu
from previous editions of Access. Next to this button are a few smaller buttons on what
is called the Quick Access Toolbar. This toolbar holds frequently used commands
within Access 2007. Beneath the Quick Access Toolbar is a series of four tabs (Home,
Create, External Data, and Database Tools) that contain many commands, options, and
drop-down list boxes. These tabs are on what Microsoft refers to as the Ribbon and it
replaces menu bars and toolbars from previous versions of Access. You will interact
heavily with the Ribbon when developing and using Access 2007 databases because
most of the commands you need are contained on it.

 Getting Started—A New Look for Access 25

Ch
ap

te
r 2
Beneath the Ribbon is a small message that says Security Warning. This Message Bar
informs you if Access has disabled potentially harmful content in this database. See
“Understanding Content Security” on page 34 to learn what this message means and
what you can do to avoid it.

On the left side of the screen is the new Navigation Pane, which replaces the Database
window from previous Access versions. In the Navigation Pane, you can fi nd all the
various database objects for this database (forms, tables, queries, and so on).

To the right of the Navigation Pane is where your database objects open. In Figure 2-4
you see that the Issue List form is open. All possible views of your database objects
appear in this area. Just beneath the Navigation Pane and main object window is the
status bar. The status bar displays text descriptions from fi eld controls, various key-
board settings (Caps Lock, Num Lock, and Scroll Lock), and object view buttons.

Exploring the Microsoft Offi ce Button
The new Microsoft Offi ce Button in Access 2007, shown in the upper-left corner of
Figure 2-5, replaces the File menu from previous versions, and you can display its com-
mands by clicking the Microsoft Offi ce Button from the Getting Started screen or from
within any database. Figure 2-5 shows you the available commands.

Figure 2-5 You can view many commands by clicking the Microsoft Offi ce Button.

Microsoft Offi ce
Button

Microsoft Offi ce
Button

Chapter 2

26 Chapter 2 Exploring the New Look of Access 2007
Using these commands you can do any of the following:

O New Create a new database fi le.

O Open Open any existing database fi le on your computer or network.

O Save Save design changes for the database object that is open and has the focus.

O Save As Save a copy of the current object, fi nd add-ins to save the object with a
different fi le format, or save a copy of the current database in 2007, 2002/2003,
or 2000 Access format. When you click the Save As button, the default is to save a
copy of the current open object that has the focus or the object that has the focus
in the Navigation Pane. If you rest your mouse pointer on or click the arrow at the
right, additional commands appear in a submenu to the right of the arrow. You
can choose from these to save a copy of your entire database in any of the formats
supported by Access 2007. Note that if you choose to save the entire database,
Access closes the database you have open so that it can create the copy.

O Print Print the currently open object that has the focus or the object in the
Navigation Pane that has the focus using the Print dialog box or the Quick Print
feature, or use Print Preview to preview the printed appearance on screen. If you
immediately click the Print button, Access opens the Print dialog box to print
whatever object currently has the focus. Be careful here because the object that
has the focus might not be the one currently on the screen. If the focus is on an
object in the Navigation Pane, that object is printed instead of the object cur-
rently open. If you rest your mouse pointer on or click the arrow to the right of
the Print button, a submenu presents two additional options called Quick Print
and Print Preview. Quick Print immediately sends the selected database object to
the printer whereas Print Preview lets you preview on your monitor what you are
about to print. Here again, be careful about which object has the focus.

O Manage Compact and repair your database fi le, back up your database, or open
the Database Properties dialog box to review and change properties specifi c to
this database.

O E-Mail Export the currently open object that has the focus or the object in the
Navigation Pane that has the focus in various formats and send to another per-
son. Be careful here because the object that has the focus might not be the one
currently on the screen. If the focus is on an object in the Navigation Pane, that
object is exported instead of the object currently open. You can choose to export
and send the object in the following formats: Excel, HTML, Rich Text Format, or
as a Text File.

O Publish Publish the database to a document manager server or package your
database as a CAB fi le and digitally sign it.

O Close Database Close the currently open database and return to the Getting
Started screen.

 Getting Started—A New Look for Access 27

Ch
ap

te
r 2
You can also fi nd these two buttons at the bottom of the menu:

O Access Options Opens the Access Options dialog box where you can choose and
defi ne many different settings and preferences for Access.

O Exit Access Closes the currently open database fi le as well as completely exits
Access.

Note
For users of previous versions of Access, the Access Options dialog box is where you’ll

fi nd many of the settings previously found in the Options dialog box that you opened

from the Tools menu. For more information on the options available in this area, see

“Modifying Global Settings via the Access Options Dialog Box” on page 87.

Taking Advantage of the Quick Access Toolbar
Next to the Microsoft Offi ce Button is the Quick Access Toolbar, shown in Figure 2-6.
This special toolbar gives you “quick access” to some of the more common commands
you will use in Access 2007, and you can customize this toolbar to include additional
commands. Here are the default commands available on the Quick Access Toolbar:

O Save Saves any changes to the currently selected database object.

O Undo Undoes the last change you made to an object or a record.

O Redo Cancels the last Undo change you made to an object or a record.

At the right end of the Quick Access Toolbar is a small arrow. Click that arrow, and
you’ll see the Customize Quick Access Toolbar menu, as shown in Figure 2-6.

The top section of the menu displays common commands that you might want to add
to the Quick Access Toolbar. Note that the three default commands—Save, Undo, and
Redo—have check marks next to them. You can click any of these to clear the check
mark and remove the command from the Quick Access Toolbar. You can click any of
the other eight commands (New, Open, E-Mail, Quick Print, Print Preview, Spelling,
Mode, and Refresh All) to add them to the right end of the Quick Access Toolbar. Near
the bottom of this menu is More Commands, which allows you to fully customize what
commands are available and how those commands appear on the Quick Access Tool-
bar. The Show Below The Ribbon option on the menu allows you to move the Quick
Access Toolbar above or below the Ribbon depending on your preference. The last
option on this menu, Minimize The Ribbon, causes Access to automatically collapse the
Ribbon when it is not being used. When the focus is off the Ribbon, only the Ribbon
tabs themselves appear when you click this command. Clicking any of the Ribbon tabs
then causes Access to redisplay all the commands on top of any open objects. When
you move the focus off any part of the Ribbon, it will again collapse to just the tabs.

Note
For users of previous versions of Access, the Access Options dialog box is where you’ll

fi nd many of the settings previously found in the Options dialog box that you opened

from the Tools menu. For more information on the options available in this area, see

“Modifying Global Settings via the Access Options Dialog Box” on page 87.

Chapter 2

28 Chapter 2 Exploring the New Look of Access 2007
 Save
 Undo
 Redo
 Customize Quick Access Toolbar

Figure 2-6 The default Quick Access Toolbar contains the Save, Undo, and Redo commands for the
current object, and the command to customize the toolbar.

To customize the Quick Access Toolbar, click the arrow on the right end and click More
Commands near the bottom of the menu. The Access Options dialog box with the Cus-
tomize category selected appears, as shown in Figure 2-7.

On the left you can see a list of built-in Access commands that you can select to add to
the Quick Access Toolbar. By default, the list shows commands from the Popular Com-
mands category—commands that are used very frequently. You can change the list of
commands by selecting a different category from the Choose Commands From list. The
All Commands option displays the entire list of Access commands available in alpha-
betical order. Just below the list of available commands is a check box that you can
select to show the Quick Access Toolbar below the Ribbon. Clear the check box to show
the Quick Access Toolbar above the Ribbon.

The list on the right side of the screen by default displays what options are available on
every Quick Access Toolbar for all your database fi les. If you add, remove, or modify
the commands shown in the list on the right when you have chosen For All Documents
(Default) in the Customize Quick Access Toolbar list, the changes are refl ected in every
database you open with Access 2007. To customize the Quick Access Toolbar for only
the specifi c database you currently have open, click the arrow in the drop-down list
and select the database fi le path for your current database from the list, as shown in
Figure 2-8.

 Getting Started—A New Look for Access 29

Ch
ap

te
r 2
Figure 2-7 You can add or remove commands on the Quick Access Toolbar and change their
sequence using the Customize category in the Access Options dialog box.

Figure 2-8 You can add or remove commands on the Quick Access Toolbar for the current data-
base by selecting your database from the Customize Quick Access Toolbar list.

When you select the current database, the command list below it is now empty, await-
ing the changes you request. Find a command in the list on the left, and then either
double-click it or click the Add button in the middle of the screen to add this command
to your custom Quick Access Toolbar, as shown in Figure 2-9. If you make a mistake
and select the wrong command, select the command in the list on the right, and click
the Remove button to eliminate it from your custom list.

Chapter 2

30 Chapter 2 Exploring the New Look of Access 2007
Figure 2-9 Add a command to the Quick Access Toolbar by selecting it in the list on the left and
then clicking the Add button.

In addition to the built-in commands, you can also select any macros you have defi ned
in this current database. To do this, select Macros in the Choose Commands From list
on the left. A list of all your saved macro objects appears, and you can add these macros
directly to your custom Quick Access Toolbar, as shown in Figure 2-10. We added one
macro called mcrSample to this Issues Sample database to illustrate the next steps.

CAUTION!
Do not add a macro to your Quick Access Toolbar when you have selected the option to

customize the Quick Access Toolbar for all documents. Access displays an error if you try

to click your custom macro command in a database that does not contain the macro you

selected.

You can also assign custom button images to the macro objects you select. To do so,
select one of your macros in the list on the right, and then click the Modify button to
open the Modify Button dialog box shown in Figure 2-11. From here you can choose
one of the predefi ned button images available and also change the display name for this
option on your custom Quick Access Toolbar.

C U O !

 Getting Started—A New Look for Access 31

Ch
ap

te
r 2
Figure 2-10 Add a saved macro object to the Quick Access Toolbar by selecting it in the list on the
left and then clicking the Add button.

Figure 2-11 You can change the button face and the display name in the Modify Button
dialog box.

Chapter 2

32 Chapter 2 Exploring the New Look of Access 2007
After you have all the commands and macros you want on your custom Quick Access
Toolbar, you might decide that you do not like the order in which they appear. Access
2007 allows you to easily modify this order using the Move Up and Move Down arrow
buttons at the far right of the dialog box. (You can rest your mouse pointer on either
button to see the button name.) Select a command you want to move in the list on the
right and click the up arrow to move it up in the list as shown in Figure 2-12. Each
successive click moves that command up one more place in the custom list. Likewise,
the down arrow shifts the selected command down in the list. In Figure 2-12 you can
see that we have moved the macro titled Greeting up above the Application Options
 command.

Figure 2-12 You can change the order of the commands on your Quick Access Toolbar by clicking
the Move Up and Move Down arrow buttons.

From top to bottom in the list on the right, the commands appear in left-to-right order
on the Quick Access Toolbar after the commands assigned to all databases. When you
are completely satisfi ed with your revisions, click OK to save your changes. Observe
that your custom Quick Access Toolbar now appears on the screen above or below the
Ribbon depending on the choice you have selected. Figure 2-13 shows our completed
changes to the Quick Access Toolbar for this specifi c database.

 Getting Started—A New Look for Access 33

Ch
ap

te
r 2
Note
You might have noticed the <Separator> option in the list on the left. Adding <Separa-

tor> to your custom Quick Access Toolbar places a small space below the command

currently selected in the list on the right. You can add as many separators as you want to

your custom Quick Access Toolbar to visually separate groups of commands.

Greeting
 Application Options

Figure 2-13 Your two additional commands now appear on the Quick Access Toolbar for
this database.

To remove an item from your custom Quick Access Toolbar, reopen the Access Options
dialog box with the Customize category selected again by clicking the arrow on the
Quick Access Toolbar and then clicking More Commands. To remove an item, select it
in the list on the right and click the Remove button, and Access removes it from your
list of commands. If you inadvertently remove a command that you wanted to keep, you
can click the Cancel button in the lower-right corner to discard all changes. You can
also fi nd the command in the list on the left and add it back. Keep in mind that you can
remove commands for all databases or for only the current database.

If you wish to restore the Quick Access Toolbar for all databases to the default set of
commands, select For All Documents (Default) in the Customize Quick Access Toolbar
list, and then click the Reset button. To remove all custom commands for the current
database, select the database path in the Customize Quick Access Toolbar list and click
Reset. Before removing any commands on the Quick Access Toolbar, Access displays
a warning message shown in Figure 2-14. If you click Yes to this Reset Customizations
message, Access resets the Quick Access Toolbar for this current database back to the
defaults.

Figure 2-14 Access asks you to confi rm resetting the Quick Access Toolbar back to the default
commands.

Note
You might have noticed the <Separator> option in the list on the left. Adding <Separa-

tor> to your custom Quick Access Toolbar places a small space below the command

currently selected in the list on the right. You can add as many separators as you want to

your custom Quick Access Toolbar to visually separate groups of commands.

Chapter 2

34 Chapter 2 Exploring the New Look of Access 2007

If you notice that you are using a command on the Ribbon quite often, Access 2007

provides a very quick and easy way to add this command to the Quick Access Toolbar.

To add a command on the Ribbon to the Quick Access Toolbar, right-click the command

and click Add To Quick Access Toolbar. This adds the command to the Quick Access Tool-

bar for all databases. Alternatively, you can quickly remove an item from your custom

Quick Access Toolbar by right-clicking on the command and clicking Remove From Quick

Access Toolbar.

Understanding Content Security
In response to growing threats from viruses and worms, Microsoft launched a security
initiative in early 2002, called Trustworthy Computing, to focus on making all its prod-
ucts safer to use. In an e-mail sent to employees, Bill Gates summed up the seriousness
of the initiative:

“In the past, we’ve made our software and services more compelling for users by adding
new features and functionality, and by making our platform richly extensible. We’ve
done a terrifi c job at that, but all those great features won’t matter unless customers
trust our software. So now, when we face a choice between adding features and resolv-
ing security issues, we need to choose security. Our products should emphasize secu-
rity right out of the box, and we must constantly refi ne and improve that security as
threats evolve.”

Prior to Microsoft Access 2003, it was quite possible for a malicious person to send
you a database fi le that contained code that could damage your system. As soon as you
opened the database, the harmful code would run—perhaps even without your knowl-
edge. Or the programmer could embed dangerous code in a query, form, or report,
and your computer would be damaged as soon as you opened that object. In version
11 (Access 2003), you were presented with a series of confusing dialog boxes when
you opened an unsigned database fi le if you had left your macro security level set to
medium or high. After wading through the various dialog boxes, you could still be left
with a database you were unable to open.

Access 2007 improves upon the security model by adding a new component to the
Access interface called the Trust Center. This new security interface is far less confus-
ing and intrusive than the Access 2003 macro security feature. With a security level
set to high in Access 2003, you would not be able to open any database fi les because all
Access databases could have some type of macros, VBA code, or calls to unsafe func-
tions embedded in their structure. Any database with queries is considered unsafe
by Access 2007 because those queries could contain expressions calling unsafe func-
tions. In Access 2007, each database fi le opens without presenting you with a series of
dialog boxes like in Access 2003. Depending on where your fi le is located on the local

SIDE OUT Adding a Command to the Quick Access Toolbar with Two
Mouse Clicks

If you notice that you are using a command on the Ribbon quite often, Access 2007

provides a very quick and easy way to add this command to the Quick Access Toolbar.

To add a command on the Ribbon to the Quick Access Toolbar, right-click the command

and click Add To Quick Access Toolbar. This adds the command to the Quick Access Tool-

bar for all databases. Alternatively, you can quickly remove an item from your custom

Quick Access Toolbar by right-clicking on the command and clicking Remove From Quick

Access Toolbar.

 Understanding Content Security 35

Ch
ap

te
r 2
computer drive or network share, Access silently disables any malicious macros or VBA
code without any intrusive dialog box messages.

Note
The sample databases included on the companion CD are not digitally signed, because

they will become unsigned as soon as you change any of the queries or sample code.

We designed all the sample applications to open successfully, but each displays a warn-

ing dialog box if the database is not trusted. If you have installed the database in an

untrusted location, the application displays instructions in the warning dialog box that

you can follow to enable the full application. See “Enabling Content by Defi ning Trusted

Locations” on page 39 for information about defi ning trusted locations.

Temporarily Enabling a Database That Is Not Trusted
When you open an existing database or template, you might see a Security Warning
message displayed in the Message Bar, just below the Quick Access Toolbar and Rib-
bon as shown in Figure 2-15. This message notifi es you that Access has disabled certain
features of the application because the fi le is not digitally signed or is located in a folder
that has not been designated as trusted.

Message Bar

Figure 2-15 The Message Bar alerts you if Access has disabled certain content.

In order to ensure that any restricted code and macros function in this database, you
must manually tell Access to enable this content by clicking the Options button on
the Message Bar. This opens a dialog box, called Microsoft Offi ce Security Options, as
shown in Figure 2-16. This dialog box warns you that this fi le’s content cannot be veri-
fi ed because a digital certifi cate was not found.

You can choose to have Access 2007 continue to block any harmful content by leaving
the default option set to Help Protect Me From Unknown Content (Recommended). By
having Access block any harmful content, you can be assured that no malicious code or
macros can execute from this database. However, you also have to realize that because
Access blocks all Visual Basic code and any macros containing a potentially harmful
command, it is quite possible that this application will not run correctly if you continue
to let Access disable potentially harmful functions and code. In order to have Access

Note
The sample databases included on the companion CD are not digitally signed, because

they will become unsigned as soon as you change any of the queries or sample code.

We designed all the sample applications to open successfully, but each displays a warn-

ing dialog box if the database is not trusted. If you have installed the database in an

untrusted location, the application displays instructions in the warning dialog box that

you can follow to enable the full application. See “Enabling Content by Defi ning Trusted

Locations” on page 39 for information about defi ning trusted locations.

Chapter 2

36 Chapter 2 Exploring the New Look of Access 2007
discontinue blocking potentially harmful content, you must select the Enable This
Content option. After you select that option and click OK, Access closes the database
and then reopens the fi le to enable all content. Access does not display the Message Bar
after it reopens the fi le, and all functions, code, and macros are now allowed to run in
this specifi c database.

Figure 2-16 You can enable blocked content from the Microsoft Offi ce Security Options
dialog box.

Note
When you enable content after opening an untrusted database, the database becomes

trusted only for the current session. If you close the database and then attempt to

reopen it, Access displays the warnings again on the Message Bar.

Understanding the Trust Center
You might have noticed in the lower-left corner of the Microsoft Offi ce Security Options
dialog box a link to the Trust Center. You can also open the Trust Center from the
Access Options dialog box, which you can open by clicking the Microsoft Offi ce Button
discussed earlier. We will discuss the Access Options dialog box later in this chapter;
see “Modifying Global Settings via the Access Options Dialog Box” on page 87.

Note
When you enable content after opening an untrusted database, the database becomes

trusted only for the current session. If you close the database and then attempt to

reopen it, Access displays the warnings again on the Message Bar.

 Understanding Content Security 37

Ch
ap

te
r 2
Click Open The Trust Center in the Microsoft Offi ce Security Options dialog box to
view the advanced security settings. If the Message Bar is not currently available, click
the Microsoft Offi ce Button in the upper-left corner and then click Access Options. In
the Access Options dialog box, click the Trust Center category on the left and then click
the Trust Center Settings button. In the Trust Center dialog box, shown in Figure 2-17,
you see six categories of security settings.

Figure 2-17 The Trust Center dialog box displays various categories in which you can select trust
and privacy options.

Briefl y, the categories are as follows:

O Trusted Publishers. Use to view and remove publishers you have designated as
being trustworthy. When applications are digitally signed by one of these trusted
publishers, Access does not disable any content within the database and the Mes-
sage Bar does not display any warning. By default, digitally signed applications
from Microsoft are trusted. You might see one or more additional trusted publish-
ers if you have ever tried to download and run a signed application and have indi-
cated to Windows that you trust the publisher and want to save the publisher’s
certifi cate. See Chapter 25, “Distributing Your Application,” for information about
digitally signing your own applications.

O Trusted Locations. Use to designate specifi c folders and subfolders as trusted
locations. Access considers any database fi les within this folder as trustworthy,
and all content in these folders is enabled. In the Trusted Locations category, each

Chapter 2

38 Chapter 2 Exploring the New Look of Access 2007
designated trusted folder is listed with the fi le path, an optional description, and
the date the entry was last modifi ed. See “Enabling Content by Defi ning Trusted
Locations” on the next page for details about using the options in this category.

O Add-Ins. Use to set specifi c restrictions on Access add-in fi les by selecting or
clearing the three check boxes in this category. An add-in is a separate program
or fi le that extends the capabilities of Access. You can create these separate fi les
or programs by using Visual Basic for Applications (VBA) or another program-
ming language such as C#. You can require that add-in fi les be signed by a trusted
publisher before Access will load and run them. If you select the option to require
that add-ins be signed, you can disable notifi cations for add-ins that are unsigned.
For added security, you can disable all application add-in functionality.

O Macro Settings. Use to confi gure how Access handles macros in databases that
are not in a trusted location. Four options are available with this feature, only one
of which can be active at any given time. Table 2-1 discusses the purpose of each
option.

Table 2-1 Macro Settings

Option Purpose

Disable All Macros
Without Notifi cation

Access disables all harmful content, but does not notify
you through the Message Bar.

Disable All Macros
With Notifi cation

Access disables all harmful content but notifi es you
through the Message Bar that it has disabled the content.
This is the default option for new installations of Access.
This is equivalent to the Medium macro security level
 option available in Access 2003.

Disable All Macros
Except Digitally
Signed Macros

Access allows only digitally signed macros (code in
digitally signed databases). All other potentially harmful
content is disabled. This is equivalent to the High macro
security level option available in Access 2003.

Enable All Macros
(not recommended,
potentially danger-
ous code can run)

Access enables any and all potentially harmful content. In
addition, Access does not notify you through the Message
Bar. This is equivalent to the Low macro security option
available in Access 2003.

O Message Bar. Use to confi gure Access either to show the Message Bar when con-
tent has been disabled or not to display the bar at all.

O Privacy Options. Use to enable or disable actions within Access regarding
computing privacy, troubleshooting system problems, and scanning suspicious
Web site links. The fi rst check box under Privacy Options tells Access to scan
Microsoft’s online help site when you are connected to the Internet. If you clear
this check box, Access scans only your local hard drive when you conduct a
search in Help. The second check box, Update Featured Links From Microsoft
Offi ce Online, tells Access to display some current Microsoft Offi ce Online fea-
tured links on the Getting Started screen. Selecting the third check box instructs
Access to download and activate a special fi le from Microsoft’s site that helps you

 Understanding Content Security 39

Ch
ap

te
r 2
troubleshoot Access and Offi ce program installation and program errors. The
fourth check box allows you to sign up for the Customer Experience Improve-
ment Program. Microsoft uses this program to track statistics of the features
you use the most frequently and gather information about your Microsoft Offi ce
system confi guration. These statistics help determine changes in future program
releases. The fi nal check box under Privacy Options allows Access to automati-
cally scan Offi ce documents for possible links to and from suspicious Web sites.
This last option is turned on by default to help safeguard your computer against
documents containing harmful Web links.

Enabling Content by Defi ning Trusted Locations
You can permanently enable the content in a database that is not trusted by defi ning a
folder on your hard drive or network that is trusted and then placing the database in
that folder. Or, you can defi ne the folder where the database is located as trusted. You
defi ne trusted locations in the Trust Center dialog box.

CAUTION!
If you are in a corporate network environment, you should check with your Information

Technology department to determine whether your company has established guidelines

concerning enabling content on Access databases.

To defi ne a trusted location, click the Microsoft Offi ce Button and then click Access
Options. In the Access Options dialog box, click the Trust Center category and then
click the Trust Center Settings button. Access displays the Trust Center dialog box.
Click the Trusted Locations category to see its options, as shown in Figure 2-18.

Click the Add New Location button. Access now displays the Microsoft Offi ce Trusted
Location dialog box shown in Figure 2-19.

Click the Browse button and locate the folder you want to designate as trusted. You
can optionally designate any subfolders in that directory as trusted without having to
designate each individual folder within the hierarchy. Enter an optional description
you want for this folder, and click OK to save your changes. The new location you just
specifi ed now appears in the list of trusted locations. If you later decide to remove this
folder as a trusted location, select that location, as shown in Figure 2-18, and then click
the Remove button. Any Access databases in that folder are now treated as unsafe. Fig-
ure 2-18 also shows two check boxes at the bottom of the dialog box. The fi rst check
box allows you to defi ne network locations as trusted locations. Microsoft recommends
you not select this check box because you cannot control what fi les others might place
in a network location. The second check box disables all Trusted Location settings and
allows content only from trusted publishers.

C U O !

Chapter 2

40 Chapter 2 Exploring the New Look of Access 2007
Figure 2-18 The Trusted Locations category in the Trust Center dialog box shows you locations that
are currently trusted.

Figure 2-19 Creating a new trusted location from the Microsoft Offi ce Trusted Location dialog box.

Note
To ensure that all the sample databases from the companion CD operate correctly, add

the folder where you installed the fi les (the default location is the Microsoft Press\Access

2007 Inside Out folder on your C drive) to your Trusted Locations.

Note
To ensure that all the sample databases from the companion CD operate correctly, add

the folder where you installed the fi les (the default location is the Microsoft Press\Access

2007 Inside Out folder on your C drive) to your Trusted Locations.

 Understanding the New Ribbon Feature 41

Ch
ap

te
r 2
Understanding the New Ribbon Feature
One of the biggest changes to the new user interface in Access 2007 is the Ribbon, a
replacement for the menu bars and toolbars that were in previous versions. The Ribbon,
shown in Figure 2-20, is a strip that contains all the functionality of the older menu
options (File, Edit, View, and so on) and the various toolbars, condensed into one com-
mon area in the application window. Microsoft’s usability studies revealed that most
users failed to discover many useful features that were previously buried several levels
deep in the old menu structure. The Ribbon is a context-rich environment display-
ing all the program functions and commands, with large icons for key functions and
smaller icons for less-used functions. Access displays a host of different controls on the
Ribbon to help you build and edit your applications. Lists, command buttons, galleries,
and Dialog Box Launchers are all on the Ribbon and offer a new rich user interface for
Access 2007 and the other 2007 Microsoft Offi ce system products.

Figure 2-20 The new Ribbon interface replaces menu bars and toolbars.

The Ribbon in Access 2007 consists of four main tabs—Home, Create, External Data,
and Database Tools—that group together common tasks and contain a major subset of
the program functions in Access. These main tabs are visible at all times when you are
working in Access 2007 because they contain the most common tools you need when
working with any database object. Other tabs, called contextual tabs, appear and disap-
pear to the right of the Database Tools tab when you are working with specifi c database
objects and in various views. (In the following chapters, we will discuss in detail the
various database objects and the contextual tabs that appear when working with each.)

If you click on one of the Ribbon tabs, you can then scroll through the other tabs using

the scroll wheel on your mouse.

Each tab on the Ribbon has commands that are further organized into groups. The
name of each group is listed at the bottom, and each group has various commands
logically grouped by subject matter. To enhance the user experience and make things
easier to fi nd, Microsoft has labeled every command in the various groups. If you rest
your mouse pointer on a specifi c command, Access displays a ScreenTip that contains
the name of the command and a short description that explains what you can do with
the command. Any time a command includes a small arrow, you can click the arrow to
display options available for the command.

SIDE OUT Scrolling Through the Ribbon Tabs

If you click on one of the Ribbon tabs, you can then scroll through the other tabs using

the scroll wheel on your mouse.

Chapter 2

42 Chapter 2 Exploring the New Look of Access 2007
Home Tab
Let’s fi rst explore the Home tab shown in Figure 2-21.

Figure 2-21 The Home tab provides common commands for editing, fi ltering, and sorting data.

The Home tab has the following groups:

O Views. Most objects in an Access database have two or more ways to view them.
When you have one of these objects open and it has the focus, you can use the
View command in this group to easily switch to another view.

O Clipboard. You can use the commands in this group to manage data you move to
and from the Clipboard.

O Font. You can change how Access displays text using the commands in this
group.

O Rich Text. You can design fi elds in your database to contain data formatted in
Rich Text. (See Chapter 4 for more details about data types.) You can use the com-
mands in this group to format text in a Rich Text fi eld.

O Records. Use the commands in this group to work with records, including delet-
ing records and saving changes.

O Sort & Filter. You can use these commands to sort and fi lter your data.

O Window. Use the commands in this group to resize windows or select one of sev-
eral windows you have open. Note that Access displays this group only when you
have set your database to display Overlapping Windows rather than Tabbed Doc-
uments. For more details, see “Using the Single-Document vs. Multiple- Document
Interface” on page 83.

O Find. The commands in this group allow you to search and replace data, go to a
specifi c record, or select one or all records.

Create Tab
The Create tab, shown in Figure 2-22, contains commands that let you create new data-
base objects. Each group on this particular tab arranges its specifi c functions by data-
base object type.

 Understanding the New Ribbon Feature 43

Ch
ap

te
r 2
Figure 2-22 The Create tab provides commands for creating all the various types of database
objects.

The Create tab contains the following groups:

O Tables. Use the commands in this group to create new tables or link to a
 Microsoft Windows SharePoint Services list. You can learn more about Windows
SharePoint Services in Chapter 22, “Working with Windows SharePoint Services.”

O Forms. You can create new forms using the commands in this group, including
PivotChart and PivotTable forms. For more details about PivotCharts, see Chapter
13, “Advanced Form Design.”

O Reports. The commands in this group allow you to create new reports using
available wizards or to start a new report design from scratch.

O Other. Use the commands in this group to create new queries or build macros or
modules to automate your application.

External Data Tab
The External Data tab, shown in Figure 2-23, provides commands to import from or
link to data in external sources or export data to external sources, including other
Access databases or Windows SharePoint Services lists.

Figure 2-23 The External Data tab provides commands for working with external data sources.

This tab has the following groups:

O Import. The commands in the Import group let you link to data or import data
or objects from other sources such as other Access databases, Microsoft Excel
spreadsheets, Windows SharePoint Services lists, and many other data sources
such as Microsoft SQL Server, dBase, Paradox, and Lotus 1-2-3.

O Export. You can use these commands to export objects to another Access data-
base or to export data to Excel, a Windows SharePoint Services site, Microsoft
Word, and more.

Chapter 2

44 Chapter 2 Exploring the New Look of Access 2007
O Collect Data. These two commands allow you to update data in your Access
2007 database from special e-mail options using Microsoft Offi ce Outlook 2007.
See Chapter 6, “Importing and Linking Data,” for details about using these new
features.

O SharePoint Lists. Commands in this group allow you to migrate some or all of
your data to a Windows SharePoint Services (version 3) site or synchronize offl ine
data with an active Windows SharePoint Services site.

Database Tools Tab
The last tab that is always available on the Ribbon is the Database Tools tab, shown in
Figure 2-24. The top part of Figure 2-24 shows the Database Tools tab when using an
Access 2007 database (.accdb) and the bottom part shows the Database Tools tab when
using Access 2000, 2002, or 2003 databases (.mdb).

Figure 2-24 The Database Tools tab gives you access to miscellaneous tools and wizards.

The Database Tools tab on the Ribbon includes the following groups:

O Macro. Commands in this group let you open the Visual Basic Editor, run a
macro, or covert a macro either to a shortcut menu or to Visual Basic.

O Show/Hide. Commands in this group activate useful information windows. Use
the Relationships command to view and edit your table relationships. (See Chap-
ter 4 for details.) Click the Property Sheet command to open the Property Sheet
dialog box that displays the properties of the object currently selected in the
Navigation Pane. Click the Object Dependencies command to see which objects
are dependent on the currently selected object. Select the Message Bar check box
to reveal the Message Bar that displays any pending security alerts.

O Analyze. Use the commands in this group to print a report about your objects or
run one of the two analysis wizards.

O Move Data. The two wizards available in this group allow you to either move
some or all of your tables to SQL Server or move all your tables to a separate
Access database and create links to the moved tables in the current database.

 Understanding the New Navigation Pane 45

Ch
ap

te
r 2
O Database Tools. You will see a different set of commands in this group depend-
ing on whether you have opened an Access 2000, 2002, or 2003 database (.mdb)
or an Access 2007 database (.accdb). In both groups, you fi nd commands to run
the Linked Table Manager (see Chapter 6), the Switchboard Manager (see Chapter
24, “The Finishing Touches”), make an execute-only version (.mde or .accde) of
your database (see Chapter 25), or manage add-ins. In an .mdb fi le, you can fi nd
commands to encode/decode your database (encrypt it) and set a password that a
user must know to run your database. In an .accdb fi le, you can fi nd a command
to create an encrypted version with a password (see Chapter 25).

O Administer. Access displays this group on the Database Tools tab only when you
open an Access database fi le created in Access 2000, 2002, or 2003 (.mdb). The
Users And Permissions command lets you edit and defi ne users and object per-
missions in the legacy security system no longer supported in Access 2007 format
(.accdb) database fi les. The Replication Options let you manage the legacy replica-
tion features no longer supported in Access 2007 format database fi les. For more
information on these features, see Running Microsoft Access 2000 (Microsoft Press,
1999) or Microsoft Offi ce Access 2003 Inside Out (Microsoft Press, 2004).

If you need some additional workspace within the Access window, you can collapse the

entire Ribbon by double-clicking on any of the tabs. All the groups disappear from the

screen, but the tabs are still available. You can also use the keyboard shortcut Ctrl+F1 to

collapse the Ribbon. To see the Ribbon again, simply click on any tab to restore the Rib-

bon to its full height or press Ctrl+F1 again.

Understanding the New Navigation Pane
As part of the user interface overhaul in Offi ce Access 2007, the development team
introduced a new object navigation tool called the Navigation Pane. In previous ver-
sions of Access, you navigated among the various database objects through the Data-
base window. Access grouped all database objects together by type and displayed
various properties of each object alongside the object name depending on the view you
chose.

Offi ce Access 2007 replaces the Database window with the Navigation Pane shown in
Figure 2-25. Unlike the Object bar in the old Database window that you could posi-
tion anywhere in the Access workspace, the new Navigation Pane is a window that is
permanently located on the left side of the screen. Any open database objects appear
to the right of the Navigation Pane instead of covering it up. This means you still have
easy access to the other objects in your database without having to shuffl e open objects
around the screen or continually minimize and restore object windows. In contrast to
the Database window, the new Navigation Pane lets you view objects of different types

SIDE OUT Collapsing the Entire Ribbon

If you need some additional workspace within the Access window, you can collapse the

entire Ribbon by double-clicking on any of the tabs. All the groups disappear from the

screen, but the tabs are still available. You can also use the keyboard shortcut Ctrl+F1 to

collapse the Ribbon. To see the Ribbon again, simply click on any tab to restore the Rib-

bon to its full height or press Ctrl+F1 again.

Chapter 2

46 Chapter 2 Exploring the New Look of Access 2007
at the same time. If the list of objects in a particular group is quite extensive, Access
provides a scroll bar in each section so that you can access each object.

To follow along in the rest of this section, open the Issues Sample database (Issues-
Sample.accdb) from the companion CD. Unless you have previously opened this data-
base and changed the Navigation Pane, you should see the Navigation Pane on the left
side of the screen, exactly like Figure 2-25.

Figure 2-25 The new Navigation Pane replaces the Database window from previous
Access versions.

Click an object in one of the groups in the Navigation Pane to select it and then press

a letter key to quickly jump to any objects that begin with that letter in that particular

group.

SIDE OUT Quickly Jumping to a Specifi c Object in the Navigation Pane

Click an object in one of the groups in the Navigation Pane to select it and then press

a letter key to quickly jump to any objects that begin with that letter in that particular

group.

 Understanding the New Navigation Pane 47

Ch
ap

te
r 2
You can easily expand or contract the width of the Navigation Pane by positioning
your pointer over the right edge of the Navigation Pane and then clicking and dragging
the edge in either direction to the width you want. Keep in mind that the farther you
expand the width, the less screen area you have available to work with your database
objects because all objects open to the right of the Navigation Pane. To maximize the
amount of screen area available to work with open objects, you can completely col-
lapse the Navigation Pane to the far left side of the application window by clicking the
double-arrow button in the upper-right corner, called the Shutter Bar Open/Close But-
ton. When you do this, the Navigation Pane appears as a thin bar on the left of your
screen, as shown in Figure 2-26. After you have “shuttered” the Navigation Pane, the
arrows on the button reverse direction and point to the right. Click the button again
to reopen the Navigation Pane to its previous width. Access 2007 remembers the last
width you set for the Navigation Pane. The next time you open an Access database, the
width of the Navigation Pane will be the same as when you last had the database open.
Pressing the F11 key alternately toggles the Navigation Pane between its collapsed and
expanded view.

Figure 2-26 You can collapse the Navigation Pane to give yourself more room to work on open
objects.

We will discuss the various database objects and their purposes within an Access database in
Chapter 3, “Microsoft Offi ce Access 2007 Overview.”

Shutter Bar
Open/Close Button

Shutter Bar
Open/Close Button

Chapter 2

48 Chapter 2 Exploring the New Look of Access 2007
Exploring Navigation Pane Object Views
When you fi rst open the IssuesSample.accdb sample database, the Navigation Pane
shows you all the objects defi ned in the database grouped by object type and sorted by
object name. You can verify this view by clicking the menu bar at the top of the Navi-
gation Pane, as shown in Figure 2-27, which opens the Navigation Pane menu. Under
Navigate To Category, you should see Object Type selected, and under Filter By Group,
you should see All Access Objects selected. This is the view we selected in the database
before saving it on the companion CD.

Figure 2-27 You can change the display in the Navigation Pane by selecting a different category or
fi lter from the Navigation Pane menu.

This view closely matches the Database window in previous versions of Access where
you could select tabs to view each object category, and each object type was sorted
by object name. The objects in each of the six object types—Tables, Queries, Forms,
Reports, Macros, and Modules—are grouped together. When the list of objects is longer
than can be displayed within the height of the Navigation Pane, Access provides a
scroll bar.

 Understanding the New Navigation Pane 49

Ch
ap

te
r 2
You can customize the Navigation Pane to display the object list in many different ways.
Access 2007 provides a set of predefi ned categories for the Navigation Pane that you
can access with a few mouse clicks. You can see these available categories by clicking
the top of the Navigation Pane to open the menu, as shown previously in Figure 2-27.

Notice that this Issues Sample database lists six categories under Navigate To Category:
Issues Navigation, Custom, Object Type, Tables And Related Views, Created Date, and
Modifi ed Date. The fi rst category in the list, Issues Navigation, is a custom category
specifi c to this database. We’ll show you how to create and modify custom categories
later in this section. Access always provides the other fi ve categories in all databases to
allow you to view objects in various predefi ned ways. We will discuss the Custom and
Issues Navigation categories later in “Working with Custom Categories and Groups” on
page 53.

If you click the header of each object type where the double arrow is located, Access

collapses that part of the Navigation Pane. For example, if you want to temporarily hide

the tables, you can collapse that section by clicking the double arrow next to the word

Tables. To bring the table list back to full view, simply click the double arrow that is now

pointing downward, and the tables section expands to reveal all the table objects.

The Navigation Pane menu also provides commands under Filter By Group to allow
you to fi lter the database object list. The fi lter commands available change depending
on which Navigate To Category command you select. Notice in Figure 2-27 where Navi-
gate To Category is set to Object Type that the Filter By Group section in the lower half
of the Navigation Pane menu lists each of the object types that currently exist in your
database. When you have the menu categorized by object type, you can further fi lter the
list of objects by selecting one of the object types to see only objects of that type. Click
one of the object types, Forms for instance, and Access hides all the other object types
as shown in Figure 2-28. This feature is very useful if you want to view and work with
only a particular type of database object. Click the All Access Objects fi lter command to
again see all objects by object type.

By default, new blank databases created in the Access 2007 format display the object
list in the Navigation Pane in a category called Tables And Related Views. You can
switch the Issues Sample database to this category by opening the Navigation Pane
menu that contains categories and fi lters, and then click the Tables And Related Views
command as shown in Figure 2-29.

SIDE OUT Collapsing an Entire Group in the Navigation Pane

If you click the header of each object type where the double arrow is located, Access

collapses that part of the Navigation Pane. For example, if you want to temporarily hide

the tables, you can collapse that section by clicking the double arrow next to the word

Tables. To bring the table list back to full view, simply click the double arrow that is now

pointing downward, and the tables section expands to reveal all the table objects.

Chapter 2

50 Chapter 2 Exploring the New Look of Access 2007
Figure 2-28 You can display only the Forms group of objects in Object Type view by applying a
fi lter in the Navigation Pane menu.

Figure 2-29 The Tables And Related Views category on the Navigation Pane menu offers a differ-
ent way to view your database objects.

After you click Tables And Related Views, the Navigation Pane should look similar to
Figure 2-30. This particular view category groups the various database objects based
on their relation to a common denominator—a table. As you can observe in Figure 2-30,
each group of objects is the name of one of the tables. Note that in Figure 2-30 we col-
lapsed the Ribbon in order to show you all the various database objects and groups.

 Understanding the New Navigation Pane 51

Ch
ap

te
r 2
Within each group, you can see the table as the fi rst item in the group followed by
all objects that are dependent on the data from the table. So, Access lists all database
objects dependent on the Issues data table together in the Issues group, and similarly, it
lists all objects dependent on the Contacts table in the Contacts group. At fi rst glance,
you might be a bit confused as to the purpose of each object, but notice that the various
types of objects each have their own unique icon to help you differentiate them. The
Issues table, for example, is listed fi rst with the icon for a table before the name and the
word Table next to it. The remaining objects in the group are the various objects that
are dependent on the Issues table in alphabetical order by name, and each object has an
icon before the name that identifi es the type of object.

Note
You can fi nd more details about the various object types and related icons in the next

chapter.

Figure 2-30 The Tables And Related Views category in the Navigation Pane groups objects under
a table.

Some objects appear in a category called Unrelated Objects, such as the macro called
mcrSample and the module called basSampleSub in this Issues Sample database. Mac-
ros and modules contain code that you can reference from any object in your database.
They always appear in the Unrelated Objects category of Tables And Related Views

Note
You can fi nd more details about the various object types and related icons in the next

chapter.

Chapter 2

52 Chapter 2 Exploring the New Look of Access 2007
because Access does not search through the macro arguments and module code to see
if any table references exist.

This particular view category can be quite useful if you are making some changes to a

table and want to see what objects might be affected by the change. You can check each

query, form, and report that is related to this table one at a time in this view to ensure

that no functionality of the database is broken after you make a change to the underly-

ing table.

Now that you have changed to Tables And Related Views, open the Navigation Pane
menu again. Notice that the names of both data tables in this database are listed
beneath Filter By Group as shown previously in Figure 2-29. Click Issues, and Access
reduces the Navigation Pane to show only the objects related to the Issues table as
shown in Figure 2-31. By fi ltering the Navigation Pane to one table, you have reduced
the number of objects displayed and can focus your attention on only a small subset
of database objects. You can open the Navigation Menu again and click All Tables to
restore the complete list.

Figure 2-31 You can fi lter Tables And Related Views to show only the database objects dependent
on one table.

SIDE OUT When to Use the Tables And Related Views Category

This particular view category can be quite useful if you are making some changes to a

table and want to see what objects might be affected by the change. You can check each

query, form, and report that is related to this table one at a time in this view to ensure

that no functionality of the database is broken after you make a change to the underly-

ing table.

 Understanding the New Navigation Pane 53

Ch
ap

te
r 2
Access provides two related types of object view categories on the Navigation Pane
menu called Created Date and Modifi ed Date, as shown in Figure 2-32. These categories
list all the objects in descending order based on when you created or last modifi ed the
object. These views can be quite useful if you need to locate an object that you created
or last modifi ed on a specifi c date or within a range of dates. When you click either of
these commands, Filter By Group on the Navigation Pane menu offers to fi lter by Today,
Yesterday, one of the fi ve days previous to that (listed by day name), Last Week, Two
Weeks Ago, Three Weeks Ago, Last Month, Older, or All Dates.

Figure 2-32 The Created Date and Modifi ed Date categories display objects in the order you
 created or last modifi ed them.

Note
You will not see the same options listed in Figure 2-32 when you open your copy of

Issues Sample because all the Modifi ed dates will be older than three weeks. The only

two options you will see are Older and All Dates.

Working with Custom Categories and Groups
We have not yet discussed the remaining two object categories available on the Navi-
gation Pane menu of the Issues Sample database: Custom and Issues Navigation as
shown in Figure 2-33. Whenever you create a new database, Access creates the Custom
category that you can modify to suit your needs. Initially, the Custom category contains

Note
You will not see the same options listed in Figure 2-32 when you open your copy of

Issues Sample because all the Modifi ed dates will be older than three weeks. The only

two options you will see are Older and All Dates.

Chapter 2

54 Chapter 2 Exploring the New Look of Access 2007
only one group, Unassigned Objects, containing all the objects defi ned in your data-
base. As you’ll learn later, you can change the name of the Custom category, create one
or more custom groups, and assign objects to those groups.

When you create a new database using one of the many templates provided by
 Microsoft, nearly all these databases contain an additional predefi ned group designed
to make it easier to run the sample application. We created the Issues Sample database
using the Issues template, and the Issues Navigation category is predefi ned in that
template. As with any custom category, you can create new groups, modify or delete
existing groups, assign additional objects to the groups within the custom category, or
delete the category and all its groups altogether.

Figure 2-33 Both Custom and Issues Navigation are custom categories available in the Issues
Sample database.

To see an example of a fi nished custom category in this database, open the Navigation
Pane menu and select Issues Navigation. The Navigation Pane changes to display the
object list shown in Figure 2-34. This custom category contains three custom groups
called Issues, Contacts, and Supporting Objects. There is actually a fourth group called
Unassigned Objects, which you cannot see. In the following sections, you’ll learn how
to hide one or more groups.

 Understanding the New Navigation Pane 55

Ch
ap

te
r 2
Figure 2-34 The Issues Navigation category displays a custom view of the various database
objects.

In Figure 2-34, notice that each object icon has a small arrow in the lower-left corner.
This arrow indicates that you are looking at a shortcut or pointer to the actual object.
These shortcuts act similarly to shortcuts in Windows—if you open the shortcut, you’re
opening the underlying object to which the shortcut points. When you view custom
categories and groups in the Navigation Pane, you are always looking at shortcuts to
the objects. If you delete one of these shortcuts, you are only deleting the pointer to
the object and not the object itself. We’ll discuss more about working with these object
shortcuts in “Hiding and Renaming Object Shortcuts” on page 69.

Exploring the Navigation Options Dialog Box
Now that you have seen how a completed custom view category looks in the Naviga-
tion Pane, you can create your own new category and groups within that category in
this Issues Sample database for the Issues forms and reports and the Contacts forms
and reports. If any database objects are currently open, close them so that they do not
interfere with the following steps. First, let’s create a custom category and then groups
within that category to hold our designated database objects. To begin this process,
right-click the menu bar at the top of the Navigation Pane and click Navigation Options
on the shortcut menu, as shown in Figure 2-35.

Chapter 2

56 Chapter 2 Exploring the New Look of Access 2007
Figure 2-35 Right-click the top of the Navigation Pane and click Navigation Options to open the
Navigation Options dialog box.

Access opens the Navigation Options dialog box as shown in Figure 2-36.

Figure 2-36 The Navigation Options dialog box lets you create and edit grouping and display
options.

The Categories list under Grouping Options lists all the categories that have been
defi ned in this database. In this list, you can see two built-in categories—Object Type
and Tables And Related Views—that you cannot delete. The list also shows the Issues
Navigation category that was defi ned in the template and the Custom category that
Access defi nes in all new databases. When you select a different category in the list on

 Understanding the New Navigation Pane 57

Ch
ap

te
r 2
the left, the list on the right displays the groups for that category. For example, click the
Issues Navigation category on the left and notice that Access changes the list at the right
to show the four groups defi ned in that category—Issues, Contacts, Supporting Objects,
and Unassigned Objects, as shown in Figure 2-37.

Figure 2-37 Four groups have been defi ned in the Issues Navigation category.

Next to each of the four groups for Issues Navigation is a check box. All but the last
check box next to Unassigned Objects is selected. When you clear the check box next
to any group on the right, Access does not display that group in the Navigation Pane.
As you may recall, when you looked at the Issues Navigation category in the Navigation
Pane, you could see only Issues, Contacts, and Supporting Objects. Because we cleared
the check box next to Unassigned Objects in the Navigation Options dialog box, you
are unable to view it in the Navigation Pane.

Note
The Tables And Related Views category by default includes one group for each table

defi ned in the current database and one additional group called Unrelated Objects. The

Object Type category includes one group for each of the six object types—tables, que-

ries, forms, reports, macros, and modules.

Note
The Tables And Related Views category by default includes one group for each table

defi ned in the current database and one additional group called Unrelated Objects. The

Object Type category includes one group for each of the six object types—tables, que-

ries, forms, reports, macros, and modules.

Chapter 2

58 Chapter 2 Exploring the New Look of Access 2007
In the lower-left corner of this dialog box, the Display Options section contains three
check boxes—Show Hidden Objects, Show System Objects, and Show Search Bar. We’ll
discuss these options in detail in “Hiding and Renaming Object Shortcuts” on page 69
and “Searching for Database Objects” on page 78. The last section in the lower right of
the Navigation Options dialog box is a new feature in Access 2007 called Open Objects
With. When you select the Single-Click option, each object listed in the Navigation Pane
acts like a hyperlink, so you need only one click to open the object. Double-Click, the
default option, opens objects in the Navigation Pane with a double-click.

Creating and Modifying a Custom Category
To create your new navigation category, you could click the Add Item button. Or,
because the unused Custom category already exists, you can use it to create your new
category. Start by clicking Custom under Categories and then click the Rename Item
button, as shown in Figure 2-38.

Figure 2-38 Click the Rename Item button when Custom is selected to rename that category.

After you click the Rename Item button, Access unlocks the Custom fi eld in the Cat-
egories list so you can change the name. Delete the word Custom using the Backspace
or Delete key and type Issues Database Objects for your new name as shown in Fig-
ure 2-39.

Under Groups For “Custom” for the Issues Database Objects category, you can see Cus-
tom Group 1 and Unassigned Objects, as shown in Figure 2-39. The Custom Group 1
group is an empty placeholder that Access defi nes in the Custom category in all new
Access 2007 database fi les. By default, no objects are placed in this group for new data-
bases. The Unassigned Objects group is also a built-in Access group for the Custom
category. Access places all objects that are not assigned to any other groups in the Unas-
signed Objects group for display in the Navigation Pane.

 Understanding the New Navigation Pane 59

Ch
ap

te
r 2
Figure 2-39 You can rename the Custom group by typing a new name in the fi eld.

Creating and Modifying Groups in a Custom Category
Beneath the Groups list are three buttons: Add Group, Delete Group, and Rename
Group. When you click Custom Group 1 in the list, you can see that all these buttons
are available. The Add Group button creates another group under whichever group you
have currently selected, the Delete Group button deletes the currently selected group,
and the Rename Group button allows you to rename the current group. If you click
the Unassigned Objects group, the Delete Group and Rename Group buttons appear
dimmed. You cannot delete or rename this built-in group from any custom category.

For the Issues Database Objects category you need to create four groups. You can
rename the Custom Group 1 group to a name of your choice, but you also need to create
three additional groups. Let’s start by renaming Custom Group 1 to Issues Forms. Click
Custom Group 1 to select it and then click the Rename Group button. Access unlocks
the name of this group so you can change it. Delete the word Custom Group 1 and type
Issues Forms for your new name as shown in Figure 2-40.

You cannot change the name of the Unassigned Objects group, so you’ll need to create
additional groups. To create a new group, click the Add Group button. Access creates
another group called Custom Group 1 below Issues Forms and unlocks it for you to
enter a name as shown in Figure 2-41. Type Issues Reports for your new name and
press Enter.

Chapter 2

60 Chapter 2 Exploring the New Look of Access 2007
Figure 2-40 Click the Rename Group button when Custom Group 1 is selected to rename
that group.

Figure 2-41 When you click the Add Group button, Access creates another Custom Group 1 group.

Follow the preceding steps to create two additional new groups for the Issues Database
Objects category called Contact Forms and Contact Reports. In each case, start by
clicking the Add Group button to have Access create another Custom Group 1. Type
over that name and enter Contact Forms and Contact Reports for the two names. Your

 Understanding the New Navigation Pane 61

Ch
ap

te
r 2
 completed changes should now look like Figure 2-42 with your new custom category,
four custom groups, and the Unassigned Objects group.

Figure 2-42 The completed Issues Database Objects category now contains fi ve groups.

Next to whichever custom group is selected on the right are a Move Up arrow and a
Move Down arrow that you can click to change the display order of the groups in this
category. When you select this category from the Navigation Pane menu, Access dis-
plays the groups in the Navigation Pane based on the display order you set in the Navi-
gation Options dialog box. In Figure 2-42, you can see arrow buttons next to the Issues
Database Objects category and the Contact Reports group within that category. For
now, keep the display order of the custom groups and categories as they are. Click OK
to save your current changes.

In the Categories list of the Navigation Options dialog box, you cannot change the

 display order of the Tables And Related Views and Object Type categories. All custom

categories you create must appear below these two built-in categories.

The Unassigned Objects group in all custom groups you create can be displayed only at

the bottom of the list of groups. You cannot place any custom groups below this built-

in group. Similarly, the Unrelated Objects group within the Tables And Related Views

 category always appears at the bottom of the list.

SIDE OUT Understanding Display Order Rules for Categories and Groups

In the Categories list of the Navigation Options dialog box, you cannot change the

display order of the Tables And Related Views and Object Type categories. All custom

categories you create must appear below these two built-in categories.

The Unassigned Objects group in all custom groups you create can be displayed only at

the bottom of the list of groups. You cannot place any custom groups below this built-

in group. Similarly, the Unrelated Objects group within the Tables And Related Views

category always appears at the bottom of the list.

Chapter 2

62 Chapter 2 Exploring the New Look of Access 2007
To see how your changes appear in the Navigation Pane, click the top of the Navigation
Pane to open the menu and select your new Issues Database Objects category, as shown
in Figure 2-43.

Figure 2-43 After you select the new Issues Database Objects category, the Navigation Pane dis-
plays the custom groups you defi ned.

The Navigation Pane now displays each of your four custom group names along with
the Unassigned Objects category as shown in Figure 2-44. Note that Access placed all
your objects into the Unassigned Objects group and listed no database objects in any
of the four custom groups. (In Figure 2-44 we collapsed the Ribbon to show you all the
objects.)

 Understanding the New Navigation Pane 63

Ch
ap

te
r 2

Figure 2-44 Access initially places all objects into the Unassigned Objects group after you create a
custom category.

Creating Object Shortcuts in Custom Groups
Now that you have fi nished creating the category and group structure, it’s time to move
the objects into the groups you set up. You can move the forms that display or edit
Issues into the new group called Issues Forms. To accomplish this task, hold down
the Ctrl key and single-click each of the fi ve forms that focus on Issues: Add Related
Issues, Issue Details, Issue List, Issues by Status Chart, and Issues Datasheet Subform.
This action causes Access to select all these objects. If you make a mistake by selecting
an incorrect object, continue holding down the Ctrl key and single-click the incorrect
object to unselect it. After you have selected all fi ve form objects, right-click one of them
and on the shortcut menu that appears click Add To Group and then Issues Forms to
move the fi ve selected form objects to that group, as shown in Figure 2-45.

Chapter 2

64 Chapter 2 Exploring the New Look of Access 2007
Figure 2-45 You can move several objects to your custom group at the same time by selecting
them and clicking Add To Group from the shortcut menu.

Access creates a shortcut to each of the fi ve objects in the fi rst group, as shown in Figure
2-46. Each of the icons now has a small arrow next to it to indicate that it is actually
a shortcut to the respective database object and not the actual object itself, as we dis-
cussed earlier. If you delete a shortcut, you are deleting only the shortcut or pointer to
the object and not the object itself.

 Understanding the New Navigation Pane 65

Ch
ap

te
r 2

Figure 2-46 After you move your objects to the fi rst custom group, Access creates a shortcut to
each object.

With the fi rst set of objects assigned to a group, let’s continue moving the other forms
and reports. Hold down the Ctrl key and single-click on each of the following six
reports: Closed Issues, Issue Details, Open Issues, Open Issues by Assigned To, Open
Issues by Category, and Open Issues by Status. After you have selected these reports,
right-click and click Add To Group. Click the group called Issue Reports and again note
how Access creates a shortcut to each of these reports in our custom group as shown in
Figure 2-47.

Chapter 2

66 Chapter 2 Exploring the New Look of Access 2007
Figure 2-47 Group all your Issues reports together under Issues Reports by selecting them and
clicking Add To Group from the shortcut menu.

You can also select objects you want to add to a custom group and drag and drop them

into the group with your mouse. If you want a shortcut to appear in more than one

group, add it to the fi rst group, select it with your mouse, and while holding down the

Ctrl key, drag and drop it into the second group. Holding down the Ctrl key tells Access

you want to copy the shortcut, not move it. (Release the mouse button before releasing

the Ctrl key to be sure the copy feature works correctly.)

Now repeat this process for the two contact forms called Contact Details and Contact
List and move them to the group called Contact Forms. Similarly, move the two contact
reports called Contact Address Book and Contact Phone Book to the group called Con-
tact Reports. The Navigation Pane should now look like Figure 2-48.

SIDE OUT Dragging and Dropping Objects into Custom Groups

You can also select objects you want to add to a custom group and drag and drop them

into the group with your mouse. If you want a shortcut to appear in more than one

group, add it to the fi rst group, select it with your mouse, and while holding down the

Ctrl key, drag and drop it into the second group. Holding down the Ctrl key tells Access

you want to copy the shortcut, not move it. (Release the mouse button before releasing

the Ctrl key to be sure the copy feature works correctly.)

 Understanding the New Navigation Pane 67

Ch
ap

te
r 2
Figure 2-48 All the form and report objects now have shortcuts in custom groups in the Naviga-
tion Pane.

Hiding Custom Groups in a Category
With the previous steps completed, you should now see only six objects in the Unas-
signed Objects group—a collection of data tables, queries, one macro, and one module.
For now, assume that we do not want to have the users of this database application
view these objects. We can hide this entire Unassigned Objects group of objects from
the users by going back to the Navigation Options dialog box. Right-click the top of the
Navigation Pane, and then click Navigation Options to open the Navigation Options
dialog box again. In the Categories list, click the Issues Database Objects category to
display our custom groups. Clear the Unassigned Objects check box to tell Access to
hide this particular group when showing our custom Issues Database Objects view in
the Navigation Pane as shown in Figure 2-49.

Click OK in the Navigation Options dialog box, and Access completely removes this
group from view in the Navigation Pane. We are now left with a concise list of form and
report objects separated into logical groups as shown in Figure 2-50.

Chapter 2

68 Chapter 2 Exploring the New Look of Access 2007
Figure 2-49 Clear the check box next to Unassigned Objects to hide this group in the Naviga-
tion Pane.

Figure 2-50 The completed changes to the Navigation Pane now display only form and report
object shortcuts in four custom groups.

 Understanding the New Navigation Pane 69

Ch
ap

te
r 2

You can also hide an entire group from view in the Navigation Pane by right-clicking that

group and clicking Hide on the shortcut menu that appears.

Hiding and Renaming Object Shortcuts
We can further customize our list of objects by hiding object shortcuts directly in
the Navigation Pane. For example, for illustration purposes right now, assume that
you want to hide the data entry form called Issues Datasheet Subform from the cur-
rent view. (You’ll learn in Part 3 that a subform is a form designed to be embedded in
another form. A user won’t normally need to open subforms directly.) There are two
methods for accomplishing this task, both of which you can access directly from the
Navigation Pane. For the fi rst method, right-click the Issues Datasheet Subform in the
Navigation Pane and click Hide In This Group from the shortcut menu, as shown in
Figure 2-51.

Figure 2-51 To hide an object in a specifi c group, right-click it and click Hide In This Group from
the shortcut menu.

Access hides this object shortcut from view in the Navigation Pane but does not in any
way delete or alter the existing form itself. Alternatively, you can right-click that object
in the Navigation Pane and click View Properties from the shortcut menu, shown in Fig-
ure 2-51, to open the Properties dialog box for this object, as shown in Figure 2-52.

SIDE OUT Hiding a Group Directly from the Navigation Pane

You can also hide an entire group from view in the Navigation Pane by right-clicking that

group and clicking Hide on the shortcut menu that appears.

Chapter 2

70 Chapter 2 Exploring the New Look of Access 2007
Figure 2-52 You can hide a database object or an object shortcut from view in the Navigation
Pane by selecting the Hidden check box in the Properties dialog box.

The Properties dialog box displays the name of the object and whether this is a shortcut
to an object. In the middle of the dialog box you can see any description inherited from
the original object (which you can’t modify), the date the object was created, the date
the object was last modifi ed, and the owner of the object. The Attributes section has two
check boxes called Hidden and Disable Design View Shortcuts. We will discuss Disable
Design View in Chapter 24. In the Attributes section, select the Hidden check box and
then click OK. In the Navigation Pane you will see the Issues Datasheet Subform disap-
pear from view. Remember that you have hidden only the shortcut for this object and
have not affected the actual form itself in any way.

You now know how to hide objects or object shortcuts from view in the Navigation
Pane, but what if you want to rename the object shortcuts? Access 2007 allows you to
easily rename the shortcuts to database objects without affecting the underlying names
of the objects. To illustrate this procedure, let’s rename one of the report object short-
cuts. Right-click the Issue Details report and click Rename Shortcut from the shortcut
menu as shown in Figure 2-53.

 Understanding the New Navigation Pane 71

Ch
ap

te
r 2
Figure 2-53 To rename an object shortcut in the Navigation Pane, right-click it and click Rename
Shortcut.

Access sets the focus on this report in the Navigation Pane and unlocks the name of
the shortcut. Enter a new name for this object, by typing All Issue Details Report and
then pressing Enter, as shown in Figure 2-54. Access saves the new name of this report
shortcut, but does not change the name of the actual report object to which the short-
cut points.

The fi nal custom Navigation Pane with all your modifi cations should now look like
Figure 2-55. Behind the scenes, all the database objects are still present and unchanged,
but you customized the display view for users of your database. You are now showing
only a list of form and report shortcuts while other objects are hidden from view.

Chapter 2

72 Chapter 2 Exploring the New Look of Access 2007
Figure 2-54 After you click Rename Shortcut, Access unlocks the object shortcut name so that you
can change it.

Revealing Hidden Shortcuts
If you have followed along to this point, remember that you hid the form Issues Data-
sheet Subform from the current view in the Navigation Pane. To unhide this form,
right-click the top of the Navigation Pane and click Navigation Options to open the
Navigation Options dialog box. Select the Show Hidden Objects check box, as shown in
Figure 2-56. Click OK to save this change and close the Navigation Options dialog box.

 Understanding the New Navigation Pane 73

Ch
ap

te
r 2
Figure 2-55 The customized Navigation Pane category and groups now display only form and
report shortcuts.

Figure 2-56 Selecting the Show Hidden Objects check box causes Access to display any hidden
object shortcuts in the Navigation Pane.

When you return to the Navigation Pane, Access displays the shortcut to the form
Issues Datasheet Subform in the Issues Forms group, as shown in Figure 2-57. If
you look closely in Figure 2-57, you can see that Access displays the object dimmed

Chapter 2

74 Chapter 2 Exploring the New Look of Access 2007
 compared to the other object shortcuts. This dimmed state is a visual cue that Access
uses to indicate object shortcuts that are hidden. In Figure 2-57 you can also see that
Access now shows the hidden group Unassigned Objects and all of the objects con-
tained within it. All the objects in the Unassigned Objects group, along with the group
name itself, also appear dimmed in the Navigation Pane.

Figure 2-57 Access displays any hidden shortcuts, objects, or groups in the Navigation Pane when
you select the Show Hidden Objects check box.

To change the Hidden property of the form Issues Datasheet Subform, right-click that
object in the Navigation Pane and click View Properties to open the Properties dialog
box for this object, as shown in Figure 2-58. In the Attributes section, clear the Hidden
check box and then click OK. You can see that the Issues Datasheet Subform no longer
appears dimmed in the Navigation Pane.

Now that you have changed the form Issues Datasheet Subform to be visible in the
Navigation Pane, you need to tell Access to hide the Unassigned Objects group again.
Right-click the top of the Navigation Pane and click Navigation Options. Clear the
Show Hidden Objects check box, as shown in Figure 2-59. Click OK to save this change
and Access once again hides the Unassigned Objects group from view in the Naviga-
tion Pane.

 Understanding the New Navigation Pane 75

Ch
ap

te
r 2
Figure 2-58 You can unhide a database object or an object shortcut from view in the Navigation
Pane by clearing the Hidden check box in the Properties dialog box for the object or shortcut.

Figure 2-59 Clear the Show Hidden Objects check box to have Access hide any hidden object
shortcuts, objects, or groups in the Navigation Pane.

On the companion CD, you can fi nd a database fi le called IssueSampleCustom.accdb,
which has all the changes from the steps we completed in the preceding sections. If you
would like to compare your Issues Database Objects category and groups to our com-
pleted sample, open this fi le from the folder where you installed the sample fi les.

Chapter 2

76 Chapter 2 Exploring the New Look of Access 2007
Sorting and Selecting Views in the Navigation Pane
By default, Access sorts the objects in the Navigation Pane by object type in ascending
order. The Navigation Pane allows for several other types of object sorting. Right-click
the menu at the top of the Navigation Pane and move the mouse pointer over Sort By as
shown in Figure 2-60.

Figure 2-60 The Sort By submenu on the Navigation Pane menu allows for further Navigation
Pane sorting.

The Sort By submenu has options to sort the Navigation Pane list by the name of the
object, the object type, the created date, and the modifi ed date. You can change the sort
order from ascending to descending for any of these Sort By options by clicking Sort
Ascending or Sort Descending at the top of the Sort By submenu. The last option on the
Sort By submenu, Remove Automatic Sorts, lets you lay out your object list in any order
you want within the Navigation Pane. With this option selected, you can click and drag
your objects within their respective groups into any order, and Access will not re-sort
them in alphabetical, type, created date, or modifi ed date order after you have reposi-
tioned your objects in the list.

The View By submenu has three choices available—Details, Icon, and List—as shown in
Figure 2-61. The Details view displays in the Navigation Pane the name of each object,
its type, and the creation and modifi ed dates, as well as places a large icon next to the
name. The Icon view displays only the name of the object (or the shortcut name) next
to a large icon of the object type. The List view similarly displays only the name of the
object or shortcut, but the object icon is smaller than in the other two views.

Figure 2-61 The View By submenu lists commands to view the Navigation Pane objects by Details,
Icon, or List.

 Understanding the New Navigation Pane 77

Ch
ap

te
r 2

You can choose one of the view categories—either a custom category or one of the

built-in categories—by right-clicking the Navigation Pane menu and selecting the

Category submenu.

In Figure 2-62 you can see what the Navigation Pane looks like with the view set to
Details. Notice that more information is displayed about each object, but you see fewer
objects. To see the remaining objects you have to use the vertical scroll bar. If you
changed your view to Details to test this, go back to the View By submenu and change
the view back to List before continuing.

Figure 2-62 The Details view displays more information about each object in the Navigation Pane
than Icon or List view.

Manually Sorting Objects in the Navigation Pane
So far we have seen how Access can sort the list of objects and object shortcuts in the
Navigation Pane automatically for you. Access also allows you to manually sort the
object lists so that you can further customize the display order. You must fi rst tell

SIDE OUT Viewing Categories from the Navigation Pane Submenus

You can choose one of the view categories—either a custom category or one of the

built-in categories—by right-clicking the Navigation Pane menu and selecting the

Category submenu.

Chapter 2

78 Chapter 2 Exploring the New Look of Access 2007
Access to stop automatically sorting your objects. Right-click the top of the Navigation
Pane, click Sort By, and then click Remove Automatic Sorts as shown in Figure 2-63.

Figure 2-63 Click the Remove Automatic Sorts command to manually sort your object list in the
Navigation Pane.

Now you can click and drag your objects and object shortcuts around into different
positions in the Navigation Pane. For example, click and drag the Add Related Issues
form shortcut in the Navigation Pane until you have your pointer between the Issue List
and Issues by Status Chart forms. An I-beam pointer will appear while you drag to help
you position the object, as shown in Figure 2-64. After you release the mouse, Access
drops the form shortcut into the new position.

Figure 2-64 Click and drag your form shortcut into a new position within the Issues
Forms category.

To have Access automatically sort the object list again, select any of the four available
sort options above Remove Automatic Sorts from the Display Options menu.

 Searching for Database Objects
In databases with a large number of database objects, locating a specifi c object can be
diffi cult, so Access 2007 includes the Search Bar feature to make this task easier. By
default, this feature is turned off, so you must turn it on through the Navigation Pane.
You can enable this feature in one of two ways. For the fi rst method, right-click the top
of the Navigation Pane and then click Search Bar, as shown in Figure 2-65.

Alternatively, you can right-click the top of the Navigation Pane and then click Naviga-
tion Options from the shortcut menu to open the Navigation Options dialog box shown
in Figure 2-66.

 Understanding the New Navigation Pane 79

Ch
ap

te
r 2
Figure 2-65 Click the Search Bar command on the Display Options menu to display the Search Bar.

Figure 2-66 Select the Show Search Bar check box in the Navigation Options dialog box to display
the Search Bar.

Select the Show Search Bar check box and then click OK. Access displays a Search Bar
near the top of the Navigation Pane, as shown in Figure 2-67.

Figure 2-67 The Search Bar in the Navigation Pane helps you fi nd specifi c database objects.

We think the Search Bar is misnamed. Rather than “search” for objects that match what
you type in the search box, Access fi lters the list in the Navigation Pane. As you begin
to type letters, Access fi lters the list of objects to those that contain the sequence of
characters you enter anywhere in the name. For example, if you want to fi nd an object
whose name contains the word Address, type the word address in the Search Bar. As
you enter each letter in the Search Bar, Access begins fi ltering the list of objects for any
that contain the characters in your entered search string. With each successive letter

Chapter 2

80 Chapter 2 Exploring the New Look of Access 2007
you type, Access reduces the list of objects shown in the Navigation Pane because there
are fewer objects that match your search criteria. Notice that as soon as you have typed
the letters add, Access has reduced the list to two objects—Add Related Issues and Con-
tact Address Book. The names of both objects contain the letters add.

After you fi nish typing the entire word address in the Search Bar, the Navigation Pane
should like Figure 2-68. Access collapses any group headers if it does not fi nd any
objects (or object shortcuts if you’re using a custom category) that meet your search
criterion. In this case, Access located one object, Contact Address Book, with the word
address in its name. To clear your search string if you need to perform another object
search, either delete the existing text using the Backspace key or click the Clear Search
String button on the right side of the Search Bar. Clearing the search box or clicking the
Clear Search String button restores the Navigation Pane to show all displayable objects.

Figure 2-68 The Search Bar collapses any groups if it does not fi nd any objects in that group that
meet your search criterion.

Note that Access searches for objects only in categories and groups that are currently
displayed in the Navigation Pane. If Access cannot fi nd an object that you know exists
in the database, it is possible that the view you have selected in the Navigation Pane
is interfering. For example, suppose you conduct the preceding same search but this
time you have only one group showing. Clear the Search Bar of any text by using the
Backspace key or click the Clear Search String button. Now click the menu bar at the
top of the Navigation Pane and select Issues Forms in the Filter By Group section of the
Navigation Pane menu, as shown in Figure 2-69. The only group now displayed in the
Navigation Pane is Issues Forms with four object shortcuts.

Enter the word address again in the Search Bar and notice that Access cannot locate any
objects that meet your criterion. In Figure 2-70 you can see that Access shows an empty
Navigation Pane because none of the four form object shortcuts in the Issues Forms
groups have the word address in their name. This does not mean that no objects in the
entire database have the word address in their name; it means only that Access could
not locate any objects with that search criterion in the current view selected in the Navi-
gation Pane.

 Understanding the New Navigation Pane 81

Ch
ap

te
r 2
Figure 2-69 Select Issues Forms from the Navigation Pane menu to show only that group in the
Navigation Pane.

Figure 2-70 Access might not be able to fi nd any objects that meet your criterion if your chosen
display view is too restrictive.

If you know exactly the name of the object you want to fi nd and the type of object as
well, you can save some additional searching through object types you might not be
interested in. For example, suppose you want to fi nd a form that has the word list in
its name. First open the Navigation Pane menu and click Object Type. Open the menu
again and click Forms under Filter By Group to restrict the list of objects to display only
forms, as shown in Figure 2-71.

You can also right-click the Forms group header and click Show Only Forms so that only

forms show in the Navigation Pane.

SIDE OUT Using the Shortcut Menu to Display Only One Category

You can also right-click the Forms group header and click Show Only Forms so that only

forms show in the Navigation Pane.

Chapter 2

82 Chapter 2 Exploring the New Look of Access 2007
Figure 2-71 You can limit your search to form objects by selecting the Object Type category and
Forms group from the Navigation Pane menu.

Type the word list in the Search Bar and Access searches through only data entry forms
until it fi nds a match. In Figure 2-72, Access has found two forms that have the word list
in their name—Contact List and Issue List.

Figure 2-72 After restricting the Navigation Pane to show only forms, text you enter in the Search
Bar searches only in the Forms group.

If you need to search through all your database objects to fi nd a specifi c named object,

we recommend that you set the Navigation Pane menu category to one of the built-in

categories such as Object Type or Tables And Related Views. Also check to see that all

groups are visible in the Navigation Pane for that category to ensure that Access does

not miss any objects when it conducts the search.

SIDE OUT Maximizing Your Search to Include All Objects

If you need to search through all your database objects to fi nd a specifi c named object,

we recommend that you set the Navigation Pane menu category to one of the built-in

categories such as Object Type or Tables And Related Views. Also check to see that all

groups are visible in the Navigation Pane for that category to ensure that Access does

not miss any objects when it conducts the search.

 Using the Single-Document vs. Multiple-Document Interface 83

Ch
ap

te
r 2
 Using the Single-Document vs.
Multiple-Document Interface

In previous versions of Access, all objects opened in their own window where you
could edit, view, or print them. This type of interface, multiple-document interface (MDI
for short), was the cornerstone for working with objects in Access. Offi ce Access 2007
introduces a new interface model called single-document interface (SDI). In the SDI
model, all objects open in a series of tabs along the top of the object window to the
right of the Navigation Pane. In the older MDI model, switching between open objects
usually meant constantly minimizing, resizing, and maximizing the various objects
in order to work with them. In Figure 2-73 you can see two forms, one table, and one
report open using MDI format. To switch among these objects you must move the
objects around or minimize some of them, as shown near the bottom of the screen.

 Close Minimize
 Maximize Maximize
Restore Close

Figure 2-73 All open objects appear in their own separate window when using the multiple-
 document interface.

Chapter 2

84 Chapter 2 Exploring the New Look of Access 2007
In the new SDI model, each open object appears on a tab to the right of the Navigation
Pane. In Figure 2-74 you can see the same four objects open as before, but here each
open object has its name listed at the top of a tab next to an icon for that particular type
of database object. Switching among open objects is as simple as clicking on a different
tab. The end result of this new interface is that you can easily see the names of all open
objects and fi nd the ones you need to work with much more quickly.

Figure 2-74 All open objects appear on their own tabs when using the single-document interface.

For new databases created in the Access 2007 format, Access uses the single-document
interface by default, but for older databases in the MDB/MDE type format Access 2007
still opens those fi les in multiple-document interface mode. Access easily allows you
to change the interface mode for any database through the Access Options dialog box.
Click the Microsoft Offi ce Button, and then click the Access Options button.

The Access Options dialog box opens and displays many options for customizing the
look and feel of Access 2007. You can fi nd an explanation of more of the various options
in these categories in “Modifying Global Settings via the Access Options Dialog Box” on
page 87. Click the Current Database category in the left pane to display a list of settings
to tailor this current database. In Figure 2-75, note the section called Document Win-
dow Options in the Current Database category of the Access Options dialog box.

 Using the Single-Document vs. Multiple-Document Interface 85

Ch
ap

te
r 2
Figure 2-75 The Document Window Options section in the Current Database category of the
Access Options dialog box controls the interface mode.

To work in multiple-document interface mode, select Overlapping Windows. For the
single-document interface, with each object on its own tab, select Tabbed Documents.
Under these two options is a check box called Display Document Tabs. You can select
this check box only in conjunction with the Tabbed Documents option. When you
select the Display Document Tabs check box, each object has a tab across the top of the
object window with the object’s name and an icon for the object type, as was shown
in Figure 2-74. If you clear Display Document Tabs, you do not see any tabs for open
objects nor do you see any Restore, Minimize, Maximize, or Close buttons for open
objects.

In Figure 2-76 we have two forms, one table, and one report open, but you can see only
the report because no object tabs are visible. Notice that you do not see any Restore,
Minimize, Maximize, or Close buttons along the top of the object window, which
means it is more diffi cult to switch among various open objects. It is possible, but awk-
ward, to switch from one object to another by pressing Ctrl+F6.

After you make your selections in the Access Options dialog box, click OK to save your
changes. Access applies these interface settings to this current database the next time
you open the fi le. In order to see the interface change you need to close and reopen the
database.

Chapter 2

86 Chapter 2 Exploring the New Look of Access 2007
Figure 2-76 With Tabbed Documents selected and the Display Document Tabs check box cleared,
no tabs for open objects appear at the top of the object window.

If you’re creating an application for novice users, you might want to set up the applica-

tion so that the user can work with only one object at a time. Presenting a single object

minimizes the choices the user must make. However, you will have to be sure to include

a method to allow the user to navigate to other objects, perhaps with command buttons

that execute VBA code or macros to open and set the focus to other objects. You must

carefully design such an application so the user never gets “trapped” in one object and

unable to get to others.

SIDE OUT Why You Might Want to Use the Tabbed Documents Setting
with No Tabs Visible

If you’re creating an application for novice users, you might want to set up the applica-

tion so that the user can work with only one object at a time. Presenting a single object

minimizes the choices the user must make. However, you will have to be sure to include

a method to allow the user to navigate to other objects, perhaps with command buttons

that execute VBA code or macros to open and set the focus to other objects. You must

carefully design such an application so the user never gets “trapped” in one object and

unable to get to others.

 Modifying Global Settings via the Access Options Dialog Box 87

Ch
ap

te
r 2
 Modifying Global Settings via the Access Options
Dialog Box

In addition to all the various commands and options available on the Ribbon and in the
Navigation Pane, Access 2007 has one central location for setting and modifying global
options for all your Access database fi les or for only the database currently open. This
location is the Access Options dialog box. To open the Access Options dialog box, click
the Microsoft Offi ce Button and then click Access Options, as shown in Figure 2-77.

Figure 2-77 Click the Microsoft Offi ce Button and then click Access Options to open the Access
Options dialog box.

The Access Options dialog box contains 10 categories in the left pane to organize the
various options and settings. The fi rst category, Popular, has settings that apply not only
to Access 2007, but also to any other 2007 Microsoft Offi ce system programs you might
have installed. From here you can choose to display ScreenTips, select a color scheme
for the application window, and enter a user name for use in all your 2007 Microsoft
Offi ce system applications. In the Creating Databases section, you can choose a default
fi le format for new databases you create in Access 2007. By default, the fi le format is set

Chapter 2

88 Chapter 2 Exploring the New Look of Access 2007
to create all new databases in Access 2007 format. The Default Database Folder box dis-
plays the folder where Access saves all new database fi les unless you select a different
folder when creating the database. Figure 2-78 shows the Popular category of the Access
Options dialog box.

Figure 2-78 The Popular category has general settings for your Microsoft Offi ce system
 applications.

The Current Database category, shown in Figure 2-79, has many settings that apply only
to the database currently open. This category groups options into these sections: Appli-
cation Options, Navigation, Ribbon And Toolbar Options, Name AutoCorrect Options,
and Filter Lookup Options.

 Modifying Global Settings via the Access Options Dialog Box 89

Ch
ap

te
r 2

Figure 2-79 The Current Database category has general settings for the database currently open.

The Document Window Options section in this category was discussed previously
in “Using the Single-Document vs. Multiple-Document Interface” on page 83. Use
 Windows-Themed Controls On Forms will be discussed in Chapter 11, “Building a
Form,” and Chapter 12, “Customizing a Form.” The remaining options in the Current
Database category will be discussed in Chapter 24.

Chapter 2

90 Chapter 2 Exploring the New Look of Access 2007
The Datasheet category, shown in Figure 2-80, has settings that control the appearance
of the datasheet views in your database. This category has options grouped in the fol-
lowing sections—Default Colors, Gridlines And Cell Effects, and Default Font—which
allow you to modify the look of your datasheets with different colors, gridlines, and cell
effects. You can also select a default font and size under Default Font. You’ll learn more
about applying these settings to datasheets in “Working in Query Datasheet View” on
page 384 and in Chapter 10, “Using Forms,” and Chapter 11.

Figure 2-80 The Datasheet category has general settings to control the look of datasheets.

The Object Designers category, shown in Figure 2-81, includes settings for creating and
modifying database objects in all databases. The Object Designers category is divided
into four sections: Table Design, Query Design, Forms/Reports, and Error Checking.

 Modifying Global Settings via the Access Options Dialog Box 91

Ch
ap

te
r 2
The Table Design section has settings for Default Field Type, Default Text Field Size,
and Default Number Field Size. You’ll learn more about the impact of these settings in
Chapter 4. The Query Design section lets you select a default font and size for working
in the query design grid. You’ll learn more about the impact of these settings in Chapter
8, “Building Complex Queries.” The Forms/Reports section has options that allow you
to use the existing form and report templates or choose a custom template that you
have created. You’ll learn more about these settings in Chapter 11. The Error Checking
section has several default options that Access looks for when checking for errors in
your database fi le. You’ll learn more about these settings in Chapter 19, “Understanding
Visual Basic Fundamentals.”

Figure 2-81 The Object Designers category has settings for working with database objects.

Chapter 2

92 Chapter 2 Exploring the New Look of Access 2007
The Proofi ng category, shown in Figure 2-82, includes options for controlling the spell-
ing and AutoCorrect features. You can click AutoCorrect Options to customize how
Access helps you with common typing mistakes. You can also click Custom Dictionar-
ies to select a custom dictionary to use when working with Access 2007 and the other
2007 Offi ce release applications. See Chapter 24 for more information on these options.

Figure 2-82 The Proofi ng category has settings for checking spelling and AutoCorrect.

 Modifying Global Settings via the Access Options Dialog Box 93

Ch
ap

te
r 2
The Advanced category, shown in Figure 2-83, contains a wide variety of settings for
Access 2007. This category has options grouped in the following sections: Editing,
Display, Printing, General, and Advanced. Each of the settings in this category applies
to all database fi les you use in Access 2007. Many of these settings are discussed later
in various parts of this book. See Chapter 6, Chapter 7, “Creating and Working with
Simple Queries,” and Chapter 26, “Building Tables in an Access Project,” for more
 information.

Figure 2-83 The Advanced category has options for controlling editing, display, and printing.

Chapter 2

94 Chapter 2 Exploring the New Look of Access 2007
The Customize category, shown in Figure 2-84, was discussed previously in “Taking
Advantage of the Quick Access Toolbar” on page 27. This category is where you custom-
ize the Quick Access Toolbar. You can make modifi cations to the Quick Access Toolbar
for this specifi c database only or to the Quick Access Toolbar for all Access databases.

Figure 2-84 The Customize category allows you to customize the Quick Access Toolbar.

 Modifying Global Settings via the Access Options Dialog Box 95

Ch
ap

te
r 2
The Add-Ins category, shown in Figure 2-85, lists all the various Access add-ins that
might be installed on your computer. You can manage COM add-ins and Access add-
ins from this category, and each add-in has its various properties listed. COM add-ins
extend the ability of Access and other Microsoft Offi ce system applications with custom
commands and specialized features. You can even disable certain add-ins to keep them
from loading and functioning.

Figure 2-85 The Add-Ins category lists any installed Access add-ins and COM add-ins.

Chapter 2

96 Chapter 2 Exploring the New Look of Access 2007
The Trust Center category, shown in Figure 2-86, is where you access all Trust Center
options for handling security. As we discussed earlier in “Understanding Content
 Security” on page 34, you can open the Trust Center Settings dialog box that controls
all aspects of macro security. This category also has links to online privacy and security
information.

Figure 2-86 The Trust Center category has links to privacy and security information and the Trust
Center Settings button to view more options.

The Resources category, shown in Figure 2-87, is the last category in the Access Options
dialog box. This category has options grouped in the following sections: Get Updates,
Run Microsoft Offi ce Diagnostics, Contact Us, Activate Microsoft Offi ce, Go To
 Microsoft Offi ce Online, and About Microsoft Offi ce Access 2007.

 Modifying Global Settings via the Access Options Dialog Box 97

Ch
ap

te
r 2
Figure 2-87 The Resources category has options for contacting Microsoft and utilities to repair
problems with your 2007 Microsoft Offi ce system applications.

Click Check For Updates to go to a Web site where you can run a program that veri-
fi es that you have the latest updates for your Microsoft Offi ce system. Click Diagnose
to run a procedure that verifi es your Microsoft Offi ce system installation and fi xes
most problems. Click Contact Us to go to a Web site where you can fi nd links to sup-
port options, go to online support communities, or submit suggestions to improve the
product or report a problem. Click Activate to verify that you have a valid installation of
the Microsoft Offi ce system and activate all features. Click Go Online to go to Microsoft
Offi ce Online to get updates and other services. Click About to open a dialog box that
displays your current version and service pack level of Access and provides links to a
system analyzer program and online technical support.

In the next chapter, “Microsoft Offi ce Access 2007 Overview,” you’ll learn about the
internal architecture of an Access 2007 application. You’ll also open the Housing Res-
ervations and Conrad Systems Contacts sample databases to explore some of the many
features and functions of Access. Finally, you’ll discover some of the ways that you can
use Access as an application solution.

CHAPTER 3

Microsoft Offi ce Access 2007
Overview
Now that you are more comfortable with the user interface in Microsoft Offi ce
Access 2007, it’s time to dig deeper into exactly what makes up an Access data-

base. This chapter helps you understand the relationships among the main components
in Access and shows you how to move around within the database management system.

The Architecture of Access
Access calls anything that can have a name an object. Within an Access database, the
main objects are tables, queries, forms, reports, macros, and modules.

If you have worked with other database systems on desktop computers, you might
have seen the term database used to refer to only those fi les in which you store data. In
Access, however, a desktop database (.accdb) also includes all the major objects related
to the stored data, including objects you defi ne to automate the use of your data. You
can also create an Access application using a project fi le (.adp) that contains the objects
that defi ne your application linked to a Microsoft SQL Server database that stores the
tables and queries. Here is a summary of the major objects in an Access database:

O Table. An object you defi ne and use to store data. Each table contains informa-
tion about a particular subject, such as customers or orders. Tables contain fi elds
(or columns) that store different kinds of data, such as a name or an address, and
records (or rows) that collect all the information about a particular instance of the
subject, such as all the information about a department named Housing Adminis-
tration. You can defi ne a primary key (one or more fi elds that have a unique value
for each record) and one or more indexes on each table to help retrieve your data
more quickly.

O Query. An object that provides a custom view of data from one or more tables.
In Access, you can use the graphical query by example (QBE) facility or you can
write SQL statements to create your queries. You can defi ne queries to select,
update, insert, or delete data. You can also defi ne queries that create new tables
from data in one or more existing tables. When your Access application is a proj-
ect fi le connected to an SQL Server database, you can create special types of que-
ries—functions and stored procedures—that can perform complex actions directly
on the server.

The Architecture of Access . 99

Exploring a Desktop Database—Housing
Reservations . 102

Exploring a Project File—Conrad Systems
Contacts . 132

The Many Faces of Access . 137
 99

Chapter 3

100 Chapter 3 Microsoft Offi ce Access 2007 Overview
O Form. An object designed primarily for data input or display or for control of
application execution. You use forms to customize the presentation of data that
your application extracts from queries or tables. You can also print forms. You can
design a form to run a macro or a Microsoft Visual Basic procedure in response to
any of a number of events—for example, to run a procedure when the value of data
changes.

O Report. An object designed for formatting, calculating, printing, and summariz-
ing selected data. You can view a report on your screen before you print it.

O Macro. An object that is a structured defi nition of one or more actions that you
want Access to perform in response to a defi ned event. For example, you might
design a macro that opens a second form in response to the selection of an item
on a main form. You can include simple conditions in macros to specify when one
or more actions in the macro should be performed or skipped. You can use mac-
ros to open and execute queries, to open tables, or to print or view reports. You
can also run other macros or Visual Basic procedures from within a macro.

O Module. An object containing custom procedures that you code using Visual
Basic. Modules provide a more discrete fl ow of actions and allow you to trap
errors. Modules can be stand-alone objects containing functions that can be
called from anywhere in your application, or they can be directly associated with
a form or a report to respond to events on the associated form or report.

For a list of events on forms and reports, see Chapter 17, “Understanding Event Processing.”

Offi ce Access 2007 no longer supports designing data access pages (DAPs). Usability

studies conducted by Microsoft show that DAPs are not a widely used feature within

Access, and Microsoft is focusing more of their efforts on Microsoft Windows SharePoint

Services for sharing data in corporate environments. To maintain backward compatibility

with previous versions, Offi ce Access 2007 will continue to support existing .mdb applica-

tions that contain DAPs, but you cannot create new data access pages or modify existing

pages from within Access 2007.

Figure 3-1 shows a conceptual overview of how objects in Access are related. Tables
store the data that you can extract with queries and display in reports or that you can
display and update in forms. Notice that forms and reports can use data either directly
from tables or from a fi ltered view of the data created by using queries. Queries can use
Visual Basic functions to provide customized calculations on data in your database.
Access also has many built-in functions that allow you to summarize and format your
data in queries.

SIDE OUT What Happened to Data Access Pages?

Offi ce Access 2007 no longer supports designing data access pages (DAPs). Usability

studies conducted by Microsoft show that DAPs are not a widely used feature within

Access, and Microsoft is focusing more of their efforts on Microsoft Windows SharePoint

Services for sharing data in corporate environments. To maintain backward compatibility

with previous versions, Offi ce Access 2007 will continue to support existing .mdb applica-

tions that contain DAPs, but you cannot create new data access pages or modify existing

pages from within Access 2007.

 The Architecture of Access 101

Ch
ap

te
r 3
A

A
Forms Reports

Macros

Module:

Functions or

Subroutines

Tables

Queries

Run (Functions)

Define Forms, Reports,

Queries, or Tables Run/

Call

Legend

A Run Queries

or Open Tables

Action

Data Flow
Event Trigger Event Trigger

Print/View/FilterOpen/Filter

Event

Trigger

Event

Trigger

Run (Functions)

Figure 3-1. In an Access application, you can design queries to extract data from or update data
in tables; you can build forms or reports on tables or queries, and you can write code in macros or
modules to automate your application.

Events on forms and reports can trigger either macros or Visual Basic procedures. An
event is any change in the state of an Access object. For example, you can write macros
or Visual Basic procedures to respond to opening a form, closing a form, entering a new
row on a form, or changing data either in the current record or in an individual control
(an object on a form or report that contains data). You can even design a macro or a
Visual Basic procedure that responds to the user pressing individual keys on the key-
board when entering data!

For more information about using Visual Basic within Access, see Chapter 19, “Understanding
Visual Basic Fundamentals,” and Chapter 20, “Automating Your Application with Visual Basic.”

Using macros and modules, you can change the fl ow of your application; open, fi lter,
and change data in forms and reports; run queries; and build new tables. Using Visual
Basic, you can create, modify, and delete any Access object; manipulate data in your
database row by row or column by column; and handle exceptional conditions. Using
module code you can even call Windows application programming interface (API) rou-
tines to extend your application beyond the built-in capabilities of Access.

Chapter 3

102 Chapter 3 Microsoft Offi ce Access 2007 Overview
Exploring a Desktop Database—Housing Reservations
Now that you know something about the major objects that make up an Access data-
base, a good next step is to spend some time exploring the Housing Reservations
database (Housing.accdb) that comes with this book. First, follow the instructions at
the beginning of this book for installing the sample fi les on your hard drive. When you
start Access 2007, it displays the Getting Started window shown in Figure 3-2.

Figure 3-2 Access 2007 displays the Getting Started window every time you start the program.

Click the More link under Open Recent Database on the right side of the window to
see the Open dialog box shown in Figure 3-3. In the Open dialog box, select the fi le
 Housing.accdb from the folder in which you installed the sample databases, and then
click Open. You can also double-click the fi le name to open the database. (If you haven’t
set options in Windows Explorer to show fi le name extensions for registered applica-
tions, you won’t see the .accdb extension for your database fi les.)

 Exploring a Desktop Database—Housing Reservations 103

Ch
ap

te
r 3
Figure 3-3 Use the Open dialog box to locate the database that you want to open.

When you open the Housing Reservations application, it displays a Not Trusted dialog
box if you have not followed the instructions in the previous chapter to defi ne the loca-
tion of the sample fi les as trusted. If this happens, click the Close button to close the
dialog box. The application also briefl y displays a copyright information notice and
then displays a message box instructing you to open the frmSplash form. Click OK to
dismiss this message box, and then Access puts the focus on the frmSplash form in the
Navigation Pane. (You can open the frmSplash form if you want to run the application.)
Your Access window should look similar to Figure 3-4.

For an existing database, the Navigation Pane is always the same width as it was when
you last set it. The title bar of the window normally shows the name of the database that
you have open. As you’ll learn later in this book, you can set options in the database to
change the title bar of the main Access window to show the name of your application
instead of Microsoft Access—we modifi ed the sample database to display the title Hous-
ing Reservations on the title bar.

Chapter 3

104 Chapter 3 Microsoft Offi ce Access 2007 Overview
Figure 3-4 The Navigation Pane displays the objects defi ned in the Housing Reservations sample
database.

As we discussed in the previous chapter, the Ribbon has four main tabs that are dis-
played at all times. As you explore Access 2007, you’ll see that the Ribbon provides
several contextual tabs that appear and disappear as you work with specifi c database
objects and areas of the program. These contextual tabs make available commands
that are useful only within the context of the object that has the focus and that object’s
current view. For example, it wouldn’t make sense to show you table design commands
when you have a table open to display its data (Datasheet view). Likewise, you don’t
need datasheet commands when you have a query open in Design view. We’ll explain
the various contextual tabs in more detail as we explore the database objects and other
areas of Access in the following chapters.

Note
You can rest your mouse pointer on any command or option on the various Ribbon tabs

for a second (without clicking the button), and Access displays a ScreenTip to help you

discover the purpose of the button.

Note
You can rest your mouse pointer on any command or option on the various Ribbon tabs

for a second (without clicking the button), and Access displays a ScreenTip to help you

discover the purpose of the button.

 Exploring a Desktop Database—Housing Reservations 105

Ch
ap

te
r 3
In the previous chapter, you learned that you can change how Access displays the list of
objects in the database by using one of the built-in navigation categories (Object Type,
Tables And Related Views, Created Date, and Modifi ed Date) or by defi ning your own
custom navigation category. You also learned that you can fi lter each navigation cat-
egory to limit what group Access displays within each category so that you don’t have
to wade through a long list to fi nd what you want.

In this chapter, we’ll be exploring each of the types of objects in the Housing Reserva-
tions database, so click the Navigation Pane menu at the top of the Navigation Pane
and click Object Type under Navigate To Category. Open the menu again and be sure
that you have clicked All Access Objects under Filter By Group, as shown in Figure 3-5.
Your Navigation Pane should now look similar to Figure 3-4. You can collapse an entire
group of objects by clicking on the group’s header bar. If you open the Navigation Pane
menu, you can see the names of some custom groups we have defi ned under Navigate
To Category to help organize your work. You’ll learn how to work with groups later in
this chapter.

Figure 3-5 Select Object Type under Navigate To Category and then All Access Objects under
 Filter By Group to see all objects organized in groups by object type.

Tables
Click the menu bar at the top of the Navigation Pane and select Object Type under
Navigate To Category. Open the menu again and select Tables under Filter By Group
to display a list of tables available in the Housing Reservations database, as shown in
Figure 3-6.

Chapter 3

106 Chapter 3 Microsoft Offi ce Access 2007 Overview
Figure 3-6 After fi ltering the Object Type category in the Navigation Pane, you can see only the
tables in the Housing Reservations database.

You can open a table in Datasheet view to see the data in the table by double-clicking
the table name in the Navigation Pane; or you can open the table in Design view by
holding down the Ctrl key and double-clicking the table name. If you right-click a table
name, Access displays a shortcut menu, as shown in Figure 3-7, that lets you perform a
number of handy operations on the item you selected. Click one of the commands on
the shortcut menu, or click anywhere else in the Access window to dismiss the menu.

If you want to make it easier to open objects from the Navigation Pane, you can right-

click the menu bar at the top of the Navigation Pane and select Navigation Options on

the shortcut menu. In the lower-right corner of the Navigation Options dialog box, select

Single-Click under Open Objects With and click OK. The examples in this chapter assume

you are using the default Double-Click setting.

SIDE OUT Turning on Single-Click

If you want to make it easier to open objects from the Navigation Pane, you can right-

click the menu bar at the top of the Navigation Pane and select Navigation Options on

the shortcut menu. In the lower-right corner of the Navigation Options dialog box, select

Single-Click under Open Objects With and click OK. The examples in this chapter assume

you are using the default Double-Click setting.

 Exploring a Desktop Database—Housing Reservations 107

Ch
ap

te
r 3
Figure 3-7 You can access many commands from the shortcut menu for a table in the
 Navigation Pane.

Table Window in Design View
When you want to change the defi nition of a table (the structure or design of a table, as
opposed to the data in a table), you must open the Table window in Design view. With
the Housing Reservations database open, right-click the tblEmployees table and select
Design View from the shortcut menu; this opens the tblEmployees table in Design view,
as shown in Figure 3-8. (Collapse the Navigation Pane to be able to see the entire width
of the design area.) You’ll learn about creating table defi nitions in Chapter 4, “Creating
Your Database and Tables.”

In Design view, each row in the top portion of the Table window defi nes a different fi eld
in the table. You can use the mouse to select any fi eld that you want to modify. You can
also use the Tab key to move from left to right across the screen, column to column, or
Shift+Tab to move from right to left. Use the Up and Down Arrow keys to move from
row to row in the fi eld list. As you select a different row in the fi eld list in the top por-
tion of the window, you can see the property settings for the selected fi eld in the bottom
portion of the window. Press F6 to move between the fi eld list and the fi eld property
settings portions of the Table window in Design view. Unlike previous versions of
Access, pressing F6 again does not immediately move the focus back to the fi eld list. If
you press F6 repeatedly, the focus goes to the Navigation Pane, to the Ribbon, and then
fi nally back to the fi eld list.

Chapter 3

108 Chapter 3 Microsoft Offi ce Access 2007 Overview
List of properties
for current field

Each row defines a
field in the table

Settings for
each property

Figure 3-8 Open a table in Design view to change its structure.

Access has many convenient features. Wherever you can choose from a limited list of
valid values, Access provides a list box to assist you in selecting the proper value. For
example, when you tab to the Data Type column in the fi eld list, a small arrow appears
at the right of the column. Click the arrow or press Alt+Down Arrow to see the list of
valid data types, as shown in Figure 3-9.

You can open as many as 254 tables (fewer if you are limited by your computer’s mem-
ory). If you have selected Overlapping Windows in the Access Options dialog box, you
can minimize any of the windows to an icon along the bottom of the Access workspace
window by clicking the Minimize button in the upper-right corner of the window. You
can also maximize the window to fi ll the Access workspace to the right of the Naviga-
tion Pane by clicking the Maximize/Restore button in that same corner. If you don’t
see a window you want, you can select it from the list of active windows in the Manage
Windows command in the Window group on the Home tab on the Ribbon to bring
the window to the front. Click the Close command from the Control Box in the upper-
left corner or click the window’s Close button in the upper-right corner to close any
 window.

 Exploring a Desktop Database—Housing Reservations 109

Ch
ap

te
r 3
Figure 3-9 The Data Type list box shows you the available data types.

TROUBLESHOOTING
Why can’t I see the Maximize/Minimize buttons on my table?
If you are using the tabbed documents interface (the setting used in the Housing Reser-

vations sample database), each open object has its own tab to the right of the Navigation

Pane. This option is the default for new databases you create in Access 2007. However,

when you open older database fi les created in earlier versions of Access, the Document

Window Options setting in the Access Options dialog box defaults to Overlapping Win-

dows. With the Tabbed Documents setting, there is no need to constantly minimize and

maximize object windows to switch views because each open object has an individual

tab at the top of the Access workspace (the area below the Ribbon and to the right of the

Navigation Pane). Clicking on these object tabs enables you to easily switch among any

open objects, so Access 2007 does not provide the Maximize/Minimize buttons. To set

your database to Overlapping Windows or Tabbed Documents, see “Using the Single-

Document vs. Multiple-Document Interface” on page 83.

Table Window in Datasheet View
To view, change, insert, or delete data in a table, you can use the table’s Datasheet view.
A datasheet is a simple way to look at your data in rows and columns without any spe-
cial formatting. You can open a table’s Datasheet view by double-clicking the name of
the table you want in the Navigation Pane or by right-clicking on the table name and
selecting Open from the shortcut menu. When you open a table in Design view, such
as the tblEmployees table shown in Figure 3-8, you can switch to the Datasheet view of
this table, shown in Figure 3-10, by clicking the arrow in the Views group on the Rib-
bon and clicking Datasheet View from the list of available views. Likewise, when you’re
in Datasheet view, you can return to Design view by clicking the arrow in the Views
group and clicking Design View from the available options. You can also switch views
for the table by clicking the various view buttons on the status bar located in the lower-
right corner of the Access window. You’ll read more about working with data in Data-
sheet view in Chapter 7, “Creating and Working with Simple Queries.”

TROUBLESHOOTING

Chapter 3

110 Chapter 3 Microsoft Offi ce Access 2007 Overview
View buttons

Views group

Figure 3-10 Use the Views button on the Ribbon or the individual view buttons on the status bar to
switch from Design to Datasheet view.

As in Design view, you can move from fi eld to fi eld in the Table window in Datasheet
view by pressing Tab, and you can move up and down through the records using the
arrow keys. You can also use the scroll bars along the bottom and on the right side of
the window to move around in the table. To the left of the horizontal scroll bar, Access
shows you the current record number and the total number of records in the currently
selected set of data. You can select the record number with your mouse (or by press-
ing F5), type a new number, and then press Enter to go to that record. You can use the
arrows on either side of this record number box to move up or down one record or to
move to the fi rst or last record in the table. You can start entering data in a new record
by clicking the New (Blank) Record button on the right.

Queries
You probably noticed that the Datasheet view of the tblEmployees table gave you all
the fi elds and all the records in the table. But what if you want to see only the employee
names and addresses? Or maybe you would like to see in one view information about
employees and all their confi rmed room reservations. To fi ll these needs, you can create

 Exploring a Desktop Database—Housing Reservations 111

Ch
ap

te
r 3
a query. Open the Navigation Pane menu, click Object Type under Navigate To Category
if it isn’t already selected, and then click Queries under Filter By Group to display a list
of queries available in the Housing Reservations database, as shown in Figure 3-11.

TROUBLESHOOTING
Why does my table have extra rows in the lower half of the sceen like a
speadsheet?
You might notice in Figure 3-10 that there are extra rows beneath our existing records,

and this grid very much resembles a spreadsheet. This is a departure from previous ver-

sions of Access that displayed only one row for each record in that table plus one for a

new record. For tables in Datasheet view in Access 2007, the remainder of the space in

the application window is fi lled with dummy rows that you cannot click into. In essence,

these extra rows are simply placeholders for possible future records. It might be con-

fusing to think of this grid as a spreadsheet because of its appearance, but you must

remember that Access is not a spreadsheet. What you see is only a visual aid and does

not denote actual records in the tables.

Figure 3-11 When you fi lter object types by queries in the Navigation Pane, Access displays a list of
only the queries in the Housing Reservations database.

TROUBLESHOOTING

Chapter 3

112 Chapter 3 Microsoft Offi ce Access 2007 Overview
You can open a query in Datasheet view by double-clicking the query name, or you
can open it in Design view by clicking on the query to select it, and then pressing
Ctrl+Enter. You can also right-click a query and click the Open or Design View com-
mand on the shortcut menu.

Query Window in Design View
When you want to change the defi nition of a query (the structure or design, as opposed
to the data represented in the query), you must open the query in Design view. Take
a look at one of the more complex queries in the Housing Reservations query list by
scrolling to the query named qryFacilityReservations. Select the query and then press
Ctrl+Enter to display the query in Design view, as shown in Figure 3-12. Collapse the
Navigation Pane to see more of the width of the query design.

Tables used in this query

Link between tables

Fields used in this query

Figure 3-12 The qryFacilityReservations query in Design view shows data from three tables being
linked.

In the upper part of a Query window in Design view, you see the fi eld lists of the
tables or other queries that this query uses. The lines connecting the fi eld lists show
how Access links the tables to solve your query. If you defi ne relationships between
two tables in your database design, Access draws these lines automatically when you
include both tables in a query design. See Chapter 4 for details. You can also defi ne rela-
tionships when you build the query by dragging a fi eld from one fi eld list and dropping
it on another fi eld list.

 Exploring a Desktop Database—Housing Reservations 113

Ch
ap

te
r 3
In the lower part of the Query window, you see the design grid. The design grid shows
fi elds that Access uses in this query, the tables or queries from which the fi elds come
(when you select Table Names in the Show/Hide group on the Ribbon’s Design tab), any
sorting criteria, whether fi elds show up in the result, and any selection criteria for the
fi elds. You can use the horizontal scroll bar to bring other fi elds in this query into view.
As in the Design view of tables, you can use F6 to move between the upper and lower
portions of the Query window, but the F6 key also cycles through the Query window,
the Navigation Pane, and the Ribbon.

You can learn how to build this type of complex multiple-table query in Chapter 8,
“Building Complex Queries.” You can fi nd this query used in the Housing Reservations
database as the source of data for the fsubFacilityReservations form.

Query Window in Datasheet View
On the Design or Home tab on the Ribbon, click the View button to run the query and
see the query results in Datasheet view, as shown in Figure 3-13. You can also right-
click the query tab and click Datasheet View on the shortcut menu.

Figure 3-13 The Datasheet view of the qryFacilityReservations query shows you fi elds from three
related tables.

The Query window in Datasheet view is similar to a Table window in Datasheet view.
Even though the fi elds in the query datasheet shown in Figure 3-13 are from three
different tables, you can work with the fi elds as if they were in a single table. If you’re
designing an Access application for other users, you can use queries to hide much of
the complexity of the database and make the application simpler to use. Depending on
how you designed the query, you might also be able to update some of the data in the

Chapter 3

114 Chapter 3 Microsoft Offi ce Access 2007 Overview
underlying tables simply by typing new values in the Query window as you would in a
Table window in Datasheet view.

Forms
Datasheets are useful for viewing and changing data in your database, but they’re not
particularly attractive or simple to use. If you want to format your data in a special way
or automate how your data is used and updated, you need to use a form. Forms provide
a number of important capabilities.

O You can control and enhance the way your data looks on the screen. For example,
you can add color and shading or add number formats. You can add controls such
as list boxes and check boxes. You can display ActiveX objects such as pictures
and graphs directly on the form. And you can calculate and display values based
on data in a table or a query.

O You can perform extensive editing of data using macros or Visual Basic
 procedures.

O You can link multiple forms or reports by using macros or Visual Basic proce-
dures that are run from buttons on a form.

Click the menu bar at the top of the Navigation Pane, click Object Type under Navigate
To Category, and then click Forms under Filter By Group to display a list of forms avail-
able in the Housing Reservations database, as shown in Figure 3-14.

You can open a form in Form view by double-clicking the form name in the Navigation
Pane. You can also open the form in Design view by clicking the form to highlight it,
and then pressing Ctrl+Enter. Finally, you can right-click a form name and click a com-
mand on the shortcut menu. To create a new form, use the commands in the Forms
group of the Create tab on the Ribbon.

Form Window in Design View
When you want to change the defi nition of a form (the structure or design, as opposed
to the data represented in the form), you generally must open the form in Design view.
As you’ll learn in Chapter 12, “Customizing a Form,” you can also set a form property
to allow you to make changes in Layout view while you are designing the form. Take a
look at the frmEmployeesPlain form in the Housing Reservations database. To open the
form, scroll through the list of forms in the Navigation Pane to fi nd the frmEmployees-
Plain form, click the form to select it, then press Ctrl+Enter. This form, shown in Figure
3-15, is designed to display all data from the tblEmployees table. Don’t worry if what
you see on your screen doesn’t exactly match Figure 3-15. In this fi gure, we opened the
fi eld list on the right so that you can see some of the main features of the Form window
in Design view.

 Exploring a Desktop Database—Housing Reservations 115

Ch
ap

te
r 3
Figure 3-14 When you fi lter Object Type by Forms, Access displays a list of only the forms in the
Housing Reservations database.

The large window in the center is the form design window where you create the design
of the form. When you fi rst open this form in Design view, you should see the Form
Design Tools collection of two contextual tabs, Design and Arrange, on the Ribbon just
to the right of Database Tools. These tabs are the action centers of form design—you’ll
use the tools here to add and arrange the design elements of your form.

On the right side of the window shown in Figure 3-15, you can see a fi eld list for this
form. This form gets its information from a query called qryEmployees that selects all
the fi elds in the tblEmployees table and then sorts the rows by last name and fi rst name.
If you don’t see the fi eld list, click the Add Existing Fields command in the Tools group
of the Design contextual tab. You can resize this window by clicking on the far left
edge of the box and dragging it to a new width toward the left side of the screen. When
your mouse pointer is positioned over the title bar, it changes to cross arrows. Click the
title bar and drag it to the left and down to undock the window from the right side and
position it where you would like. When you undock the Field List window, it becomes
a window that fl oats on top of the design area. When you read about form design in
Chapter 11, “Building a Form,” you’ll see that you can drag a fi eld from the fi eld list to
place a control on the form that displays the contents of the fi eld.

Chapter 3

116 Chapter 3 Microsoft Offi ce Access 2007 Overview
Figure 3-15 When you open the frmEmployeesPlain form in Design view, you can modify its
design.

After you place all the controls on a form, you might want to customize some of them.
You do this by opening the property sheet displayed in Figure 3-16. To see the property
sheet, click the Property Sheet button in the Tools group of the Design tab. In Figure
3-16 we collapsed the Navigation Pane to show more of the property sheet.

The property sheet always shows the property values for the control selected in the
form design. (The property sheet can also display the properties for the form or any sec-
tion on the form.) Click the tabs at the top of the property sheet to display all properties
or to display only properties for formats, data, or events. In the example shown in Fig-
ure 3-16, we clicked the text box named EmployeeNumber, near the top of the form, to
select it. If you click this text box and then scroll down the list of properties for this text
box, you can see the wide range of properties you can set to customize this control. As
you learn to build applications using Access, you’ll soon discover that you can custom-
ize the way your application works by simply setting form and control properties—you
don’t have to write any code.

 Exploring a Desktop Database—Housing Reservations 117

Ch
ap

te
r 3
Figure 3-16 The property sheet lets you set individual properties for a form, form sections, or con-
trols on the form.

If you scroll to the bottom of the property list, or click the Event tab, you’ll see a num-
ber of properties that you can set to defi ne the macros or Visual Basic procedures that
Access runs whenever the associated event occurs on this control. For example, you
can use the Before Update event property to defi ne a macro or procedure that performs
additional validation before Access saves any changes typed in this control. You can
use the On Click or On Dbl Click event properties to perform actions when the user
clicks the control. If you need to, you can even look at every individual character the
user types in a control with the On Key event properties. As you’ll discover later, Access
provides a rich set of events that you can detect for the form and for each control on
the form.

You might have noticed that Access made available all the commands and options in
the Font group of the Design tab when you selected the EmployeeNumber control.
When you select a text box on a form in Design view, Access enables the list boxes in
this group to make it easy to select a font and font size, and it also enables buttons that
let you set the Bold, Italic, and Underline properties. Underneath these buttons are
three buttons that let you set text alignment: Align Text Left, Center, and Align Text
Right. You can also set the font and fi ll colors using buttons in this group.

Chapter 3

118 Chapter 3 Microsoft Offi ce Access 2007 Overview
Form Window in Layout View
Access 2007 introduces a new view for forms called Layout view. If you have the
frmEmployeesPlain form open in Design view from the previous section, you can
switch to Layout view by right-clicking the frmEmployeesPlain tab and clicking Layout
View on the shortcut menu. You should now see the form in Layout view, as shown in
Figure 3-17. This unique view for forms gives the developer a fast and easy way to create
and modify form designs.

Figure 3-17 Layout view lets you see your data and also modify the design of the form.

Unlike Design view, Layout view enables you to work with the various control elements
and form sections using existing live data. If, for example, you need to resize a text box
to fi t the available data, you do not have to continually switch back and forth between
Form and Design view to see if your size change works effectively—you actually see
data in the text box while resizing the control. This new What-You-See-Is-What-You-Get
(WYSIWYG) form-authoring view provides the best of both worlds by combining the
ability to change the structure of the data entry form at the same time you’re accessing
actual data.

In Layout view, if you have grouped a set of controls you can move them around the
form design grid together to maintain their proximity and orientation to one another.
In this sample form, we grouped all the controls in the fi rst column in a stacked layout.

 Exploring a Desktop Database—Housing Reservations 119

Ch
ap

te
r 3
In Figure 3-18, you can see that we’re dragging the Email Name fi eld down below the
Offi ce Location fi eld. A horizontal bar designates where Access will place the control
after you release the mouse button. Because these controls are grouped, Access places
the Email Name fi eld and its label below the Offi ce Location fi eld and aligns them
perfectly.

Figure 3-18 You can move a control within a group in Layout view, and Access keeps them per-
fectly aligned.

Form Window in Form View
To view, change, insert, or delete data via a form, you can use Form view. Depending on
how you’ve designed the form, you can work with your data in an attractive and clear
context, have the form validate the information you enter, or use the form to trigger
other forms or reports based on actions you take while viewing the form. You can open
a form in Form view by right-clicking the form’s name in the Navigation Pane and click-
ing Open on the shortcut menu. If you still have the frmEmployeesPlain form open in
Layout view from the previous section, you can go directly to Form view by clicking the
arrow in the Views group and then clicking Form View.

Figure 3-19 shows a complex form that brings together data from three tables and loads
the related employee picture from a fi le on your hard drive onto a screen that’s easy to
use and understand. This form includes all the fi elds from the tblEmployees table. You
can tab or use the arrow keys to move through the fi elds. You can click the Personal
Info tab to see additional information about the current employee. You can experiment
with fi ltering by selection to see how easy it is to select only the records you want to see.
For example, you can click in the Department fi eld, select the department name, click
the Selection button in the Sort & Filter group on the Home tab, and then click Equals
“Selected Department” (where “Selected Department” is the department name you
selected) to display records only for the current department.

Chapter 3

120 Chapter 3 Microsoft Offi ce Access 2007 Overview
Toggle Filter button
Advanced Filter Options button

Selection button
Filter button

View button

Figure 3-19 The frmEmployeesPlain form in Form view lets you view and edit employee data.

There are four other ways to look at a form: Datasheet view, PivotTable view, PivotChart
view, and Print Preview. You can select the Datasheet view by clicking the arrow in the
Views group and clicking Datasheet View to see all the fi elds in the form arranged in a
datasheet—similar to a datasheet for a table or a query. When a form has been designed
to display data in a PivotTable (similar to a spreadsheet) or graphed in a PivotChart, you
can also select these views with the View button. You can click the Microsoft Offi ce But-
ton, move your mouse pointer to Print, and then click Print Preview on the submenu to
see what the form will look like on a printed page. You’ll read more about Print Preview
in the next section.

Reports
If your primary need is to print data, you should use a report. Click the menu bar at the
top of the Navigation Pane to open the Navigation Pane menu and click Object Type
under Navigate To Category. Then open the menu again and click the Reports option
under Filter By Group to display a list of reports available in the Housing Reservations
database, as shown in Figure 3-20.

 Exploring a Desktop Database—Housing Reservations 121

Ch
ap

te
r 3
Figure 3-20 You can fi lter the Navigation Pane to show only a list of the reports in your database.

Although you can print information in a datasheet or a form, neither of these formats
provides the fl exibility that reports do when you need to produce complex printed
output (such as invoices or summaries) that might include many calculations and
subtotals. Formatting in datasheets is limited to sizing the rows and columns, specify-
ing fonts, and setting the colors and gridline effects. You can do a lot of formatting in
a form, but because forms are designed primarily for viewing and entering data on
the screen, they are not suited for extensive calculations, grouping of data, or multiple
totals and subtotals in print.

Report Window in Design View
When you want to change the defi nition of a report, you must open the report in Design
view. In the report list for Housing Reservations, click on the rptEmployeesPlain report
to select it, and then press Ctrl+Enter to see the design for the report, as shown in Fig-
ure 3-21. Don’t worry if what you see on your screen doesn’t exactly match Figure 3-21.
We clicked the Add Existing Fields command on the Design tab under Report Design
Tools to display the Field List window.

The large window in the center is where you create the design of the report. This report
is designed to display all the information about employees by department. Notice that
Design view for reports is similar to Design view for forms. (For comparison, see Figure
3-15.) Reports provide additional fl exibility, allowing you to group items and to total
them (either across or down). You can also defi ne header and footer information for the
entire report, for each page, and for each subgroup on the report. When you fi rst open
this report in Design view, you should see three new contextual tabs appear on the Rib-
bon just to the right of Database Tools under Report Design Tools: Design, Arrange, and
Page Setup. These contextual tabs are the action centers of report design—you’ll use the
tools here to add the design elements you want.

Chapter 3

122 Chapter 3 Microsoft Offi ce Access 2007 Overview
Add Existing
Fields buttonView button

Report Design Tools contextual tabs

Navigation Pane Report design grid Field List window

Design
 Arrange
 Page Setup

Figure 3-21 Open the rptEmployeesPlain report in Design view to modify its design.

On the right side of the window shown in Figure 3-21, you can see the fi eld list for
this report. This list shows all the fi elds returned by the record source for the report,
 qryRptEmployees—all the fi elds from the tblEmployees table and related fi elds from the
tblDepartments table. If you don’t see the fi eld list, click the Add Existing Fields com-
mand in the Tools group on the Design contextual tab. You can resize this window by
clicking on the far left edge and dragging it to a new width toward the left side of the
screen. When your mouse pointer is positioned over the title bar, it changes to cross
arrows. Click the title bar and drag it to the left and down to undock the window from
the right side and position it where you would like. When you undock the Field List
window, it becomes a window that fl oats on top of the design area. When you read
about report design in Chapter 15, “Constructing a Report,” you’ll see that you can drag
a fi eld from the fi eld list to place a control on the report that displays the contents of
the fi eld.

 Exploring a Desktop Database—Housing Reservations 123

Ch
ap

te
r 3
After you place all the controls on a report, you might want to customize some of them.
Do this by opening the property sheet, which you can see on the right side of the screen
in Figure 3-22. To see the property sheet, click the Property Sheet command in the
Tools group of the Design tab. In Figure 3-22 we collapsed the Navigation Pane so you
can see more of the property sheet.

Figure 3-22 The property sheet lets you set individual properties for a report, report sections, or
controls on the report.

The property sheet always shows the property settings for the control selected in the
Report window. (The Property Sheet pane can also display the properties for the entire
report or any section on the report.) In the example shown in Figure 3-22, we clicked
the text box named EmployeeNumber to select it. If you click this text box, you can
see that Access displays the EmployeeNumber fi eld from the tblEmployees table as the
control source (input data) for this control. You can also specify complex formulas that
calculate additional data for report controls.

You might have noticed that Access made available some additional commands and
options in the Font group of the Design tab when you selected the EmployeeNumber
control. When you select a text box in a report in Design view, Access enables list boxes
in the Font group that make it easy to select a font and font size. Access also enables
buttons that let you set the Bold, Italic, and Underline properties. Underneath these
buttons are three buttons that set text alignment: Align Text Left, Center, and Align
Text Right. You can also set font and fi ll colors using buttons in this group.

Chapter 3

124 Chapter 3 Microsoft Offi ce Access 2007 Overview
Reports can be even more complex than forms, but building a simple report is really
quite easy. Access provides report wizards that you can use to automatically generate a
number of standard report layouts based on the table or query you choose. You’ll fi nd
it simple to customize a report to suit your needs after the report wizard has done most
of the hard work. You’ll learn how to customize a report in Chapter 15 and Chapter 16,
“Advanced Report Design.”

Report Window in Print Preview
To see what the fi nished report looks like, click the arrow in the Views group and then
click Print Preview when you’re in the Report window in Design view. You can also
right-click the report name in the Navigation Pane and then click Print Preview on the
shortcut menu. Figure 3-23 shows a report in Print Preview.

Zoom control

 Print Preview Zoom button
 Two Pages button
 More Pages button

Figure 3-23 When you open a report in Print Preview, Access shows you how the report will look
when you print it.

 Exploring a Desktop Database—Housing Reservations 125

Ch
ap

te
r 3
Access initially shows you the upper-left corner of the report. To see the report centered
in full-page view in Print Preview, click the Zoom control in the lower-right corner of
the status bar where it says 100%. Clicking that button automatically adjusts the zoom
level percent so that you can see a full page of the report. To see two pages side-by-side,
click the Two Pages button in the Zoom group of the Print Preview contextual tab. This
gives you a reduced picture of two pages, as shown in Figure 3-24, and an overall idea of
how Access arranges major areas of data on the report. Unless you have a large monitor,
however, you won’t be able to read the data. Click the More Pages button and then click
an option (Four Pages, Eight Pages, or Twelve Pages) to see more than two pages. When
you move the mouse pointer over the window in Print Preview, the pointer changes to a
magnifying glass icon. To zoom in, click over an area that you want to see more closely.
You can then use the scroll bars to move around in the magnifi ed report. Use the Zoom
control on the status bar to magnify or shrink your view. Access also provides several
output options such as Word or Excel in the Data group of the Print Preview tab.

Figure 3-24 Click the Two Pages button to see two pages side-by-side in Print Preview.

Report Window in Layout View
Access 2007 introduces a new view for reports called Layout view. This unique view
for reports gives the developer a fast and easy way to create and modify report designs.

Chapter 3

126 Chapter 3 Microsoft Offi ce Access 2007 Overview
Unlike Design view, Layout view enables you to work with the various control elements
and report sections using existing live data. Similar to Layout view for forms, this new
WYSIWYG report-authoring view provides the best of both worlds by combining the
ability to change the structure of the report at the same time you’re accessing the data.

To open the rptEmployeesPlain in Layout view, fi nd the report in the Navigation Pane,
right-click the report name, and click Layout View on the shortcut menu. Figure 3-25
shows the report in Layout view. In Figure 3-25 we collapsed the Navigation Pane so
you can see more of the report design grid.

Figure 3-25 Similar to Layout view for forms, Layout view in reports lets you adjust design
 elements while looking at the data from your database.

Just like Layout view for forms, if you have grouped a set of controls, you can move
them around the report grid together to maintain their proximity and orientation to
one another. In Figure 3-26, you can see that we’re dragging the Birth Date fi eld above
the Email fi eld. A horizontal bar designates where Access will place the control after
you release the mouse button. Because these controls are grouped, Access places the
Birth Date fi eld and its label above the Email fi eld. The two controls swap places and
align perfectly.

 Exploring a Desktop Database—Housing Reservations 127

Ch
ap

te
r 3
Figure 3-26 Access makes it easy to move controls around within a group in Layout view.

Report Window in Report View
In addition to Layout view, Access 2007 includes another new view for reports called
Report view, an interactive view for reports that can respond to control events, much
like data entry forms. If you have the rptEmployeesPlain report open in Layout view
from the previous section, you can switch to Report view by right-clicking the Employ-
ees tab and clicking Report View on the shortcut menu. You should now see the report
in Report view, as shown in Figure 3-27.

Figure 3-27 When a report is in Report view, you can program controls to respond to mouse clicks
to open a related form.

Chapter 3

128 Chapter 3 Microsoft Offi ce Access 2007 Overview
Previous versions of Access treat reports on screen as static. After you open a report
on the screen, you can only view the report or print it. Report view in Access 2007
gives you the ability to interact with the report through fi lters to drill down to specifi c
records and then print only this smaller group of records. You can include command
buttons on your reports with Access 2007 and program the buttons to respond to a
mouse click in Report view. In the new Report view, you can designate controls that
respond to events as hyperlinks to provide a visual cue that an event occurs when
clicking that control. In Figure 3-27, for example, observe that the Employee Number
fi eld looks like a hyperlink with a blue line underneath the data. (In Figure 3-27 we
have scrolled down the records to show John’s information.) Clicking the Employee
Number fi eld opens the frmEmployeesPlain form to display all information for that
specifi c employee so that you can make any necessary changes. After closing the form
and returning to the report, click the Refresh All command in the Records group of
the Home tab on the Ribbon to see any changes you made to the data using the form
refl ected in the report. In Figure 3-27 you can see that the frmEmployeesPlain form
opens on a new tab because we are using the tabbed interface.

Close the Form window and the Report window to return to the Navigation Pane.

Macros
You can make working with your data within forms and reports much easier by trig-
gering a macro action. Offi ce Access 2007 provides more than 70 actions that you can
include in a macro. They perform tasks such as opening tables and forms, running que-
ries, running other macros, selecting options from menus, and sizing open windows.
You can also group multiple actions in a macro and specify conditions that determine
when each set of actions will or will not be executed by Access.

Open the Navigation Pane menu and make sure Object Type is selected under Navigate
To Category. Then open the menu again and click Macros under Filter By Group to dis-
play a list of macros available in the Housing Reservations database, as shown in Figure
3-28. You can run a macro by right-clicking the macro name in the Navigation Pane
and clicking Run on the shortcut menu. To open a macro in Design view, right-click the
macro name and click Design View on the shortcut menu. To create a brand new macro,
click the New Object Macro button in the Other group of the Create tab on the Ribbon.

Macros are a great way to learn about the basics of responding to events and automat-
ing actions in an Access database. However, for any application that you intend to dis-
tribute to others, you should use Visual Basic to handle events and automate actions.
Nearly all the sample databases use Visual Basic exclusively. You can take a look at
the design of a macro example in the Housing Reservations database by selecting the
 SampleMacro macro in the Navigation Pane, and then pressing Ctrl+Enter. Access
opens the Macro window in Design view, as shown in Figure 3-29.

 Exploring a Desktop Database—Housing Reservations 129

Ch
ap

te
r 3
Figure 3-28 You can fi lter the Navigation Pane to show the Macros list in the Housing Reservations
database.

Figure 3-29 Open the SampleMacro macro object in the Housing Reservations database in Design
view to examine and modify its defi nition.

You can design multiple macro actions within a single macro object and give each one a
name in the fi rst column. Any unnamed lines following a line with a name specifi ed all

Chapter 3

130 Chapter 3 Microsoft Offi ce Access 2007 Overview
belong to the named macro. In the second column, you can optionally specify a condi-
tion test that must be true for the macro command on that line to execute. You can use
a continuation indicator (...) on subsequent lines to specify additional commands that
should also execute when the condition is true. You select the action you want to run
from a list in the Action column and set the arguments required for the action in the
Action Arguments section in the lower part of the design window. Some of the limita-
tions of macros include limited ability to branch to other actions and very limited abil-
ity to loop through a set of actions.

If you want to see what this macro does, click the Run button in the Tools group of the
Design contextual tab to execute it. You should see a greeting message appropriate
to the time of day appear on your screen. To learn more about events and the macro
design facility, see Chapter 18, “Automating Your Application with Macros.” You can
fi nd one sample application on the companion CD that is automated entirely using
macros—WeddingListMC.accdb.

Close the Macro window now to return to the Navigation Pane.

Modules
You might fi nd that you keep coding the same complex formula over and over in some
of your forms or reports. Although you can build a complete Access application using
only forms, reports, and macros, some actions might be diffi cult or impossible to defi ne
in a macro. If that is the case, you can create a Visual Basic procedure that performs a
series of calculations and then use that procedure in a form or report.

If your application is so complex that it needs to deal with errors (such as two users
trying to update the same record at the same time), you must use Visual Basic. Because
Visual Basic is a complete programming language with complex logic and the ability
to link to other applications and fi les, you can solve unusual or diffi cult programming
problems by using Visual Basic procedures.

Version 2 of Access introduced the ability to code Basic routines in special modules
attached directly to the forms and reports that they support. You can create these pro-
cedures from Design view for forms or reports by requesting the Code Builder in any
event property. You can edit this code behind forms and reports by clicking View Code
in the Tools group on the Design contextual tab when you have a form or report open
in Design view. See Chapters 19 and 20 for details. In fact, after you learn a little bit
about Visual Basic, you might fi nd that coding small event procedures for your forms
and reports is much more effi cient and convenient than trying to keep track of many
macro objects. You’ll also soon learn that you can’t fully respond to some sophisticated
events, such as KeyPress, in macros because macros can’t access special additional
parameters (such as the value of the key pressed) generated by the event. You can fully
handle these events only in Visual Basic.

Open the Navigation Pane menu and click Object Type under Navigate To Category.
Open the menu again and click Modules under Filter By Group to display a list of
modules available in the Housing Reservations database, as shown in Figure 3-30. The
Housing Reservations database has several module objects that contain procedures

 Exploring a Desktop Database—Housing Reservations 131

Ch
ap

te
r 3
that can be called from any query, form, report, or other procedure in the database. For
example, the modMedian module contains a function to calculate the median value of
a column in any table or query. The modUtility module contains several functions that
you might fi nd useful in your applications.

Figure 3-30 You can fi lter the Navigation Pane to display only the Visual Basic modules in the
Housing Reservations database.

From the Navigation Pane, you can create a new module by clicking the arrow below
Macro in the Other group of the Create tab on the Ribbon, or you can open the design
of an existing module by double-clicking the name of the module in the Navigation
Pane. In addition, you can right-click on the module name in the Navigation Pane and
click Design View on the shortcut menu. In a module, you can defi ne procedures that
you can call from a macro, a form, or a report. You can also use some procedures (called
functions) in expressions in queries and in validation rules that you create for a table or
a form. You’ll learn how to create procedures in Chapter 19.

Right-click the modUtility module in the Navigation Pane and then click Design
View to open the Visual Basic Editor window containing the Visual Basic code in the
module. Use the Procedure list box (in the upper right of the Code window) to look
at the procedure names available in the sample. One of the functions in this module,
 IsFormLoaded, checks all forms open in the current Access session to see whether the
form name, passed as a parameter, is one of the open forms. This function is useful in
macros or in other modules to direct the fl ow of an application based on which forms
the user has open. You can see this function in Figure 3-31.

Note that the Visual Basic Editor runs in an entirely different application window from
Access, and it still uses the classic menus and toolbars found in earlier versions of
Access. Click the View Microsoft Offi ce Access button on the far left of the toolbar to
easily return to the Access window.

Chapter 3

132 Chapter 3 Microsoft Offi ce Access 2007 Overview
Figure 3-31 The Visual Basic Editor window displays the IsFormLoaded function in the modUtility
module.

This completes the tour of the objects in the Housing Reservations sample database.
Close the Visual Basic Editor window if you still have it open, return to the Access win-
dow, and close the database.

Exploring a Project File—Conrad Systems Contacts
Microsoft Access 2000 introduced an advanced facility that allows you to create a proj-
ect fi le (with an .adp extension) that contains only your forms, reports, macros, and
modules. When you create a new project fi le, you can specify an SQL Server database
to support the project. SQL Server stores the tables and queries you use in the applica-
tion that you design in the project. You can connect your project fi le to a Microsoft SQL
Server version 6.5 database on a server or to a version 7.0 or later database on a server
or on your desktop. Included with the 2007 Microsoft Offi ce release is a special edition
of SQL Server 2005, the Microsoft SQL Server Desktop Engine (MSDE), that you can
install to run on your desktop computer.

 Exploring a Project File—Conrad Systems Contacts 133

Ch
ap

te
r 3
You will see available tables in the server database as table objects in your project. You
will also see views, functions, and stored procedures as query objects. Access 2007
includes special table and query editors to allow you to work directly with the objects
in SQL Server. Your project fi le also contains forms, reports, macros, and modules that
are virtually identical to those you develop in a desktop database (.accdb).

To see the differences in tables and queries in a project fi le, start Access and then open
the Contacts.adp sample project fi le.

To be able to open the Contacts.adp fi le successfully, you must fi rst install Microsoft SQL

Server 2005 Express Edition or have access to an SQL Server edition that allows you Cre-

ate authority. You can download SQL Server 2005 Express Edition from www.microsoft.
com/sql/editions/express/default.mspx. You’ll need to attach the sample database fi les to

a computer running a server version of Microsoft Windows, such as Microsoft Windows

Server 2003, and possibly modify the connection properties of the sample project so

that Access knows where to fi nd the tables and queries required by the project. See the

Appendix, “Installing Your Software,” for details about how to install and start SQL Server

2005 Express Edition. See Chapter 26, “Building Tables in an Access Project,” for details

about setting project connection properties. If you are unable to perform these steps at

this time, you can still read through this section to gain an understanding of some of the

differences in project fi les.

Tables
Open the Navigation Pane menu and select Object Type under Navigate To Category.
Open the menu again and select Tables under Filter By Group to see all the tables
defi ned in the SQL Server database connected to the project. Figure 3-32 shows you the
tables in the ContactsSQL database that is connected to the Conrad Systems Contacts
project fi le.

As you can see, the Navigation Pane in a project fi le looks very similar to the one in a
desktop database. You can see one additional object type listed on the Navigation Pane
menu—Database Diagrams. SQL Server allows you to create a diagram of all the tables
in your database, and the diagram shows you the relationships that you have defi ned
between the tables.

Select the tblContacts table in the Navigation Pane, and press Ctrl+Enter to see the table
in Design view, as shown in Figure 3-33.

SIDE OUT Opening the Sample Project File

To be able to open the Contacts.adp fi le successfully, you must fi rst install Microsoft SQL

Server 2005 Express Edition or have access to an SQL Server edition that allows you Cre-

ate authority. You can download SQL Server 2005 Express Edition from www.microsoft.
com/sql/editions/express/default.mspx. You’ll need to attach the sample database fi les to

a computer running a server version of Microsoft Windows, such as Microsoft Windows

Server 2003, and possibly modify the connection properties of the sample project so

that Access knows where to fi nd the tables and queries required by the project. See the

Appendix, “Installing Your Software,” for details about how to install and start SQL Server

2005 Express Edition. See Chapter 26, “Building Tables in an Access Project,” for details

about setting project connection properties. If you are unable to perform these steps at

this time, you can still read through this section to gain an understanding of some of the

differences in project fi les.

Chapter 3

134 Chapter 3 Microsoft Offi ce Access 2007 Overview
Figure 3-32 The Navigation Pane in a project fi le shows the tables in the database on SQL Server.

Figure 3-33 When you open a table in Design view in an Access project, you’re editing the table in
the database on SQL Server.

 Exploring a Project File—Conrad Systems Contacts 135

Ch
ap

te
r 3
As you can see, the table design grid in an Access project is very similar to the one in
a desktop database. (See Figure 3-8.) In an SQL Server database, fi elds are called col-
umns. SQL Server supports a wider variety of data types than does a desktop database.
Many of the data types are identical, but they have different names in SQL Server. For
example, the int data type in SQL Server is the same as the Long Integer data type in
a desktop database. If you want, you can click the Datasheet View option in the Views
group to switch to Datasheet view, but you’ll fi nd that Datasheet view in an Access proj-
ect is identical to that in a desktop database. You can learn all the details for creating
tables in a project in Chapter 26. Close the table design grid to return to the Naviga-
tion Pane.

Views, Functions, and Stored Procedures
Although all query objects in a desktop database are called simply “queries,” you’ll fi nd
that SQL Server stores three different types of objects—views, functions, and stored
procedures—that Access displays when you click Queries under Filter By Group on the
Navigation Pane menu, as shown in Figure 3-34.

Figure 3-34 The list of queries in an Access project shows the views, functions, and stored proce-
dures saved in the database on SQL Server.

A view returns a fi ltered view of data from one or more tables. A function can return a
table, or it can perform a calculation and return a single value, much like a Visual Basic
function. The difference is that a function that you see in the queries list in a project fi le

Chapter 3

136 Chapter 3 Microsoft Offi ce Access 2007 Overview
Navigation Pane executes on SQL Server, and the server returns the result to your proj-
ect. A stored procedure can be as simple as an SQL statement that returns rows from one
or more tables, or it can contain a complex program written in Transact-SQL that tests
conditions and perhaps updates one or more tables in your database.

In many cases, you can design a view, function, or stored procedure using a query
designer that is similar to the designer you use in a desktop database. To see an exam-
ple of a query in a project fi le’s query designer, scroll down the list of queries in the
Conrad Systems Contacts sample project fi le, select qryContactProductsForInvoice in
the Navigation Pane, and then press Ctrl+Enter. Access displays the query in Design
view, as shown in Figure 3-35.

Figure 3-35 When you open a query in the query designer in an Access project, you’re editing the
view, function, or stored procedure stored in the server database.

This query is a function that returns columns from three tables. The query designer
in an Access project is similar in some ways to the designer in a desktop database (see
Figure 3-12). You can see the tables used in the query in the top pane of the designer
window. In the center pane are the columns (fi elds) used in the query, but the columns
are listed vertically here instead of horizontally as in the desktop database designer. In
the bottom pane, you can see the SQL statement that defi nes this query on the server.
You can close this pane if you like and work exclusively in the designer. Access refl ects
any change you make on the design grid by modifying the displayed SQL. When
you become more expert in SQL, you can also modify the SQL statement, and Access
changes the top two panes accordingly.

You can learn about the details of creating a query in an Access project in Chapter 27,
“Building Queries in an Access Project,” on the companion CD. For details about the
SQL database language, see Article 2, “Understanding SQL,” also on the companion CD.

 The Many Faces of Access 137

Ch
ap

te
r 3
You can close the query design grid now. As noted earlier, the forms, reports, macros,
and modules in a project fi le are virtually identical to those in a desktop database. You
can learn about the minor differences for forms and reports in Chapter 28, “Designing
Forms in an Access Project,” and Chapter 29, “Building Reports in an Access Project,”
both on the companion CD.

The Many Faces of Access
Access is not only a powerful, fl exible, and easy-to-use database management system,
but it is also a complete database application development facility. You can use Access
to create and run, under the Windows operating system, an application tailored to your
data management needs. Access lets you limit, select, and total your data by using que-
ries. You can create forms for viewing and changing your data. You can also use Access
to create simple or complex reports. Forms and reports inherit the properties of the
underlying table or query, so in most cases you need to defi ne such properties as for-
mats and validation rules only once. Figure 3-36 gives you an overview of all the ways
you can use Access to implement an application.

Stand-alone

computer

desktop

database (.accdb)

or project file

(.adp)

and local MSDE

Desktop

databases (.accdb)

using linked

tables

File server (.accdb)

or SQL server

Project files

(.adp)

SQL server

Web

browsers

Web

server

File server (.accdb)

or SQL server

Figure 3-36 Although Access is primarily a desktop database system, you can use Access to build
client/server applications.

Chapter 3

138 Chapter 3 Microsoft Offi ce Access 2007 Overview
The four sections in the fi gure illustrate ways you can implement an Access application,
as follows:

O Using the desktop database facility or an Access project fi le linked to a local copy
of MSDE, you can create a stand-alone application used by a single person.

O You can place a data-only desktop database on a fi le server or in a database in
SQL Server and link the tables over a network to multiple desktop databases so
that several users can share the same application.

O You can design your database in SQL Server and connect to the server over a net-
work from multiple Access project fi les running on different computers.

O Finally, you can create Web pages that connect to data that you designed using
Access.

To borrow a cliché, the possibilities are endless . . .

In this chapter, you’ve had a chance to look at the major objects in the Housing Reser-
vations and Conrad Systems Contacts sample databases. You’ve also been introduced
to the architecture of Access and the wide range of ways that you can use Access. You
should be feeling comfortable that you can learn to use Access at the level appropriate
to solve your database application needs. In the next chapter you’ll learn how to create
new databases and the tables you need to store your data.”

PART 2

Building an Access
2007 Desktop
Application

CHAPTER 4

Creating Your Database and Tables 141

CHAPTER 5

Modifying Your Table Design 203

CHAPTER 6

Importing and Linking Data.253

CHAPTER 7

Creating and Working with
Simple Queries . 347

CHAPTER 8

Building Complex Queries 413

CHAPTER 9

Modifying Data with Action Queries 485
 139

CHAPTER 4

Creating Your Database and Tables
Defi ning tables in a Microsoft Offi ce Access 2007 desktop database (.accdb fi le) is
incredibly easy. This chapter shows you how it’s done. You’ll learn how to

O Create a new database application using a database template

O Create a new empty database for your own custom application

O Create a simple table by entering data directly in the table

O Get a jump start on defi ning custom tables by using table templates

O Defi ne your own tables from scratch by using Design view

O Select the best data type for each fi eld

O Defi ne the primary key for your table

O Set validation rules for your fi elds and tables

O Tell Access 2007 what relationships to maintain between your tables

O Optimize data retrieval by adding indexes

O Set options that affect how you work in Design view

O Print a table defi nition

Note
All the screen images in this chapter were taken on a Microsoft Windows Vista system

using the Blue color scheme.

Note
All the screen images in this chapter were taken on a Microsoft Windows Vista system

using the Blue color scheme.

Creating a New Database . 142

Creating Your First Simple Table by Entering Data 149

Creating a Table Using a Table Template 151

Creating a Table in Design View. 155

Defi ning Fields . 156

Defi ning a Primary Key . 174

Defi ning a Table Validation Rule 175

Understanding Other Table Properties 178

Defi ning Relationships . 181

Adding Indexes . 188

Setting Table Design Options . 191

Creating a Default Template for New Databases 195

Printing a Table Defi nition . 199

Database Limitations . 201
 141

Chapter 4

142 Chapter 4 Creating Your Database and Tables

You could begin building a database in Access 2007 much as you might begin creating

a simple single-sheet solution in a spreadsheet application such as Microsoft Excel—by

simply organizing your data into rows and columns and then inserting formulas where

you need calculations. If you’ve ever worked extensively with a database or a spreadsheet

application, you already know that this unplanned approach works in only the most triv-

ial situations. Solving real problems takes some planning; otherwise, you end up build-

ing your application over and over again. One of the beauties of a relational database

system such as Access is that it’s much easier to make midcourse corrections. However,

it’s well worth spending time up front designing the tasks you want to perform, the data

structures you need to support those tasks, and the fl ow of tasks within your database

application.

To teach you all you might need to know about table design would require another

entire book. The good news is Access 2007 provides many examples for good table

design in the templates available with the product and online. If you want to learn at

least the fundamentals of table and application design, be sure to read Article 1, “Design-

ing Your Database Application,” that you can fi nd on the companion CD.

Creating a New Database
When you fi rst start Offi ce Access 2007, you see the Getting Started screen, as shown
in Figure 4-1. We explored the Getting Started screen in detail in Chapter 2, “Explor-
ing the New Look of Access 2007.” If you’ve previously opened other databases, you
also see a most recently used list of up to nine database selections under Open Recent
 Database on the right.

Using a Database Template to Create a Database
Just for fun, let’s explore the built-in database templates fi rst. If you’re a beginner, you
can use the templates included with Access 2007 to create one of several common
applications without needing to know anything about designing database software. You
might fi nd that one of these applications meets most of your needs right off the bat. As
you learn more about Access 2007, you can build on and customize the basic applica-
tion design and add new features.

Even if you’re an experienced developer, you might fi nd that the application templates
save you lots of time in setting up the basic tables, queries, forms, and reports for your
application. If the application you need to build is covered by one of the templates, the
wizard that builds an application with one of the templates can take care of many of the
simpler design tasks.

SIDE OUT Take Time to Learn About Table Design

You could begin building a database in Access 2007 much as you might begin creating

a simple single-sheet solution in a spreadsheet application such as Microsoft Excel—by

simply organizing your data into rows and columns and then inserting formulas where

you need calculations. If you’ve ever worked extensively with a database or a spreadsheet

application, you already know that this unplanned approach works in only the most triv-

ial situations. Solving real problems takes some planning; otherwise, you end up build-

ing your application over and over again. One of the beauties of a relational database

system such as Access is that it’s much easier to make midcourse corrections. However,

it’s well worth spending time up front designing the tasks you want to perform, the data

structures you need to support those tasks, and the fl ow of tasks within your database

application.

To teach you all you might need to know about table design would require another

entire book. The good news is Access 2007 provides many examples for good table

design in the templates available with the product and online. If you want to learn at

least the fundamentals of table and application design, be sure to read Article 1, “Design-

ing Your Database Application,” that you can fi nd on the companion CD.

 Creating a New Database 143

Ch
ap

te
r 4
Figure 4-1 When you fi rst start Access 2007, you see the Getting Started screen.

On the Getting Started screen, you can access the built-in local templates by clicking
Local Templates under Template Categories on the left. You can also choose to down-
load a template from Microsoft’s Web site by clicking one of the options under From
Microsoft Offi ce Online. When you click one of the options under Template Catego-
ries or From Microsoft Offi ce Online, the center section of the Getting Started screen
changes to show graphics representing of each of the database templates available in
that category. Click the Business category under Template Categories to see the list of
business template options, as shown in Figure 4-2.

When you click on one of the template graphics in the center of the Getting Started
screen, Access 2007 displays additional information about the purpose of the database
in the right task pane. Click the Contacts template in the middle of the screen to see
detailed information about the local Contacts database template, as shown in Figure
4-3. You can work with all templates from the Getting Started screen in the same way.
This example will show you the steps that are needed to build a Contacts database.

Chapter 4

144 Chapter 4 Creating Your Database and Tables
Figure 4-2 You access templates from Microsoft Offi ce Online by selecting one of the categories to
see a list of database templates for that category.

Access 2007 displays a larger graphic in the right task pane along with a brief descrip-
tion of the template’s purpose. When you have selected an online template, Access 2007
also shows you the template size, the approximate download time, and the rating given
this template by other users. Access 2007 suggests a name for your new database in the
File Name text box and a location to save the fi le beneath the File Name text box. You
can select the optional check box to instruct Access 2007 to link this new database to
a Windows SharePoint Services site. For now, do not select this check box. You’ll learn
more about connecting to a Windows SharePoint Services site in Chapter 22, “Working
with Windows SharePoint Services.” You can modify the name of this database by typ-
ing in the File Name text box. If you want to change the suggested save location, click
the Browse button to open the File New Database dialog box, as shown in Figure 4-4.

BrowseBrowse

 Creating a New Database 145

Ch
ap

te
r 4
Figure 4-3 Choosing one of the database templates in the center of the screen shows you more
information in the right task pane.

You can select the drive and folder you want by clicking the links on the left and brows-
ing to your destination folder. After you select the specifi c folder to which you want
to save this new database, click OK to return to the Getting Started screen. Your new
folder location is shown beneath the File Name text box. If you decide at this point not
to create the database, click the Cancel button to stop the process. Click the Download
button when working with an online template or the Create button when working with
a local template, and Access 2007 begins the process of creating this new database.

The fi rst time you choose to download an online template, Access 2007 displays the
Microsoft Offi ce Genuine Advantage confi rmation dialog box as shown in Figure 4-5.
Each time you download a template, Access 2007 confi rms that you have a valid and
registered copy of the 2007 Microsoft Offi ce system. If you do not want to see this dia-
log box again, select the Do Not Show This Message Again check box. Click Continue to
proceed with the download and creation of your sample database.

Chapter 4

146 Chapter 4 Creating Your Database and Tables
Figure 4-4 Use the File New Database dialog box to select a folder for saving the new database.

Figure 4-5 When you ask to download a template, Access verifi es that you have a genuine copy of
the 2007 Offi ce release.

A progress bar appears on the screen informing you to please wait while Access 2007
creates the database. After a few seconds of preparation, Access opens the new Contacts
database and displays the Contact List form, as shown in Figure 4-6. Close this new
database for now by clicking the Microsoft Offi ce Button and then clicking Close Data-
base to return to the Getting Started screen.

 Creating a New Database 147

Ch
ap

te
r 4
Figure 4-6 After you create the Contacts database from a template, Access opens the database
and displays the Contact List form.

Creating a New Empty Database
To begin creating a new empty database when you start Access 2007, go to the New
Blank Database section in the middle of the Getting Started screen (as shown in Figure
4-1) and click Blank Database. The right side of the Getting Started screen changes to
display the Blank Database task pane, as shown in Figure 4-7.

You can click the Browse button to open the File New Database dialog box, shown
previously in Figure 4-4, to select the drive and folder you want. In this example, we
selected the Documents folder in Windows Vista for the current user. Next, type the
name of your new database in the File Name text box—Access 2007 appends an .accdb
extension to the fi le name for you. Access 2007 uses a fi le with an .accdb extension to
store all your database objects, including tables, queries, forms, reports, macros, and
modules. For this example, let’s create a database with a table containing names and
addresses—something you might use to track invitees to a wedding. Type Kathy’s Wed-
ding List in the File Name box and click the Create button to create your database.

Chapter 4

148 Chapter 4 Creating Your Database and Tables
Figure 4-7 From the Getting Started screen, click Blank Database in the center to open the Blank
Database task pane on the right.

Access 2007 takes a few moments to create the system tables in which to store all the
information about the tables, queries, forms, reports, macros, and modules that you
might create. Access then displays the Navigation Pane for your new database and
opens a new blank table in Datasheet view, shown in Figure 4-8.

When you open a database (unless the database includes special startup settings),
Access 2007 selects the object you last chose in the Navigation Pane for that database.
For example, if the last time you opened this database you worked on a table, Access
highlights that object (a table) in the Navigation Pane. Access also remembers the view
and fi lters you applied to the Navigation Pane. For example, if Tables And Related Views
was the last selected view applied to the Navigation Pane, Access will remember this the
next time you open the database.

Because this is a new database and no objects or special startup settings exist yet, you
see a Navigation Pane with only one object defi ned. For new databases, Access, by
default, creates a new table in Datasheet view called Table1 with an ID fi eld already
defi ned. However, Access has not saved this table, so if you do not make any changes
to it, Access will not prompt you to save the table if you close it. The following sections
show you various methods for creating a new table.

 Creating Your First Simple Table by Entering Data 149

Ch
ap

te
r 4
Figure 4-8 When you create a new blank database, Access 2007 opens a new table in Datasheet
view for you.

Creating Your First Simple Table by Entering Data
If you’ve been following along to this point, you should still have your new Kathy’s
Wedding List database open with Table1 open in Datasheet view, as shown in Figure
4-8. (You can also follow these steps in any open database.) What you see is an empty
datasheet, which looks quite similar to a spreadsheet. Access 2007 automatically cre-
ated the fi rst fi eld, called ID, in the left column. Leave this fi eld intact for now. In the
second column Access has placed another fi eld with the Add New Field heading. You
can enter just about any type of data you want in this fi eld—text, dates, numbers, or
currency. But unlike a spreadsheet, you can’t enter any calculated expressions in a data-
sheet. As you’ll see later in the chapters about queries, you can easily display a calcu-
lated result using data from one or more tables by entering an expression in a query.

Because we’re starting a list of wedding invitees, we’ll need columns containing infor-
mation such as title, last name, fi rst name, middle initial, street address, city, state,
postal code, number of guests invited, number of guests confi rmed, gift received, and
a gift acknowledged indicator. Be sure to enter the same type of data in a particular
column for every row. For example, enter the city name in the seventh column (named
Field6 by Access) for every row.

Chapter 4

150 Chapter 4 Creating Your Database and Tables
You can see some of the data entered for the wedding invitee list in Figure 4-9. When
you start to type in a fi eld in a row, Access 2007 displays a pencil icon on the row selec-
tor at the far left to indicate that you’re adding or changing data in that row. Press the
Tab key to move from column to column. When you move to another row, Access 2007
saves what you typed. If you make a mistake in a particular row or column, you can
click the data you want to change and type over it or delete it. Notice that after you
enter data in a column, Access 2007 guesses the most appropriate data type and dis-
plays it in the Data Type box on the Datasheet tab on the Ribbon.

Figure 4-9 You can create the wedding invitee list table by entering data.

If you create a column of data that you don’t want, click anywhere in the column and
click Delete in the Fields & Columns group of the Datasheet contextual tab on the Rib-
bon. Click Yes when Access asks you to confi rm the deletion. If you want to insert a
blank column between two columns that already contain data, click anywhere in the
column to the right of where you want to insert the new column and then click Insert
in the Fields & Columns group of the Datasheet tab on the Ribbon. To move a column
to a different location, click the fi eld name at the top of the column to select the entire
column, and then click again and drag the column to a new location. You can also click
an unselected column and drag your mouse pointer through several adjacent columns
to select them all. You can then move the columns as a group.

 Creating a Table Using a Table Template 151

Ch
ap

te
r 4
You probably noticed that Access 2007 named your columns Field1, Field2, and so
forth—not very informative. You can enter a name for each column by double-clicking
the column’s fi eld name. You can also click anywhere in the column and then click
Rename in the Fields & Columns group on the Datasheet tab. In Figure 4-10, we have
already renamed one of the columns and are in the process of renaming the second one.

Figure 4-10 Double-click the column heading or click Rename in the Fields & Columns group on
the Ribbon to rename a column in Datasheet view.

After you enter several rows of data, it’s a good idea to save your table. You can do this
by clicking the Save button on the Quick Access Toolbar or by clicking the Microsoft
Offi ce Button and then Save. Access 2007 displays a Save As dialog box, as shown in
Figure 4-11. Type an appropriate name for your table, and then click OK. If you deleted
the ID fi eld by mistake, Access 2007 displays a message box warning you that you have
no primary key defi ned for this table and offers to build one for you. If you accept the
offer, Access adds a fi eld called ID and assigns it a special data type named AutoNum-
ber that automatically generates a unique number for each new row you add. See
“Understanding Field Data Types” on page 157 for details about AutoNumber. If one
or more of the data columns you entered would make a good primary key, click No in
the message box. In Chapter 5, “Modifying Your Table Design,” you’ll learn how to use
Design view to defi ne your own primary key(s) or to change the defi nition of an exist-
ing primary key. In this case, Access 2007 should not display a message box, because it
already generated the fi eld called ID to serve as the primary key.

Figure 4-11 Access 2007 displays the Save As dialog box when you save a new table so that you
can specify a table name.

Creating a Table Using a Table Template
If you look in the Wedding List sample database (WeddingList.accdb) included on the
companion CD, you’ll fi nd it very simple, with one main table and a few supporting
tables for data such as titles, cities, and groups. Most databases are usually quite a bit
more complex. For example, the Housing Reservations sample database contains six

SaveSave

Chapter 4

152 Chapter 4 Creating Your Database and Tables
main tables, and the Conrad Systems Contacts sample database contains more than
a dozen tables. If you had to create every table “by hand,” it could be quite a tedious
 process.

Fortunately, Access 2007 comes with table templates to help you build a few common
tables. Let’s move on to a more complex task—building tables like those you fi nd in
Conrad Systems Contacts. Click the Microsoft Offi ce Button and then click New. This
returns you to the Getting Started screen, ready to defi ne a new blank database. For
this exercise, create a new blank database and give it the name Contact Tracking. We’ll
use this database to start building tables like some of those you saw in Chapter 3.

To build a table using one of the table templates, close the table that Access 2007 cre-
ated when you opened the database (Table1), click the Create tab on the Ribbon, and
then click the Table Templates button in the Tables group. Access displays a list of fi ve
table templates—Contacts, Tasks, Issues, Events, and Assets, as shown in Figure 4-12.
Microsoft uses the term Quick Create to refer to this one-click table creation feature.

Figure 4-12 The fi ve types of table templates help you create common types of tables.

The fi ve table templates, which represent some of the more common types of table
structures found in databases, are as follows:

O Contacts Use this table template when you need to track your personal or busi-
ness contacts. Key fi elds in this template include the contact’s company, job title,
and phone numbers.

O Tasks Use this table template for keeping track of various tasks and projects
needing completion. Key fi elds in this template include start and due dates for the
task and percentage complete.

 Creating a Table Using a Table Template 153

Ch
ap

te
r 4
O Issues Use this table template for recording various personal or business issues.
Some key fi elds in this template include the title of the issue and the issue status.

O Events Use this table template as a personal organizer of your appointments.
This template includes fi elds for start and end times of the event, the event date,
and even the location.

O Assets Use this table template for keeping track of your assets. Key fi elds in this
template include the acquisition date, the original price of the asset, and the cur-
rent price.

The Table Wizard from previous versions of Access does not exist in Access 2007.

 Microsoft has replaced the Table Wizard with fi ve table templates so that you can quickly

build tables commonly found in most databases.

Click Contacts in the Table Templates list, and Access 2007 builds a complete table
structure for a contacts table, as shown in Figure 4-13. Access creates a total of 18
fi elds to identify the data elements for this contacts table. Use the horizontal scroll bar
or press Tab to see the fi eld names to the right. This contacts table template includes
fi elds such as Company, First Name, Last Name, E-mail Address, Job Title, and so on to
identify a single subject—a contact. The Table Templates command also automatically
defi nes a data type for each of these fi elds.

See Table 4-1 on page 158 for a full discussion of the various data types available within
 Access 2007.

Access 2007 uses special schema fi les coded in XML to defi ne the properties for the fi ve

table templates. These fi ve fi les have an .accfl extension and are located in the following

folder in a default 2007 Offi ce release installation: Program Files\Microsoft Offi ce\Tem-

plates\1033\Access. If you choose to modify these template fi les, we recommend that

you back up the original fi le to a safe location. You can open the .accfl fi les using Note-

pad or an XML reader. These XML view fi les are created using XML Schema Defi nition

(XSD) language to describe the structure of the new table template tables. Access reads

these fi les to determine the structure of the template fi les and then builds them follow-

ing the instructions. You can learn how to create and modify these fi les in Chapter 23,

“Using XML.”

SIDE OUT What Happened to the Table Wizard?

The Table Wizard from previous versions of Access does not exist in Access 2007.

Microsoft has replaced the Table Wizard with fi ve table templates so that you can quickly

build tables commonly found in most databases.

SIDE OUT You Can Create and Modify Table Templates

Access 2007 uses special schema fi les coded in XML to defi ne the properties for the fi ve

table templates. These fi ve fi les have an .accfl extension and are located in the following

folder in a default 2007 Offi ce release installation: Program Files\Microsoft Offi ce\Tem-

plates\1033\Access. If you choose to modify these template fi les, we recommend that

you back up the original fi le to a safe location. You can open the .accfl fi les using Note-

pad or an XML reader. These XML view fi les are created using XML Schema Defi nition

(XSD) language to describe the structure of the new table template tables. Access reads

these fi les to determine the structure of the template fi les and then builds them follow-

ing the instructions. You can learn how to create and modify these fi les in Chapter 23,

“Using XML.”

Chapter 4

154 Chapter 4 Creating Your Database and Tables
Figure 4-13 The Table Templates command builds a complete table with appropriate fi eld types.

By default, Access 2007 assigned the name ID to the fi rst fi eld in this Contacts table.
This fi eld name is not very descriptive, so we will rename this fi eld ContactID. There
are several ways to rename a fi eld using Access 2007, but for now we will focus on one
of the easiest methods—renaming the fi eld directly from Datasheet view. Double-click
the heading of the ID fi eld and then type ContactID, as shown in Figure 4-14. After you
press Enter, Access immediately renames the fi eld. Save this table now by clicking the
Save button on the Quick Access Toolbar and name the table Contacts.

Figure 4-14 You can double-click a column heading in table Design view to change the name of
the fi eld.

You will further change this Contacts table later in this chapter and also in Chapter 5
so that it is more like the fi nal tblContacts table in the Conrad Systems Contacts

 Creating a Table in Design View 155

Ch
ap

te
r 4
 database. For now, close the Table window so that you can continue building other
tables you need.

Creating a Table in Design View
You could continue to use table templates to build some of the other tables in the Con-
tact Tracking database to mimic those in Conrad Systems Contacts. However, you’ll
fi nd it very useful to learn the mechanics of building a table from scratch, so now is a
good time to explore Design view and learn how to build tables without using table
templates. The table templates, unlike the Table Wizard from previous versions of
Access, offer only fi ve choices for sample tables, and there is no way to pick and choose
which fi elds to include or exclude. You can modify the template by changing the XML
that defi nes it, and you’ll learn how to do that in Chapter 23. By working in Design
view, you’ll see many additional features that you can use to customize the way your
tables (and any queries, forms, or reports built on these tables) work when creating a
table from scratch.

To begin creating a new table in Design view, click the Create tab on the Ribbon and
then click the Table Design button in the Tables group. Access 2007 displays a blank
Table window in Design view, as shown in Figure 4-15.

Figure 4-15 The Table Design command opens a new table in Design view.

Chapter 4

156 Chapter 4 Creating Your Database and Tables
In Design view, the upper part of the Table window displays columns in which you can
enter the fi eld names, the data type for each fi eld, and a description of each fi eld. After
you select a data type for a fi eld, Access 2007 allows you to set fi eld properties in the
lower-left section of the Table window. In the lower-right section of the Table window is
a box in which Access displays information about fi elds or properties. The contents of
this box change as you move from one location to another within the Table window.

For details about data type values, see “Understanding Field Data Types” on the next page.

Defi ning Fields
Now you’re ready to begin defi ning the fi elds for the Companies table that mimics the
one you can fi nd in the Conrad Systems Contacts sample database (Contacts.accdb). Be
sure the insertion point is in the fi rst row of the Field Name column, and then type the
name of the fi rst fi eld, CompanyID. Press Tab once to move to the Data Type column. A
button with an arrow appears on the right side of the Data Type column. Here and else-
where in Access 2007, this type of button signifi es the presence of a list. Click the arrow
or press Alt+Down Arrow to open the list of data type options, shown in Figure 4-16. In
the Data Type column, you can either type a valid value or select from the values in the
list. Select AutoNumber as the data type for CompanyID.

In the Description column for each fi eld, you can enter a descriptive phrase. Access
2007 displays this description on the status bar (at the bottom of the Access window)
whenever you select this fi eld in a query in Datasheet view or in a form in Form view or
Datasheet view. For example, enter Unique Company ID in the Description column for
the CompanyID fi eld.

Entering a Description property for every fi eld in your table helps document your

application. Because Access 2007 also displays the description on the status bar, paying

careful attention to what you type in the Description fi eld can later pay big dividends as

a kind of mini-help for the users of your database. Also, because this data propagates

automatically, you probably don’t want to type something nonsensical or silly. Typing I
don’t have a clue what this fi eld does is probably not a good idea—it will show up

later on the status bar!

SIDE OUT Why Setting the Description Property Is Important

Entering a Description property for every fi eld in your table helps document your

application. Because Access 2007 also displays the description on the status bar, paying

careful attention to what you type in the Description fi eld can later pay big dividends as

a kind of mini-help for the users of your database. Also, because this data propagates

automatically, you probably don’t want to type something nonsensical or silly. Typing I
don’t have a clue what this fi eld does is probably not a good idea—it will show up

later on the status bar!

 Defi ning Fields 157

Ch
ap

te
r 4
Figure 4-16 You can choose the data type of a fi eld from a list of data type options.

Tab down to the next line, enter CompanyName as a fi eld name, and then choose Text
as the data type. After you select a data type, Access 2007 displays some property boxes
in the Field Properties section in the lower part of the Table window. These boxes allow
you to set properties—settings that determine how Access handles the fi eld—and thereby
customize a fi eld. The properties Access displays depend on the data type you select;
the properties appear with some default values in place, as shown in Figure 4-16.

For details about the values for each property, see“Setting Field Properties” on page 161.

Understanding Field Data Types
Access 2007 supports 10 types of data, each with a specifi c purpose. You can see the
details about each data type in Table 4-1. Access also gives you an eleventh option,
Lookup Wizard, to help you defi ne the characteristics of foreign key fi elds that link to
other tables. You’ll learn about the Lookup Wizard (and why you shouldn’t use it) in the
next chapter.

Chapter 4

158 Chapter 4 Creating Your Database and Tables
 Table 4-1 Access Data Types

Data Type Usage Size

Text Alphanumeric data Up to 255 characters

Memo Alphanumeric data—sentences and
paragraphs

Up to about 1 gigabyte (but
controls to display a memo
are limited to the fi rst 64,000
 characters)

Number Numeric data 1, 2, 4, 8 or 16 bytes

Date/Time Dates and times 8 bytes

Currency Monetary data, stored with 4 deci-
mal places of precision

8 bytes

AutoNumber Unique value generated by Access
for each new record

4 bytes (16 bytes for
 ReplicationID)

Yes/No Boolean (true/false) data; Access
stores the numeric value zero (0) for
false, and minus one (–1) for true

1 bit

OLE Object Pictures, graphs, or other ActiveX
objects from another Windows-
based application

Up to about 2 gigabytes

Hyperlink A link “address” to a document or
fi le on the World Wide Web, on an
intranet, on a local area network
(LAN), or on your local computer

Up to 8,192 characters (each
part of a Hyperlink data type can
contain up to 2,048 characters)

Attachment You can attach fi les such as pictures,
documents, spreadsheets, or charts;
each Attachment fi eld can contain
an unlimited number of attach-
ments per record, up to the storage
limit of the size of a database fi le

Up to about 2 gigabytes

Lookup
Wizard

The Lookup Wizard entry in the
Data Type column in Design view is
not actually a data type. When you
choose this entry, a wizard starts
to help you defi ne either a simple
or complex lookup fi eld. A simple
lookup fi eld uses the contents of
another table or a value list to vali-
date the contents of a single value
per row. A complex lookup fi eld
 allows you to store multiple values
of the same data type in each row.

Dependent on the data type of
the lookup fi eld

For each fi eld in your table, select the data type that is best suited to how you will use
that fi eld’s data. For character data, you should normally select the Text data type. You
can control the maximum length of a Text fi eld by using a fi eld property, as explained

 Defi ning Fields 159

Ch
ap

te
r 4
later. Use the Memo data type only for long strings of text that might exceed 255 char-
acters or that might contain formatting characters such as tabs or line endings (carriage
returns).

Choosing Field Names
Offi ce Access 2007 gives you lots of fl exibility when it comes to naming your fi elds. A

fi eld name can be up to 64 characters long, can include any combination of letters,

numbers, spaces, and special characters except a period (.), an exclamation point (!), an

accent grave (`), and brackets ([]); however, the name cannot begin with a space and can-

not include control characters (ANSI values 0 through 31). In general, you should give

your fi elds meaningful names and should use the same name throughout for a fi eld that

occurs in more than one table. You should avoid using fi eld names that might also match

any name internal to Access or Visual Basic. For example, all objects have a Name prop-

erty, so it’s a good idea to qualify a fi eld containing a name by calling it CustomerName

or CompanyName. You should also avoid names that are the same as built-in functions,

such as Date, Time, Now, or Space. See Access Help for a list of all the built-in function

names.

Although you can use spaces anywhere within names in Access 2007, you should try to

create fi eld names and table names without embedded spaces. Many SQL databases to

which Access can link (notably Oracle and Ingres) do not support spaces within names.

Although SQL Server does allow spaces in names, you must enclose such names in

brackets, or use quotes and execute a Set Quoted Identifi er On command. If you ever

want to move your application to a client/server environment and store your data in an

SQL database such as Microsoft SQL Server or Oracle, you’ll most likely have to change

any names in your database tables that have an embedded space character. As you’ll

learn later in this book, table fi eld names propagate into the queries, forms, and reports

that you design using these tables. So any name you decide to change later in a table

must also be changed in all your queries, forms, and reports. See “Setting Table Design

Options” on page 191 for details about options to automatically propagate changes.

If you use reserved words or function names for fi eld names, Access 2007 catches most

of these and displays a warning message. This message warns you that the fi eld name

you chose, such as Name or Date, is a reserved word and you could encounter errors

when referring to that fi eld in other areas of the database application. Access still allows

you to use this name if you choose, but take note of the problems it could cause. To

avoid potential confl icts, we recommend you avoid using reserved words and built-in

functions for fi eld names.

When you select the Number data type, you should think carefully about what you
enter as the Field Size property because this property choice will affect precision as well
as length. (For example, integer numbers do not have decimals.) The Date/Time data
type is useful for calendar or clock data and has the added benefi t of allowing calcula-
tions in seconds, minutes, hours, days, months, or years. For example, you can fi nd out
the difference in days between two Date/Time values.

Choosing Field Names
Offi ce Access 2007 gives you lots of fl exibility when it comes to naming your fi elds. A

fi eld name can be up to 64 characters long, can include any combination of letters,

numbers, spaces, and special characters except a period (.), an exclamation point (!), an

accent grave (`), and brackets ([]); however, the name cannot begin with a space and can-

not include control characters (ANSI values 0 through 31). In general, you should give

your fi elds meaningful names and should use the same name throughout for a fi eld that

occurs in more than one table. You should avoid using fi eld names that might also match

any name internal to Access or Visual Basic. For example, all objects have a Name prop-

erty, so it’s a good idea to qualify a fi eld containing a name by calling it CustomerName

or CompanyName. You should also avoid names that are the same as built-in functions,

such as Date, Time, Now, or Space. See Access Help for a list of all the built-in function

names.

Although you can use spaces anywhere within names in Access 2007, you should try to

create fi eld names and table names without embedded spaces. Many SQL databases tot
which Access can link (notably Oracle and Ingres) do not support spaces within names.

Although SQL Server does allow spaces in names, you must enclose such names in

brackets, or use quotes and execute a Set Quoted Identifi er On command. If you ever

want to move your application to a client/server environment and store your data in an

SQL database such as Microsoft SQL Server or Oracle, you’ll most likely have to change

any names in your database tables that have an embedded space character. As you’ll

learn later in this book, table fi eld names propagate into the queries, forms, and reports

that you design using these tables. So any name you decide to change later in a table

must also be changed in all your queries, forms, and reports. See “Setting Table Design

Options” on page 191 for details about options to automatically propagate changes.

If you use reserved words or function names for fi eld names, Access 2007 catches most

of these and displays a warning message. This message warns you that the fi eld name

you chose, such as Name or Date, is a reserved word and you could encounter errors

when referring to that fi eld in other areas of the database application. Access still allows

you to use this name if you choose, but take note of the problems it could cause. To

avoid potential confl icts, we recommend you avoid using reserved words and built-in

functions for fi eld names.

Chapter 4

160 Chapter 4 Creating Your Database and Tables

Use the Date/Time data type to store any date, time, or date and time value. It’s useful to

know that Access 2007 stores the date as the integer portion of the Date/Time data type

and the time as the fractional portion—the fraction of a day, measured from midnight,

that the time represents, accurate to seconds. For example, 6:00:00 A.M. internally is

0.25. The day number is actually the number of days since December 30, 1899 (there will

be a test on that later!) and can be a negative number for dates prior to that date. When

two Date/Time fi elds contain only a date, you can subtract one from the other to fi nd out

how many days are between the two dates.

You should generally use the Currency data type for storing money values. Currency
has the precision of integers, but with exactly four decimal places. When you need
to store a precise fractional number that’s not money, use the Number data type and
choose Decimal for the Field Size property.

The AutoNumber data type is specifi cally designed for automatic generation of primary
key values. Depending on the settings for the Field Size and New Values properties
you choose for an AutoNumber fi eld, you can have Access 2007 create a sequential or
random long integer. You can include only one fi eld using the AutoNumber data type in
any table. If you defi ne more than one AutoNumber fi eld, Access displays an error mes-
sage when you try to save the table.

Use the Yes/No data type to hold Boolean (true or false) values. This data type is par-
ticularly useful for fl agging accounts paid or not paid or orders fi lled or not fi lled.

The OLE Object data type allows you to store complex data, such as pictures, graphs, or
sounds, which can be edited or displayed through a dynamic link to another Windows-
based application. For example, Access 2007 can store and allow you to edit a Microsoft
Offi ce Word document, a Microsoft Offi ce Excel spreadsheet, a Microsoft Offi ce
 PowerPoint presentation slide, a sound fi le (.wav), a video fi le (.avi), or pictures created
using the Paint or Draw application.

The Hyperlink data type lets you store a simple or complex “link” to an external fi le or
document. (Internally, Hyperlink is a memo data type with a special fl ag set to indicate
that it is a link.) This link can contain a Uniform Resource Locator (URL) that points
to a location on the World Wide Web or on a local intranet. It can also contain the Uni-
versal Naming Convention (UNC) name of a fi le on a server on your local area network
(LAN) or on your local computer drives. The link can point to a fi le that is in Hypertext
Markup Language (HTML) or in a format that is supported by an ActiveX application
on your computer.

The Attachment data type, newly introduced in Access 2007, is very similar to the OLE
Object data type in that you can use it to store complex data. However, unlike the OLE
Object data type, you can now store multiple attachments in a single record. These
fi les are stored in a binary fi eld in a hidden system table. OLE objects usually result in
database bloat because the fi les are not compressed, and Access also stores a bitmap

SIDE OUT Understanding What’s Inside the Date/Time Data Type

Use the Date/Time data type to store any date, time, or date and time value. It’s useful to

know that Access 2007 stores the date as the integer portion of the Date/Time data type

and the time as the fractional portion—the fraction of a day, measured from midnight,

that the time represents, accurate to seconds. For example, 6:00:00 A.M. internally is

0.25. The day number is actually the number of days since December 30, 1899 (there will

be a test on that later!) and can be a negative number for dates prior to that date. When

two Date/Time fi elds contain only a date, you can subtract one from the other to fi nd out

how many days are between the two dates.

 Defi ning Fields 161

Ch
ap

te
r 4
thumbnail of the embedded fi le that can often be larger than the original fi le. For the
Attachment data type, Access compresses each fi le, if it isn’t already, and uses the origi-
nal fi le rather than a generated thumbnail to minimize the amount of database bloat.

CAUTION!
You can use the Attachment data type only with databases in the new .accdb fi le type. If

you plan to create a database in the older .mdb format and have users with previous ver-

sions of Access use this database, you cannot defi ne any fi elds as Attachment.

Setting Field Properties
You can customize the way Access 2007 stores and handles each fi eld by setting specifi c
properties. These properties vary according to the data type you choose. Table 4-2 lists
all the possible properties that can appear on a fi eld’s General tab in a table’s Design
view, and the data types that are associated with each property.

Table 4-2 Field Properties on the General Tab

Property Data Type Options, Description

Field Size Text Text can be from 0 through 255 characters long, with a
default length of 50 characters.

Number Byte. A single-byte integer containing values from 0
through 255.

Integer. A 2-byte integer containing values from –32,768
through +32,767.

Long Integer. A 4-byte integer containing values from
–2,147,483,648 through +2,147,483,647.

Single.1 A 4-byte fl oating-point number containing values
from –3.4 × 1038 through +3.4 × 1038 and up to seven
signifi cant digits.

Double.1 An 8-byte fl oating-point number containing
values from –1.797 × 10308 through +1.797 × 10308 and up
to 15 signifi cant digits.

Replication ID.2 A 16-byte globally unique identifi er
(GUID).

Decimal. A 12-byte integer with a defi ned decimal
precision that can contain values from approximately
–7.9228×1028 through +7.9228×1028. The default precision
(number of decimal places) is 0 and the default scale is 18.

New
 Values

AutoNum-
ber only

Increment. Values start at 1 and increment by 1 for each
new row.

Random. Access assigns a random long integer value to
each new row.

C U O !

Chapter 4

162 Chapter 4 Creating Your Database and Tables
Property Data Type Options, Description

Format Text, Memo You can specify a custom format that controls how Access
displays the data. For details about custom formats, see
“Setting Control Properties” on page 651 or the Access
Help topic “Format Property—Text and Memo Data Types.”

Number
(except Rep-
lication ID),
Currency,
AutoNum-
ber

General Number (default). No commas or currency sym-
bols; the number of decimal places shown depends on the
precision of the data.

Currency.3 Currency symbol (from Regional And Language
Options in Windows Control Panel) and two decimal places.

Euro. Euro currency symbol (regardless of Control Panel
settings) and two decimal places.

Fixed. At least one digit and two decimal places.

Standard. Two decimal places and separator commas.

Percent. Moves displayed decimal point two places to the
right and appends a percentage (%) symbol.

Scientifi c. Scientifi c notation (for example, 1.05E+06 repre-
sents 1.05 × 106).

You can specify a custom format that controls how Access
displays the data. For details about custom formats, see
“Setting Control Properties” on page 651 or the Access
Help topic “Format Property—Number and Currency
Types.”

Date/Time4 General Date (default). Combines Short Date and Long
Time formats (for example, 4/15/2007 5:30:10 PM).

Long Date. Uses Long Date Style from Regional And Lan-
guage Options in Control Panel (for example, Sunday, April
15, 2007).

Medium Date. 15-Apr-2007.

Short Date.5 Uses Short Date Style from Regional And
Language Options (for example, 4/15/2007).

Long Time. Uses Time Style from Regional And Language
Options (for example, 5:30:10 PM).

Medium Time. 5:30 PM.

Short Time. 17:30.

Yes/No Yes/No (default).
True/False.
On/Off.
You can specify a custom format that controls how Access
displays the data. For details about custom formats, see
“Setting Control Properties” on page 651 or the Access
Help topic “Format Property—Yes/No Data Type.”

 Defi ning Fields 163

Ch
ap

te
r 4
Property Data Type Options, Description

Precision Number,
Decimal

You can specify the maximum number of digits allowed.
The default value is 18, and you can specify an integer
value between 1 and 28.

Scale Number,
Decimal

You can specify the number of digits stored to the right of
the decimal point. This value must be less than or equal to
the value of the Precision property.

Decimal
Places

Number
(except Rep-
lication ID),
Currency

You can specify the number of decimal places that Access
displays. The default specifi cation is Auto, which causes
Access to display two decimal places for the Currency,
Fixed, Standard, and Percent formats and the number of
decimal places necessary to show the current precision of
the numeric value for General Number format. You can also
request a fi xed display of decimal places ranging from 0
through 15.

Input
Mask

Text, Num-
ber (except
Replica-
tion ID),
Date/Time,
Currency

You can specify an editing mask that the user sees while
entering data in the fi eld. For example, you can have Access
provide the delimiters in a date fi eld such as __/__/__, or
you can have Access format a U.S. phone number as (###)
000-0000. See “Defi ning Input Masks” on page 170 for
details.

Caption All You can enter a more fully descriptive fi eld name that
 Access displays in form labels and in report headings.
(Tip: If you create fi eld names with no embedded spaces,
you can use the Caption property to specify a name that
includes spaces for Access to use in labels and headers as-
sociated with this fi eld in queries, forms, and reports.)

Default
Value

Text, Memo,
Date/Time,
Hyperlink,
Yes/No

You can specify a default value for the fi eld that Access
 automatically uses for a new row if no other value is sup-
plied. If you don’t specify a Default Value property, the fi eld
will be Null if the user fails to supply a value. (See also the
Required property.)

Number,
Currency

Access sets the property to 0. You can change the setting
to a valid numeric value. You can also remove the setting,
in which case the fi eld will be Null if the user fails to supply
a value. (See also the Required property.)

Validation
Rule

All (except
OLE Object,
Replication
ID, Attach-
ment, and
AutoNum-
ber)

You can supply an expression that must be true whenever
you enter or change data in this fi eld. For example, <100
specifi es that a number must be less than 100. You can
also check for one of a series of values. For example, you
can have Access check for a list of valid cities by specifying
"Chicago" Or "New York" Or "San Francisco". In addition,
you can specify a complex expression that includes any of
the built-in functions in Access. See “Defi ning Simple Field
Validation Rules” on page 168 for details.

Chapter 4

164 Chapter 4 Creating Your Database and Tables
Property Data Type Options, Description

Validation
Text

All (except
OLE Object,
Replication
ID, Attach-
ment, and
AutoNum-
ber)

You can specify a custom message that Access displays
whenever the data entered does not pass your validation
rule.

Required All (except
AutoNum-
ber)

If you don’t want to allow a Null value in this fi eld, set this
property to Yes.

Allow Zero
Length

Text, Memo,
Hyperlink

You can set the fi eld equal to a zero-length string ("") if you
set this property to Yes. See the sidebar, “Nulls and Zero-
Length Strings,” on page 166 for more information.

Indexed All except
OLE Object
and Attach-
ment

You can ask that an index be built to speed access to data
values. You can also require that the values in the indexed
fi eld always be unique for the entire table. See “Adding
Indexes” on page 188, for details.

Unicode
Compres-
sion

Text, Memo,
Hyperlink

As of version 2000, Access stores character fi elds in an .mdb
and .accdb fi le using a double-byte (Unicode) character
set to support extended character sets in languages that
 require them. The Latin character set required by most
Western European languages (such as English, Spanish,
French, or German) requires only 1 byte per character.
When you set Unicode Compression to Yes for character
fi elds, Access stores compressible characters in 1 byte in-
stead of 2, thus saving space in your database fi le. However,
Access will not compress Memo or Hyperlink fi elds that
will not compress to fewer than 4,096 bytes. The default
for new tables is Yes in all countries where the standard
language character set does not require 2 bytes to store all
the characters.

IME Mode,
IME
Sentence
Mode

Text, Memo,
Hyperlink

On computers with an Asian version of Windows and
 appropriate Input Method Editor (IME) installed, these
properties control conversion of characters in kanji,
 hiragana, katakana, and hangul character sets.

 Defi ning Fields 165

Ch
ap

te
r 4
Property Data Type Options, Description

Smart Tags All data
types except
Yes/No,
OLE Object,
Attachment,
and Replica-
tion ID

Indicates the registered smart tag name and action that
you want associated with this fi eld. When the user views
this fi eld in a table datasheet, a query datasheet, or a form,
Access displays a smart tag available indicator next to the
fi eld. The user can click on the indicator and select the
smart tag action to perform. For an example using a smart
tag, see Chapter 12, “Customizing a Form.”

1 Single and Double fi eld sizes use an internal storage format called fl oating point that can handle
very large or very small numbers, but which is somewhat imprecise. If the number you need to store
contains more than 7 signifi cant digits for a Single or more than 15 signifi cant digits for a Double,
the number will be rounded. For example, if you try to save 10,234,567 in a Single, the actual value
stored will be 10,234,570. Likewise, Access stores 10.234567 as 10.23457 in a Single. If you want
absolute fractional precision, use Decimal fi eld size or Currency data type instead.

2 In general, you should use the Replication ID fi eld size only in an Access 2003 format and earlier
database that is managed by the Replication Manager.

3 Note that Currency, Euro, Fixed, and Standard formats always display two decimal places regardless
of the number of actual decimal places in the underlying data. Access rounds any number to two
decimal places for display if the number contains more than two decimal places.

4 You can also specify a custom format in addition to the built-in ones described here. See Chapter 12
for details.

5 To help alleviate problems with dates spanning the start of the century, we recommend that you
select the Use Four-Digit Year Formatting check box in Access. Click the Microsoft Offi ce Button, click
Access Options, and then scroll to the General section in the Advanced category to fi nd this option.
You should also be sure that your Short Date Style in the Regional And Language Options dialog
box uses a four-digit year. (This is the default in Windows XP and Windows Vista; you can double-
check your settings by accessing Regional And Language Options within Control Panel.)

If you specify a validation rule but no validation text, Access 2007 generates an ugly and

cryptic message that your users might not understand:

“One or more values are prohibited by the validation rule ‘<your expression here>’ set for

‘<table name.fi eld name>’. Enter a value that the expression for this fi eld can accept.”

Unless you like getting lots of support calls, we recommend that you always enter a cus-

tom validation text message whenever you specify a validation rule.

For details about the properties on the Lookup tab, see “Taking a Look at Lookup Prop-

erties,” on page 240.

SIDE OUT Don’t Specify a Validation Rule Without Validation Text

If you specify a validation rule but no validation text, Access 2007 generates an ugly and

cryptic message that your users might not understand:

“One or more values are prohibited by the validation rule ‘<your expression here>’ set for

‘<table name.fi eld name>’. Enter a value that the expression for this fi eld can accept.”

Unless you like getting lots of support calls, we recommend that you always enter a cus-

tom validation text message whenever you specify a validation rule.

For details about the properties on the Lookup tab, see “Taking a Look at Lookup Prop-

erties,” on page 240.

Chapter 4

166 Chapter 4 Creating Your Database and Tables
Nulls and Zero-Length Strings
Relational databases support a special value in fi elds, called a Null, that indicates an

unknown value. In contrast, you can set Text or Memo fi elds to a zero-length string to

indicate that the value of a fi eld is known but the fi eld is empty.

Why is it important to differentiate Nulls (unknown values) from zero-length strings?

Here’s an example: Suppose you have a database that stores the results of a survey about

automobile preferences. For questionnaires on which there is no response to a color-

preference question, it is appropriate to store a Null. You don’t want to match responses

based on an unknown response, and you don’t want to include the row in calculating

totals or averages. On the other hand, some people might have responded “I don’t care”

for a color preference. In this case, you have a known “no preference” answer, and a zero-

length string is appropriate. You can match all “I don’t care” responses and include the

responses in totals and averages.

Another example might be fax numbers in a customer database. If you store a Null, it

means you don’t know whether the customer has a fax number. If you store a zero-

length string, you know the customer has no fax number. Access 2007 gives you the fl ex-

ibility to deal with both types of “empty” values.

You can join tables on zero-length strings, and two zero-length strings will compare to

be equal. However, for Text, Memo, and Hyperlink fi elds, you must set the Allow Zero

Length property to Yes to allow users to enter zero-length strings. (Yes became the

default in Microsoft Access 2002.) Otherwise, Access converts a zero-length or all-blank

string to a Null before storing the value. If you also set the Required property of the Text

fi eld to Yes, Access stores a zero-length string if the user enters either "" (two double

quotes with no space) or blanks in the fi eld.

Nulls have special properties. A Null value cannot be equal to any other value, not even

to another Null. This means you cannot join (link) two tables on Null values. Also, the

question “Is A equal to B?” when A, B, or both A and B contain a Null, can never be

answered “yes.” The answer, literally, is “I don’t know.” Likewise, the answer to the ques-

tion “Is A not equal to B?” is also “I don’t know.” Finally, Null values do not participate in

aggregate calculations involving such functions as Sum or Avg. You can test a value to

determine whether it is a Null by comparing it to the special NULL keyword or by using

the IsNull built-in function.

Completing the Fields in the Companies Table
You now know enough about fi eld data types and properties to fi nish designing the
Companies table in this example. (You can also follow this example using the tblCom-
panies table from the Conrad Systems Contacts sample database.) Use the information
listed in Table 4-3 to design the table shown in Figure 4-17.

Nulls and Zero-Length Strings
Relational databases support a special value in fi elds, called a Null, that indicates an l
unknown value. In contrast, you can set Text or Memo fi elds to a zero-length string to

indicate that the value of a fi eld is known but the fi eld is empty.

Why is it important to differentiate Nulls (unknown values) from zero-length strings?

Here’s an example: Suppose you have a database that stores the results of a survey about

automobile preferences. For questionnaires on which there is no response to a color-

preference question, it is appropriate to store a Null. You don’t want to match responses

based on an unknown response, and you don’t want to include the row in calculating

totals or averages. On the other hand, some people might have responded “I don’t care”

for a color preference. In this case, you have a known “no preference” answer, and a zero-

length string is appropriate. You can match all “I don’t care” responses and include the

responses in totals and averages.

Another example might be fax numbers in a customer database. If you store a Null, it

means you don’t know whether the customer has a fax number. If you store a zero-

length string, you know the customer has no fax number. Access 2007 gives you the fl ex-

ibility to deal with both types of “empty” values.

You can join tables on zero-length strings, and two zero-length strings will compare to

be equal. However, for Text, Memo, and Hyperlink fi elds, you must set the Allow Zero

Length property to Yes to allow users to enter zero-length strings. (Yes became the

default in Microsoft Access 2002.) Otherwise, Access converts a zero-length or all-blank

string to a Null before storing the value. If you also set the Required property of the Text

fi eld to Yes, Access stores a zero-length string if the user enters either "" (two double

quotes with no space) or blanks in the fi eld.

Nulls have special properties. A Null value cannot be equal to any other value, not even

to another Null. This means you cannot join (link) two tables on Null values. Also, the

question “Is A equal to B?” when A, B, or both A and B contain a Null, can never be

answered “yes.” The answer, literally, is “I don’t know.” Likewise, the answer to the ques-

tion “Is A not equal to B?” is also “I don’t know.” Finally, Null values do not participate in

aggregate calculations involving such functions as Sum or Avg. You can test a value to

determine whether it is a Null by comparing it to the special NULL keyword or by using

the IsNull built-in function.

 Defi ning Fields 167

Ch
ap

te
r 4
Table 4-3 Field Defi nitions for the Companies Table

Field Name Data Type Description Field Size

CompanyID AutoNumber Unique Company ID

CompanyName Text Company Name 50

Department Text Department 50

Address Text Address 255

City Text City 50

County Text County 50

StateOrProvince Text State or Province 20

PostalCode Text Postal/Zip Code 10

PhoneNumber Text Phone Number 15

FaxNumber Text Fax Number 15

Website Hyperlink Website address

ReferredBy Number Contact who referred this company Long Integer

Figure 4-17 Your fi elds in the Companies table should look like this. You’ll learn how to defi ne
 validation rules in the next section.

Chapter 4

168 Chapter 4 Creating Your Database and Tables
Defi ning Simple Field Validation Rules
To defi ne a simple check on the values that you allow in a fi eld, enter an expression in
the Validation Rule property box for the fi eld. Access 2007 won’t allow you to enter a
fi eld value that violates this rule. Access performs this validation for data entered in a
Table window in Datasheet view, in an updateable query, or in a form. You can specify
a more restrictive validation rule in a form, but you cannot override the rule defi ned
for the fi eld in the table by specifying a completely different rule in the form. For more
information on using validation rules in forms, see Chapter 12.

In general, a fi eld validation expression consists of an operator and a comparison value.
If you do not include an operator, Access assumes you want an “equals” (=) compari-
son. You can specify multiple comparisons separated by the Boolean operators OR
and AND.

It is good practice to always enclose text string values in quotation marks. If one of your
values is a text string containing blanks or special characters, you must enclose the
entire string in quotation marks. For example, to limit the valid entries for a City fi eld
to the two largest cities in the state of California, enter "Los Angeles" Or "San Diego". If
you are comparing date values, you must enclose the date constants in pound sign (#)
characters, as in #01/15/2007#.

You can use the comparison symbols to compare the value in the fi eld to a value or
values in your validation rule. Comparison symbols are summarized in Table 4-4. For
example, you might want to ensure that a numeric value is always less than 1000. To do
this, enter <1000. You can use one or more pairs of comparisons to ask Access to check
that the value falls within certain ranges. For example, if you want to verify that a num-
ber is in the range of 50 through 100, enter either >=50 And <=100 or Between 50 And
100. Another way to test for a match in a list of values is to use the IN comparison oper-
ator. For example, to test for states surrounding the U.S. capital, enter In ("Virginia",
"Maryland"). If all you need to do is ensure that the user enters a value, you can use the
special comparison phrase Is Not Null.

When you set the Required property to Yes and the user fails to enter a value, Access

2007 displays an unfriendly message:

“The fi eld ‘<tablename.fi eldname>’ cannot contain a Null value because the Required

property for this fi eld is set to True. Enter a value in this fi eld.”

We recommend that you use the Validation Rule property to require a value in the fi eld

and then use the Validation Text property to generate your own specifi c message.

SIDE OUT A Friendlier Way to Require a Field Value

When you set the Required property to Yes and the user fails to enter a value, Access

2007 displays an unfriendly message:

“The fi eld ‘<tablename.fi eldname>’ cannot contain a Null value because the Required

property for this fi eld is set to True. Enter a value in this fi eld.”

We recommend that you use the Validation Rule property to require a value in the fi eld

and then use the Validation Text property to generate your own specifi c message.

 Defi ning Fields 169

Ch
ap

te
r 4
Table 4-4 Comparison Symbols Used in Validation Rules

Operator Meaning

NOT Use before any comparison operator except IS NOT NULL to perform
the converse test. For example, NOT > 5 is equivalent to <=5.

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

= Equal to

<> Not equal to

IN Test for equal to any member in a list; comparison value must be a
comma-separated list enclosed in parentheses

BETWEEN Test for a range of values; comparison value must be two values (a
low and a high value) separated by the AND operator

LIKE Test a Text or Memo fi eld to match a pattern string

IS NOT NULL Requires the user to enter a value in the fi eld

If you need to validate a Text, Memo, or Hyperlink fi eld against a matching pattern (for
example, a postal code or a phone number), you can use the LIKE comparison operator.
You provide a text string as a comparison value that defi nes which characters are valid
in which positions. Access understands a number of wildcard characters, which you can
use to defi ne positions that can contain any single character, zero or more characters, or
any single number. These characters are shown in Table 4-5.

Table 4-5 LIKE Wildcard Characters

Character Meaning

? Any single character

* Zero or more characters; use to defi ne leading, trailing, or embedded
strings that don’t have to match any specifi c pattern characters

Any single digit

You can also specify that any particular position in the Text or Memo fi eld can con-
tain only characters from a list that you provide. You can specify a range of characters
within a list by entering the low value character, a hyphen, and the high value character,
as in [A-Z] or [3-7]. If you want to test a position for any characters except those in a list,

Chapter 4

170 Chapter 4 Creating Your Database and Tables
start the list with an exclamation point (!). You must enclose all lists in brackets ([]).
You can see examples of validation rules using LIKE here.

Validation Rule Tests For

LIKE "#####" or A U.S. 5-digit ZIP Code

LIKE "#####-####" A U.S. 9-digit ZIP+ Code

LIKE "[A-Z]#[A-Z] #[A-Z]#" A Canadian postal code

LIKE "###-##-####" A U.S. Social Security Number

LIKE "Smith*" A string that begins with Smith1

LIKE "*smith##*" A string that contains smith followed by two numbers,
anywhere in the string

LIKE "??00####" An eight-character string that contains any fi rst two
characters followed by exactly two zeros and then any
four digits

LIKE "[!0-9BMQ]*####" A string that contains any character other than a num-
ber or the letter B, M, or Q in the fi rst position and ends
with exactly four digits

1 Character string comparisons in Access are case-insensitive. So, smith, SMITH, and Smith are all
equal.

 Defi ning Input Masks
To assist you in entering formatted data, Access 2007 allows you to defi ne an input mask
for Text, Number (except Replication ID), Date/Time, and Currency data types. You can
use an input mask to do something as simple as forcing all letters entered to be upper-
case or as complex as adding parentheses and hyphens to phone numbers. You create
an input mask by using the special mask defi nition characters shown in Table 4-6. You
can also embed strings of characters that you want to display for formatting or store in
the data fi eld.

Table 4-6 Input Mask Defi nition Characters

Mask Character Meaning

0 A single digit must be entered in this position.

9 A digit or a space can be entered in this position. If the user skips
this position by moving the insertion point past the position without
entering anything, Access stores nothing in this position.

A digit, a space, or a plus or minus sign can be entered in this posi-
tion. If the user skips this position by moving the insertion point
past the position without entering anything, Access stores a space.

L A letter must be entered in this position.

 Defi ning Fields 171

Ch
ap

te
r 4
Mask Character Meaning

? A letter can be entered in this position. If the user skips this position
by moving the insertion point past the position without entering
anything, Access stores nothing.

A A letter or a digit must be entered in this position.

a A letter or a digit can be entered in this position. If the user skips
this position by moving the insertion point past the position without
entering anything, Access stores nothing.

& A character or a space must be entered in this position.

C Any character or a space can be entered in this position. If the user
skips this position by moving the insertion point past the position
without entering anything, Access stores nothing.

. Decimal placeholder (depends on the setting in the Regional And
Language Options in Control Panel).

, Thousands separator (depends on the setting in the Regional And
Language Options in Control Panel).

: ; - / Date and time separators (depend on the settings in the Regional
And Language Options in Control Panel).

< Converts to lowercase all characters that follow.

> Converts to uppercase all characters that follow.

! Causes the mask to fi ll from right to left when you defi ne optional
characters on the left end of the mask. You can place this character
anywhere in the mask.

\ Causes the character immediately following to be displayed as a
literal character rather than as a mask character.

"literal" You can also enclose any literal string in double quotation marks
rather than use the \ character repeatedly.

An input mask consists of three parts, separated by semicolons. The fi rst part defi nes
the mask string using mask defi nition characters and embedded literal data. The
optional second part indicates whether you want the embedded literal characters
stored in the fi eld in the database. Set this second part to 0 to store the characters or to
1 to store only the data entered. The optional third part defi nes a single character that
Access 2007 uses as a placeholder to indicate positions where data can be entered. The
default placeholder character is an underscore (_).

Perhaps the best way to learn to use input masks is to take advantage of the Input Mask
Wizard. In the Companies table of the Contact Tracking database, the PhoneNumber
fi eld could benefi t from the use of an input mask. Click the PhoneNumber fi eld in the
upper part of the Table window in Design view, and then click in the Input Mask prop-
erty box in the lower part of the window. You should see a small button with three dots
on it (called the Build button) to the right of the property box.

Chapter 4

172 Chapter 4 Creating Your Database and Tables
Click the Build button to start the Input Mask Wizard. If you haven’t already saved
the table, the wizard will insist that you do so. Save the table and name it Companies.
When Access 2007 warns you that you have not defi ned a primary key and asks if you
want to create a primary key now, click No. We’ll defi ne a primary key in the next sec-
tion. On the fi rst page, the wizard gives you a number of choices for standard input
masks that it can generate for you. In this case, click the fi rst one in the list—Phone
Number, as shown in Figure 4-18. Note that you can type something in the Try It box
below the Input Mask list to try out the mask.

Figure 4-18 You can choose from several built-in input masks in the Input Mask Wizard.

Click the Next button to go to the next page. On this page, shown in Figure 4-19, you
can see the mask name, the proposed mask string, a list from which you select the
placeholder character, and another Try It box. The default underscore character (_)
works well as a placeholder character for phone numbers.

Figure 4-19 You can choose the placeholder character in the Input Mask Wizard.

BuildBuild

 Defi ning Fields 173

Ch
ap

te
r 4
Click Next to go to the next page, where you can choose whether you want the data
stored without the formatting characters (the default) or stored with the parentheses,
spaces, and hyphen separator. In Figure 4-20, we’re indicating that we want the data
stored with the formatting characters. Click Next to go to the fi nal page, and then click
the Finish button on that page to store the mask in the property setting. Figure 4-21
shows the resulting mask in the PhoneNumber fi eld. You’ll fi nd this same mask handy
for any text fi eld that is meant to contain a U.S. phone number (such as the phone num-
ber fi elds in the Contacts table).

Figure 4-20 You can choose to store formatting characters.

Figure 4-21 The wizard stores the input mask for PhoneNumber based on the criteria you selected.

Chapter 4

174 Chapter 4 Creating Your Database and Tables
Note
If you look closely in Figure 4-21, you can see a backslash before the area code and quo-

tation marks around the second parenthesis. When you complete the Input Mask Wizard,

Access initially does not display these extra characters. After you click off that fi eld or

save the table, Access adds the missing characters. The mask generated by the wizard is

incorrect, but the table editor fi xes it before saving.

CAUTION!
Although an input mask can be very useful to help guide the user to enter valid data, if

you defi ne an input mask incorrectly or do not consider all possible valid values, you can

prevent the user from entering necessary data. For example, we just showed you how to

build an input mask for a U.S. telephone number, but that mask would prevent someone

from entering a European phone number correctly.

Defi ning a Primary Key
Every table in a relational database should have a primary key. Telling Access 2007
how to defi ne the primary key is quite simple. Open the table in Design view and click
the row selector to the left of the fi eld you want to use as the primary key. If you need
to select multiple fi elds for your primary key, hold down the Ctrl key and click the row
selector of each additional fi eld you need.

For details about designing primary keys for your tables, see Article 1, “Designing Your Data-
base Application,” on the companion CD.

After you select all the fi elds you want for the primary key, click the Primary Key button
in the Tools group of the Design contextual tab on the Ribbon. Access 2007 displays a
key symbol to the left of the selected fi eld(s) to acknowledge your defi nition of the pri-
mary key. To eliminate all primary key designations, see “Adding Indexes” on page 188.
When you’ve fi nished creating the Companies table for the Contact Tracking database,
the primary key should be the CompanyID fi eld, as shown in Figure 4-22.

Be sure to click the Save button on the Quick Access Toolbar to save this latest change
to your table defi nition.

Note
If you look closely in Figure 4-21, you can see a backslash before the area code and quo-

tation marks around the second parenthesis. When you complete the Input Mask Wizard,

Access initially does not display these extra characters. After you click off that fi eld or

save the table, Access adds the missing characters. The mask generated by the wizard is

incorrect, but the table editor fi xes it before saving.

CAUTION!

 Defi ning a Table Validation Rule 175

Ch
ap

te
r 4
Figure 4-22 You can easily defi ne the primary key for the Companies table by selecting the fi eld in
Design view and clicking the Primary Key button on the Ribbon.

Defi ning a Table Validation Rule
The last detail to defi ne is any validation rules that you want Access 2007 to apply to
any fi elds in the table. Although fi eld validation rules get checked as you enter each new
value, Access checks a table validation rule only when you save or add a row. Table vali-
dation rules are handy when the values in one fi eld are dependent on what’s stored in
another fi eld. You need to wait until the entire row is about to be saved before checking
one fi eld against another.

Chapter 4

176 Chapter 4 Creating Your Database and Tables
One of the tables in the Contact Tracking database—Products—needs a table valida-
tion rule. Defi ne that table now using the specifi cations in Table 4-7. Be sure to defi ne
 ProductID as the primary key and then save the table and name it Products.

Table 4-7 Field Defi nitions for the Products Table

Field Name Data Type Description Field Size

ProductID AutoNumber Unique product identifi er

ProductName Text Product description 100

CategoryDescription Text Description of the category 50

UnitPrice Currency Price

TrialVersion Yes/No Is this a trial version?

TrialExpire Number If trial version, number of
days before expiration

Long Integer

To defi ne a table validation rule, be sure that the table is in Design view, and then click
the Property Sheet button in the Show/Hide group of the Design contextual tab on the
Ribbon, shown in Figure 4-23.

Figure 4-23 You can defi ne a table validation rule in the property sheet for the table.

To learn more about expressions, see “Using the Expression Builder” on page 371.

 Defi ning a Table Validation Rule 177

Ch
ap

te
r 4
On the Validation Rule line in the table’s property sheet, you can enter any valid com-
parison expression, or you can use one of the built-in functions to test your table’s fi eld
values. In the Products table, we want to be sure that any trial version of the software
expires in 30, 60, or 90 days. Zero is also a valid value if this particular product isn’t a
trial version. As you can see in Figure 4-23, we’ve already entered a fi eld validation rule
for TrialExpire on the General tab to make sure the TrialExpire value is always 0, 30,
60, or 90—In (0, 30, 60, 90). But how do we make sure that TrialExpire is zero if Trial-
Version is False, or one of the other values if TrialVersion is True? For that, we need to
defi ne a table-level validation rule in the table’s property sheet.

To refer to a fi eld name, enclose the name in brackets ([]), as shown in Figure 4-23.
You’ll use this technique whenever you refer to the name of an object anywhere in an
expression. In this case, we’re using a special built-in function called Immediate If (or
IIF for short) in the table validation rule to perform the test on the TrialExpire and
TrialVersion fi elds. The IIF function can evaluate a test in the fi rst argument and then
return the evaluation of the second argument if the fi rst argument is true or the evalu-
ation of the third argument if the fi rst argument is false. As you will learn in Chapter
19, “Understanding Visual Basic Fundamentals,” you must separate the arguments in a
function call with commas. Note that we said evaluation of the argument—this means we
can enter additional tests, even another IIF, in the second and third arguments.

In the Products table, you want to make sure that the TrialVersion and TrialExpire
fi elds are in sync with each other. If this is not a trial version, the TrialExpire fi eld value
should be zero (indicating the product never expires), and if it is a trial version, Trial-
Expire must be set to some value greater than or equal to 30. The expression we used to
accomplish this is as follows:

IIf([TrialVersion]=True,[TrialExpire]>=30,[TrialExpire]=0)

So, the fi rst argument uses IIF to evaluate the expression [TrialVersion] = True—
is the value in the fi eld named TrialVersion True? If this is true (this is a trial version
that must have a nonzero number of expiration days), IIF returns the evaluation of the
second argument. If this is not a trial version, IIF evaluates the third argument. Now all
we need to do is type the appropriate test based on the true or false result on TrialVer-
sion. If this is a trial version, the TrialExpire fi eld must be 30 or greater (we’ll let the
fi eld validation rule make sure it’s exactly 30, 60, or 90), so we need to test for that by
entering [TrialExpire] >= 30 in the second argument. If this is not a trial version, we
need to make sure TrialExpire is zero by entering [TrialExpire] = 0 in the third argu-
ment. Got it? If TrialVersion is True, then [TrialExpire] >= 30 must be true or the valida-
tion rule will fail. If TrialVersion is False, then [TrialExpire] = 0 must be true. As you
might imagine, once you become more familiar with building expressions and with the
available built-in functions, you can create very sophisticated table validation rules.

On the Validation Text line of the table’s property sheet, enter the text that you want
Access to display whenever the table validation rule is violated. You should be careful
to word this message so that the user clearly understands what is wrong. If you enter
a table validation rule and fail to specify validation text, Access displays the following
message when the user enters invalid data: “One or more values are prohibited by the

Chapter 4

178 Chapter 4 Creating Your Database and Tables
validation rule ‘< your validation rule expression here >’ set for ‘<table name>’. Enter a value
that the expression for this fi eld can accept.”

Not very pretty, is it? And you can imagine what the user will say about your IIF
 expression!

Understanding Other Table Properties
As you can see in Figure 4-23, Access 2007 provides several additional table properties
that you can set in Design view. You can enter a description of the table in the Descrip-
tion property, and you’ll see this description in the Navigation Pane if you ask for the
Details view. For Default View, you can choose from Datasheet (the default), PivotTable,
or PivotChart. You can read more about PivotTable and PivotChart views in Chapter 13,
“Advanced Form Design.”

The Filter property lets you predefi ne criteria to limit the data displayed in the Data-
sheet view of this table. If you set Filter On Load to Yes, Access applies the fi lter you
defi ned when you open the datasheet. You can use Order By to defi ne one or more
fi elds that defi ne the default display sequence of rows in this table when in Datasheet
view. If you don’t defi ne an Order By property, Access displays the rows in primary
key sequence. You can set the Order By On Load property to Yes to request that Access
always applies any Order By specifi cation when opening the datasheet.

Note
If you apply a fi lter or specify a sorting sequence when you have the table open in

 Datasheet view, Access 2007 saves the fi lter in the Filter property and the sorting

sequence in the Order By property. If you have Filter On Load or Order By On Load set to

Yes, Access reapplies the previous fi lter or sort sequence criteria the next time you open

the datasheet.

You can fi nd fi ve properties—Subdatasheet Name, Link Child Fields, Link Master
Fields, Subdatasheet Height, and Subdatasheet Expanded—that are all related. Access
2000 introduced a feature that lets you see information from related tables when you
view the datasheet of a table. For example, in the Contact Tracking database you have
been building, you can set the Subdatasheet properties in the defi nition of Contacts
to also show you related information from ContactEvents or ContactProducts. In the
Housing Reservations sample database, you can see Departments and their Employees,
or Employees and their Reservation Requests. Figure 4-24 shows you the Departments
table in Housing.accdb open in Datasheet view. For this table, we defi ned a sub-
datasheet to show related employee information for each department.

Note
If you apply a fi lter or specify a sorting sequence when you have the table open in

Datasheet view, Access 2007 saves the fi lter in the Filter property and the sorting

sequence in the Order By property. If you have Filter On Load or Order By On Load set to

Yes, Access reapplies the previous fi lter or sort sequence criteria the next time you open

the datasheet.

 Understanding Other Table Properties 179

Ch
ap

te
r 4
Figure 4-24 The datasheet for the tblDepartments table in the Housing Reservations sample data-
base shows an expanded subdatasheet.

Notice the small plus and minus signs at the beginning of each department row. Click
on a plus sign to expand the subdatasheet to show related employees. Click on the
minus sign to shrink the subdatasheet and show only department information. Table
4-8 explains each of the Table Property settings that you can specify to attach a sub-
datasheet to a table.

For a production application, it’s a good idea to set Subdatasheet Name in all your tables

to [None]. First, when Access 2007 opens your table, it must not only fetch the rows from

the table but also fetch the rows defi ned in the subdatasheet. Adding a subdatasheet to

a large table can negatively impact performance.

Also, any production application should not allow the user to see table or query data-

sheets because you cannot enforce complex business rules. Any data validation in a table

or query datasheet depends entirely on the validation and referential integrity rules

defi ned for your tables because you cannot defi ne any Visual Basic code behind tables or

queries.

However, you might fi nd the table and query subdatasheets feature useful in your own

personal databases. We’ll show you how to build a query with a subdatasheet in Chapter

8, “Building Complex Queries,” and a form that uses a subdatasheet in Chapter 13.

SIDE OUT Don’t Set Subdatasheet Properties in a Table

For a production application, it’s a good idea to set Subdatasheet Name in all your tables

to [None]. First, when Access 2007 opens your table, it must not only fetch the rows from

the table but also fetch the rows defi ned in the subdatasheet. Adding a subdatasheet to

a large table can negatively impact performance.

Also, any production application should not allow the user to see table or query data-

sheets because you cannot enforce complex business rules. Any data validation in a table

or query datasheet depends entirely on the validation and referential integrity rules

defi ned for your tables because you cannot defi ne any Visual Basic code behind tables or

queries.

However, you might fi nd the table and query subdatasheets feature useful in your own

personal databases. We’ll show you how to build a query with a subdatasheet in Chapter

8, “Building Complex Queries,” and a form that uses a subdatasheet in Chapter 13.

Chapter 4

180 Chapter 4 Creating Your Database and Tables
Table 4-8 Table Properties for Defi ning a Subdatasheet

Property Name Setting Description

Subdatasheet Name [Auto] Creates a subdatasheet using the
fi rst table that has a many relation-
ship defi ned with this table.

[None] Turns off the subdatasheet feature.

Table.name or
Query.name

Uses the selected table or query as
the subdatasheet.

Link Child Fields Name(s) of the
foreign key fi elds(s)
in the related
table, separated by
 semicolons

Defi nes the fi elds in the subdata-
sheet table or query that match
the primary key fi elds in this
table. When you choose a table or
query for the Subdatasheet Name
property, Access uses an available
relationship defi nition or match-
ing fi eld names and data types to
automatically set this property for
you. You can correct this setting if
Access has guessed wrong.

Link Master Fields Name(s) of the
 primary key fi eld(s) in
this table, separated
by semicolons

Defi nes the primary key fi elds that
Access uses to link to the sub-
datasheet table or query. When
you choose a table or query for
the Subdatasheet Name property,
 Access uses an available relation-
ship defi nition or matching fi eld
names and data types to automati-
cally set this property for you. You
can correct this setting if Access
has guessed wrong.

Subdatasheet Height A measurement in
inches

If you specify zero (the default),
each subdatasheet expands to
show all available rows when
opened. When you specify a
nonzero value, the subdatasheet
window opens to the height you
specify. If the height is insuffi cient
to display all rows, a scroll bar
appears to allow you to look at all
the rows.

Subdatasheet Expanded Yes or No If you specify Yes, all subdatasheets
appear expanded when you open
the table datasheet. No is the
default.

 Defi ning Relationships 181

Ch
ap

te
r 4
You can use the Orientation property to specify the reading sequence of the data in
Datasheet view. The default in most versions of Access is Left-to-Right. In versions that
support a language that is normally read right to left, the default is Right-to-Left. When
you use Right-to-Left, fi eld and table captions appear right-justifi ed, the fi eld order is
right to left, and the tab sequence proceeds right to left.

The Display Views On SharePoint property by default is set to Follow Database Setting,
which means links are created in the views list when this table is upsized to a Windows
SharePoint Services site. We’ll discuss upsizing a database to a Windows SharePoint
Services site in Chapter 22.

 Defi ning Relationships
After you have defi ned two or more related tables, you should tell Access 2007 how the
tables are related. You do this so that Access 2007 will be able to link all your tables
when you need to use them in queries, forms, or reports.

Thus far in this chapter, you have seen how to build the main subject tables of the
Contact Tracking database—Companies, Contacts, and Products. Before we defi ne the
relationships in this sample database, you need to create a couple of linking tables that
defi ne the many-to-many relationships between the Companies and Contacts tables
and between the Products and Contacts tables. Table 4-9 shows you the fi elds you need
for the Company Contacts table that forms the “glue” between the Companies and Con-
tacts tables.

Table 4-9 Field Defi nitions for the Company Contacts Table

Field Name Data Type Description Field Size

CompanyID Number Company/organization Long Integer

ContactID Number Person within company Long Integer

Position Text Person’s position within the
company

50

DefaultForContact Yes/No Is this the default company for
this contact?

Defi ne the combination of CompanyID and ContactID as the primary key for this table
by clicking the selection button next to CompanyID and then holding down the Ctrl
key and clicking the button next to ContactID. Click the Primary Key button in the
Tools group of the Design tab on the Ribbon to defi ne the key and then save the table as
CompanyContacts.

Chapter 4

182 Chapter 4 Creating Your Database and Tables
Table 4-10 shows you the fi elds you need to defi ne the Contact Products table that cre-
ates the link between the Contacts and Products tables.

Table 4-10 Field Defi nitions for the Contact Products Table

Field Name Data Type Description Field Size

CompanyID Number Company/organization Long Integer

ContactID Number Related contact Long Integer

ProductID Number Related product Long Integer

DateSold Date/Time Date product sold

SoldPrice Currency Price paid

The primary key of the Contact Products table is the combination of CompanyID,
 ContactID, and ProductID. You can click on CompanyID to select it and then hold
down the Shift key while you click on ProductID (if you defi ned the fi elds in sequence)
to select all three fi elds. Click the Primary Key button in the Tools group of the Design
tab on the Ribbon to defi ne the key, and then save the table as ContactProducts.

You need one last table, the Contact Events Table, to defi ne all the major tables you’ll
need for Contact Tracking. Table 4-11 shows the fi elds you need. The primary key for
this table is the combination of ContactID and ContactDateTime. Note that we took
advantage of the fact that a Date/Time data type in Access 2007 can store both a date
and a time, so we don’t need the two separate date and time fi elds. Save this last table as
ContactEvents.

Table 4-11 Field Defi nitions for the Contact Events Table

Field Name Data Type Description Field Size

ContactID Number Related contact Long Integer

ContactDateTime Date/Time Date and time of the
contact

ContactNotes Memo Description of the
 contact

ContactFollowUpDate Date/Time Follow-up date

Now you’re ready to start defi ning relationships. To defi ne relationships, fi rst close any
Table windows that are open and then click the Relationships command in the Show/
Hide group of the Database Tools tab on the Ribbon to open the Relationships window.
If this is the fi rst time you have defi ned relationships in this database, Access 2007
opens a blank Relationships window and opens the Show Table dialog box, shown in
Figure 4-25.

 Defi ning Relationships 183

Ch
ap

te
r 4
Figure 4-25 Access displays the Show Table dialog box when you open the Relationships window
for the fi rst time.

In the Show Table dialog box, select each table and click the Add button in turn. Click
Close to dismiss the Show Table dialog box.

Defi ning Your First Relationship
A company can have several contacts, and any contact can belong to several companies
or organizations. This means that companies have a many-to-many relationship with
contacts. Defi ning a many-to-many relationship between two tables requires a link-
ing table. Let’s link the Companies and Contacts tables by defi ning the fi rst half of the
relationship—the one between Companies and the linking table, CompanyContacts.
You can see that for the CompanyID primary key in the Companies table, there is a
matching CompanyID foreign key in the CompanyContacts table. To create the relation-
ship you need, click in the CompanyID fi eld in the Companies table and drag it to the
 CompanyID fi eld in the CompanyContacts table, as shown in Figure 4-26.

Chapter 4

184 Chapter 4 Creating Your Database and Tables
Figure 4-26 Drag the linking fi eld from the “one” table (Companies) to the “many” table
(CompanyContacts) to defi ne the relationship between the tables.

You can read about determining the type of relationship between two tables in Article 1,
“Designing Your Database Application,” on the companion CD.

When you release the mouse button, Access opens the Edit Relationships dialog box,
shown in Figure 4-27.

Figure 4-27 The Edit Relationships dialog box lets you specify the linking fi elds in two tables.

You can also click the Edit Relationships command in the Tools group of the Design con-

textual tab on the Ribbon to create a new relationship, but you have to fi ll in the table

and fi eld names yourself. Dragging and dropping does some of this work for you.

SIDE OUT Creating Relationships from Scratch

You can also click the Edit Relationships command in the Tools group of the Design con-

textual tab on the Ribbon to create a new relationship, but you have to fi ll in the table

and fi eld names yourself. Dragging and dropping does some of this work for you.

 Defi ning Relationships 185

Ch
ap

te
r 4
You’ll notice that Access 2007 has fi lled in the fi eld names for you. If you need to defi ne
a multiple-fi eld relationship between two tables, use the additional blank lines to defi ne
those fi elds. (We’ll do that in just a second.) Because you probably don’t want any rows
created in CompanyContacts for a nonexistent company, select the Enforce Referential
Integrity check box. When you do this, Access 2007 ensures that you can’t add a row in
the CompanyContacts table containing an invalid CompanyID. Also, Access won’t let
you delete any records from the Companies table if they have contacts still defi ned.

Note that after you select the Enforce Referential Integrity check box, Access 2007
makes two additional check boxes available: Cascade Update Related Fields and Cas-
cade Delete Related Records. If you select the Cascade Delete Related Records check
box, Access 2007 deletes child rows (the related rows in the many table of a one-to-
many relationship) when you delete a parent row (the related row in the one table of
a one-to-many relationship). For example, if you removed a company from the table
Access 2007 would remove the related company contact rows. In this database design,
the CompanyID fi eld has the AutoNumber data type, so it cannot be changed once it is
set. However, if you build a table with a primary key that is Text or Number (perhaps a
ProductID fi eld that could change at some point in the future), it might be a good idea
to select the Cascade Update Related Fields check box. This option requests that Access
automatically update any foreign key values in the child table (the many table in a one-
to-many relationship) if you change a primary key value in a parent table (the one table
in a one-to-many relationship).

You might have noticed that the Show Table dialog box, shown earlier in Figure 4-25,
gives you the option to include queries as well as tables. Sometimes you might want to
defi ne relationships between tables and queries or between queries so that Access 2007
knows how to join them properly. You can also defi ne what’s known as an outer join
by clicking the Join Type button in the Edit Relationships dialog box and selecting an
option in the Join Properties dialog box. With an outer join, you can fi nd out, for exam-
ple, which companies have no contacts or which products haven’t been sold.

For details about outer joins, see “Using Outer Joins” on page 425.

We recommend that you do not defi ne an outer join relationship between two tables.

As you’ll learn in Chapter 8, Access 2007 automatically links two tables you include in a

query design using the relationships you have defi ned. In the vast majority of cases, you

will want to include only the matching rows from both tables. If you defi ne the relation-

ship as an outer join, you will have to change the link between the two tables every time

you include them in a query.

We also do not recommend that you defi ne relationships between queries or between a

table and a query. If you have done a good job of naming your fi elds in your tables, the

query designer will recognize the natural links and defi ne the joins for you automatically.

Defi ning extra relationships adds unnecessary overhead in your database application.

SIDE OUT Avoid Defi ning a Relationship with an Outer Join

We recommend that you do not defi ne an outer join relationship between two tables.

As you’ll learn in Chapter 8, Access 2007 automatically links two tables you include in a

query design using the relationships you have defi ned. In the vast majority of cases, you

will want to include only the matching rows from both tables. If you defi ne the relation-

ship as an outer join, you will have to change the link between the two tables every time

you include them in a query.

We also do not recommend that you defi ne relationships between queries or between a

table and a query. If you have done a good job of naming your fi elds in your tables, the

query designer will recognize the natural links and defi ne the joins for you automatically.

Defi ning extra relationships adds unnecessary overhead in your database application.

Chapter 4

186 Chapter 4 Creating Your Database and Tables
Click the Create button to fi nish your relationship defi nition. Access draws a line
between the two tables to indicate the relationship. Notice that when you ask Access to
enforce referential integrity, Access displays a 1 at the end of the relationship line, next
to the one table, and an infi nity symbol next to the many table. If you want to delete the
relationship, click the line and press the Delete key.

You now know enough to defi ne the additional one-to-many simple relationships that
you need. Go ahead and defi ne a relationship on ContactID between the Contacts and
CompanyContacts tables to complete the other side of the many-to-many relationship
between companies and contacts, a relationship on ContactID between the Contacts
and ContactEvents tables, and a relationship on ProductID between the Products and
ContactProducts tables. For each relationship, be sure to select the Enforce Referential
Integrity check box.

Creating a Relationship on Multiple Fields
There’s one last relationship you need to defi ne in the Contact Tracking database
between the CompanyContacts and ContactProducts tables. The relationship between
these two tables requires multiple fi elds from each table. You can start by dragging
the CompanyID fi eld from the CompanyContacts table to the ContactProducts table.
Access 2007 opens the Edit Relationships dialog box, shown in Figure 4-28.

Figure 4-28 Select multiple fi elds in the Edit Relationships dialog box to defi ne a relationship
between two tables using more than one fi eld.

When you fi rst see the Edit Relationships dialog box for the relationship you are defi n-
ing between CompanyContacts and ContactProducts, Access 2007 shows you only the
CompanyID fi eld in the two lists. To complete the relationship defi nition on the com-
bination of CompanyID and ContactID, you must click in the second line under both
tables and select ContactID as the second fi eld for both tables, as shown in Figure 4-28.
Select the Enforce Referential Integrity check box as shown and click Create to defi ne
the compound relationship.

Figure 4-29 shows the Relationships window for all the main tables in your Contact
Tracking database. Notice that there are two linking lines that defi ne the relationship
between CompanyContacts and ContactProducts.

 Defi ning Relationships 187

Ch
ap

te
r 4
Figure 4-29 The Relationships window shows a graphical representation of all the main tables in
your Contact Tracking database.

If you want to edit or change any relationship, double-click the line to open the Edit
Relationships dialog box again. If you want to remove a relationship defi nition, click on
the line linking two tables to select the relationship (the line appears highlighted) and
press the Delete key. Access 2007 presents a warning dialog box in case you are asking
it to delete a relationship in error.

Note that once you defi ne a relationship, you can delete the table or query fi eld lists
from the Relationships window without affecting the relationships. To do this, click
the table or query list header and press the Delete key. This can be particularly advan-
tageous in large databases that have dozens of tables. You can also display only those
tables that you’re working with at the moment. To see the relationships defi ned for any
particular table or query, include it in the Relationships window by using the Show
Table dialog box, and then click the Direct Relationships button in the Relationships
group of the Design contextual tab on the Ribbon. To redisplay all relationships, click
the All Relationships button in the Relationships group.

When you close the Relationships window, Access 2007 asks whether you want to save
your layout changes. Click Yes to save the relationships you’ve defi ned. That’s all there
is to it. Later, when you use multiple tables in a query in Chapter 7, “Creating and Work-
ing with Simple Queries,” you’ll see that Access 2007 builds the links between tables
based on these relationships.

Chapter 4

188 Chapter 4 Creating Your Database and Tables

You can right-click any table in the Relationships window and then choose Table Design

from the shortcut menu to open that table in Design view. You can also click Relationship

Report in the Tools group of the Design contextual tab on the Ribbon to create a report

that prints what you laid out in the window.

Adding Indexes
The more data you include in your tables, the more you need indexes to help Access
2007 search your data effi ciently. An index is simply an internal table that contains two
columns: the value in the fi eld or fi elds being indexed and the physical location of each
record in your table that contains that value. Access 2007 uses an index similarly to
how you use the index in this book—you fi nd the term you want and jump directly to
the pages containing that term. You don’t have to leaf through all the pages to fi nd the
information you want.

Let’s assume that you often search your Contacts table by city. Without an index, when
you ask Access 2007 to fi nd all the contacts in the city of Chicago, Access has to search
every record in your table. This search is fast if your table includes only a few contacts
but very slow if the table contains thousands of contact records collected over many
years. If you create an index on the City fi eld, Access 2007 can use the index to fi nd
more rapidly the records for the contacts in the city you specify.

Single-Field Indexes
Most of the indexes you’ll need to defi ne will probably contain the values from only a
single fi eld. Access uses this type of index to help narrow the number of records it has
to search whenever you provide search criteria on the fi eld—for example, City = Chicago
or PostalCode = 60633. If you have defi ned indexes for multiple fi elds and provided
search criteria for more than one of the fi elds, Access uses the indexes together (using a
technology called Rushmore from Microsoft FoxPro) to fi nd the rows you want quickly.
For example, if you have created one index on City and another on LastName, and you
ask for City = Bend and LastName = Conrad, Access uses the entries in the City index
that equal Bend and matches those with the entries in the LastName index that equal
Conrad. The result is a small set of pointers to the records that match both criteria.

Creating an index on a single fi eld in a table is easy. Open the Contacts table (which
you created earlier using a table template) in Design view, and select the fi eld for which
you want an index—in this case, City. Click the Indexed property box in the lower part
of the Table window, and then click the arrow to open the list of choices, as shown in
Figure 4-30.

SIDE OUT Additional Features in the Relationships Window

You can right-click any table in the Relationships window and then choose Table Design

from the shortcut menu to open that table in Design view. You can also click Relationship

Report in the Tools group of the Design contextual tab on the Ribbon to create a report

that prints what you laid out in the window.

 Adding Indexes 189

Ch
ap

te
r 4
Figure 4-30 You can use the Indexed property box to set an index on a single fi eld.

When you create a table from scratch (as you did earlier in this chapter for the Compa-
nies table), the default Indexed property setting for all fi elds except the primary key is
No. If you use a table template to create a table (as you did for the Contacts table in this
chapter), the template indexes fi elds that might benefi t from an index. If you followed
along earlier using a table template to build the Contacts table, you will fi nd that the
template built an index only for the ContactID and Zip/Postal Code fi elds. Any tables
created using a table template could obviously benefi t from some additional indexes.

If you want to set an index for a fi eld, Access 2007 offers two possible Yes choices. In
most cases, a given fi eld will have multiple records with the same value—perhaps you
have multiple contacts in a particular city or multiple products in the same product cat-
egory. You should select Yes (Duplicates OK) to create an index for this type of fi eld. By
selecting Yes (No Duplicates) you can have Access 2007 enforce unique values in any
fi eld by creating an index that doesn’t allow duplicates. Access 2007 always defi nes the
primary key index with no duplicates because all primary key values must be unique.

Note
You cannot defi ne an index using an OLE object or attachment fi eld.

Note
You cannot defi ne an index using an OLE object or attachment fi eld.

Chapter 4

190 Chapter 4 Creating Your Database and Tables
Multiple-Field Indexes
If you often provide multiple criteria in searches against large tables, you might want
to consider creating a few multiple-fi eld indexes. This helps Access 2007 narrow the
search quickly without having to match values from two separate indexes. For example,
suppose you often perform a search for contacts by last name and fi rst name. If you
create an index that includes both of these fi elds, Access can satisfy your query more
rapidly.

To create a multiple-fi eld index, you must open the Table window in Design view and
open the Indexes window by clicking the Indexes button in the Show/Hide group of the
Design contextual tab on the Ribbon. You can see the primary key index and the index
that you defi ned on City in the previous section as well as the index defi ned by the table
template (Zip/Postal Code). Each of these indexes comprises exactly one fi eld.

To create a multiple-fi eld index, move the insertion point to an empty row in the
Indexes window and type a unique name. In this example, you want a multiple-fi eld
index using the Last Name and First Name fi elds, so FullName might be a reasonable
index name. Select the Last Name fi eld in the Field Name column of this row. To add
the other fi eld, skip down to the next row and select First Name without typing a new
index name. When you’re done, your Indexes window should look like the one shown
in Figure 4-31.

To insert a row in the middle of the list in the Indexes window, right-click in the Index

Name column and then choose Insert Rows from the shortcut menu.

Figure 4-31 The FullName index includes the Last Name and First Name fi elds.

SIDE OUT Inserting New Rows in the Indexes Window

To insert a row in the middle of the list in the Indexes window, right-click in the Index

Name column and then choose Insert Rows from the shortcut menu.

 Setting Table Design Options 191

Ch
ap

te
r 4
You can remove an existing single-fi eld index by changing the Indexed property of a
fi eld to No. The only way to remove a multiple-fi eld index is via the Indexes window.
To remove a multiple-fi eld index, select the rows (by holding down the Ctrl key as you
click each row selector) that defi ne the index and then press Delete. Access 2007 saves
any index changes you make when you save the table defi nition.

Access 2007 can use a multiple-fi eld index in a search even if you don’t provide search
values for all the fi elds, as long as you provide search criteria for consecutive fi elds
starting with the fi rst fi eld. Therefore, with the FullName multiple-fi eld index shown
in Figure 4-31, you can search for last name or for last name and fi rst name. There’s
one additional limitation on when Access can use multiple-fi eld indexes: Only the last
search criterion you supply can be an inequality, such as >, >=, <, or <=. In other words,
Access can use the index shown in Figure 4-31 when you specify searches such as
these:

Last Name = "Smith"
Last Name > "Franklin"
Last Name = "Buchanan" And First Name = "Steven"
Last Name = "Viescas" And First Name >= "Bobby"

But Access will not use the FullName index shown in Figure 4-31 if you ask for

Last Name > "Davolio" And First Name > "John"

because only the last fi eld in the search (First Name) can be an inequality. Access also
will not use this index if you ask for

First Name = "John"

because the fi rst fi eld of the multiple-fi eld index (Last Name) is missing from the
search criterion.

 Setting Table Design Options
Now that you understand the basic mechanics of defi ning tables in your desktop data-
base, it’s useful to take a look at a few options you can set to customize how you work
with tables in Design view. Close any open tables so that all you see is the Navigation
Pane. Click the Microsoft Offi ce Button and then click Access Options to see all the cus-
tom settings offered.

You can fi nd the fi rst options that affect table design in the Advanced category as shown
in Figure 4-32. One option that we highly recommend you use is Use Four-Digit Year
Formatting, found in the General section. When you enable four-digit year formatting,
Access 2007 displays all year values in date/time formats with four digits instead of
two. This is important because when you see a value (in two-digit medium date format)
such as 15 MAR 12, you won’t be able to easily tell whether this is March 15, 1912 or
March 15, 2012. Although you can affect the display of some formats in your regional
settings in Control Panel, you won’t affect them all unless you set four-digit formatting
in Access.

Chapter 4

192 Chapter 4 Creating Your Database and Tables
Figure 4-32 You can fi nd settings that affect table design in the General section in the Advanced
category of the Access Options dialog box.

As you can see in Figure 4-32, you have two options under Use Four-Digit Year Format-
ting in the General section. If you select the This Database check box, the setting cre-
ates a property in the database you currently have open and affects only that database.
If you select the All Databases check box, the setting creates an entry in your Windows
registry that affects all databases that you open on your computer.

In the Current Database category of the Access Options dialog box, you can confi g-
ure an option that was introduced in Access 2000 called Name AutoCorrect that asks
Access to track and correct fi eld name references in queries, forms, and reports. If you
select the Track Name AutoCorrect Info check box in the Name AutoCorrrect Options
section, Access maintains a unique internal ID number for all fi eld names. This allows
you to use the Object Dependencies feature explained in the next chapter. It also allows
you to select the next check box, Perform Name AutoCorrect, as shown in Figure 4-33.

 Setting Table Design Options 193

Ch
ap

te
r 4
Figure 4-33 You can set Name AutoCorrect options in the Current Database category of the
Access Options dialog box.

If you select the Perform Name AutoCorrect check box, when you change a fi eld name
in a table, Access 2007 automatically attempts to propagate the name change to other
objects (queries, forms, and reports) that use the fi eld. However, Track Name AutoCor-
rect Info requires some additional overhead in all your objects, so it’s a good idea to
carefully choose names as you design your tables so that you won’t need to change
them later. Finally, if you select the Log Name AutoCorrect Changes check box, Access
2007 logs all changes it makes in a table called AutoCorrect Log. You can open this
table to verify the changes made by this feature. (Access doesn’t create the table until it
makes some changes.)

The next category that contains useful settings that affect table design is Object Design-
ers. Click that category to see the settings shown in Figure 4-34.

Chapter 4

194 Chapter 4 Creating Your Database and Tables
Figure 4-34 You can fi nd settings that affect table design in the Object Designers category of the
Access Options dialog box.

In the Table Design section, you can set the default fi eld type and the default fi eld size
for Text and Number fi elds. The Default Field Type setting allows you to choose the
default data type that Access 2007 selects when you type a new fi eld name in table
design and then tab to the Data Type column. When you select a data type of Text
(either because it is the default data type or you select the Text data type in a new fi eld),
Access will automatically set the length you select in the Default Text Field Size box.
When you select a data type of Number, Access sets the number size to your choice in
the Default Number Field Size box of Byte, Integer, Long Integer, Single, Double, Deci-
mal, or Replication ID. Use the AutoIndex On Import/Create box to defi ne a list of fi eld
name prefi xes or suffi xes for which Access automatically sets the Index property to Yes
(Duplicates OK). In the default list, for example, any fi eld that you defi ne with a name
that begins or ends with ID will automatically have an index.

If you select the Show Property Update Options Buttons check box, a smart tag appears
that offers to automatically update related properties in queries, forms, and reports
when you change certain fi eld properties in a table design. You can see more details
about this option in the next chapter.

You can fi nd the last option that affects how your tables are stored (and, in fact, all
objects in your database) in the Popular category, as shown in Figure 4-35. When you
create a new database in Access 2007, you actually have a choice of three different fi le

 Creating a Default Template for New Databases 195

Ch
ap

te
r 4
formats. These options also appear in the File New Database dialog box, but this setting
in the Access Options dialog box controls which fi le format appears as the default. You
should use the Access 2000 format if others with whom you might share this database
are still using Access version 9 (2000), or you should use the 2002-2003 format if oth-
ers sharing this database are still using Access version 10 (2002) or Access version 11
(2003). Selecting the Access 2007 format ensures maximum compatibility of what you
build in Access with future versions of the product.

Figure 4-35 You can select your default database fi le format in the Creating Databases section of
the Popular category in the Access Options dialog box.

Creating a Default Template for New Databases
Access 2007 introduces a new feature that allows you to create your own default data-
base template for use with all new blank databases. Rather than set options for each
new database after you create it, you can set your preferred options only one time and
have those settings apply to each new database. To accomplish this, you fi rst need to
open a new blank database from the Getting Started screen. Click the Blank Database
command on the Getting Started screen to display the Blank Database task pane on the
right, as shown in Figure 4-36.

Chapter 4

196 Chapter 4 Creating Your Database and Tables
Figure 4-36 The Blank Database task pane appears on the right when you click the Blank Database
command.

You must name this new database Blank in order for this procedure to work. Type Blank
in the File Name text box, and then click the Browse button to open the File New Data-
base dialog box. So that Access 2007 will use this template fi le for all new databases,
you must place this fi le in a specifi c subfolder in the Microsoft Offi ce folder. Navigate to
the following folder on your system drive by clicking the folder icons in the left pane of
the File New Database dialog box: \Program Files\Microsoft Offi ce\Templates\1033\
Access, as shown in Figure 4-37. This fi le path assumes a default installation of the 2007
Microsoft Offi ce system, so your exact fi le path might be different if you chose a custom
installation and selected a different installation path.

Click OK in the File New Database dialog box to return to the Getting Started screen.
If you followed the preceding instructions, the Blank Database task pane on the right
should look like Figure 4-38. The File Name text box says Blank.accdb, and the path to
the correct template location is displayed above the Create button.

 Creating a Default Template for New Databases 197

Ch
ap

te
r 4
Figure 4-37 Save the Blank.accdb fi le in the correct subfolder in the Microsoft Offi ce folder.

CAUTION!
If you are using Microsoft Windows Vista, you might not be able to save the Blank.accdb

database into the needed template folder. Windows Vista uses User Account Control,

which protects critical program folders. If your computer is connected to a domain, you

get a prompt dialog box and then you can save to the correct folder. You might need to

temporarily turn off User Account Control in order to save the database into the tem-

plate folder. If you are in a corporate network environment, you should ask your system

administrator for assistance with this procedure.

Click the Create button, and Access 2007 creates the new fi le and saves it in the appro-
priate template folder. By default, Access opens up a new blank table called Table1. You
do not need this table, so close it and do not save it.

Now that you have an empty database with no objects, open the Access Options dialog
box by clicking the Microsoft Offi ce Button and then Access Options. Select all the
options you want to set for any new databases in the various categories of the Access
Options dialog box.

CAUTION!

Chapter 4

198 Chapter 4 Creating Your Database and Tables
Figure 4-38 After you enter the correct name and select the correct location, you’re ready to cre-
ate your new database template.

Included on the companion CD is a database called Blank.accdb that has the Access
Options settings that we recommend for new databases. In the Current Database
category, in the Name AutoCorrect Options section, we cleared the Track Name Auto-
Correct Info check box. In the General section of the Advanced category, we selected
the Use Four-Digit Year Formatting and This Database check boxes. We left all other
options set to the defaults.

Note
You can also open the Visual Basic Editor (VBE) and select Options from the Tools menu

to select options that apply to Visual Basic in all new databases. In the Blank.accdb

 sample database, we selected the Require Variable Declaration check box. We will discuss

the VBE Options dialog box in detail in Chapter 19.

After you have defi ned all the settings you want, close the database and exit Access
2007. Each new blank database you create from the Getting Started screen will now
include all the settings you selected for the Blank.accdb fi le. To make revisions to those

Note
You can also open the Visual Basic Editor (VBE) and select Options from the Tools menu

to select options that apply to Visual Basic in all new databases. In the Blank.accdb

sample database, we selected the Require Variable Declaration check box. We will discuss

the VBE Options dialog box in detail in Chapter 19.

 Printing a Table Defi nition 199

Ch
ap

te
r 4
settings, open the Blank.accdb fi le in the template folder and make whatever modifi ca-
tions are necessary. Figure 4-39 shows our Blank.accdb fi le in the appropriate template
folder along with the other local database templates discussed at the beginning of this
chapter.

Figure 4-39 The Blank.accdb fi le must be located in the same folder as the local database
 templates.

Creating a custom blank database template saves you time by not having to continually
set your personal Access options and VBE options each time you create a new database.
In addition to this timesaver, you can also include specifi c code modules, forms, and
any other database objects with new databases. If, for example, you have some com-
mon functions and procedures stored in standard code modules that you use in all your
database fi les, you can include them in this Blank.accdb fi le. Instead of having to manu-
ally import these modules into all new databases, Access does all the work for you by
including them in new databases. We will discuss creating form templates in Chapter
12. You’ll learn about creating public functions in Chapter 19.

Printing a Table Defi nition
After you create several tables, you might want to print out their defi nitions to provide
a permanent paper record. You can do this by clicking Database Documenter in the
Analyze group of the Database Tools tab on the Ribbon. Access 2007 displays several
options in the Documenter dialog box, as shown in Figure 4-40.

Chapter 4

200 Chapter 4 Creating Your Database and Tables
Figure 4-40 You can select the objects you want to document in the Documenter dialog box.

You can select not only the types of objects you want to document but also which
objects you want to document. Click the Options button to select what you want
reported. For example, you can ask for the properties, relationships, and permissions
for a table; the names, data types, sizes, and properties for fi elds; and the names, fi elds,
and properties for indexes. Click OK in the Documenter dialog box to produce the
report and view it in Print Preview, as shown in Figure 4-41.

Figure 4-41 The Database Documenter previews its reports on your screen.

 Database Limitations 201

Ch
ap

te
r 4
Database Limitations
As you design your database, you should keep in mind the following limitations:

O A table can have up to 255 fi elds.

O A table can have up to 32 indexes.

Note
Keep in mind that defi ning relationships with Referential Integrity turned on creates one

additional index in each participating table that counts toward the 32-index limit per

table.

O A multiple-fi eld index can have up to 10 fi elds. The sum of the lengths of the fi elds
cannot exceed 255 bytes.

O A row in a table, excluding memo fi elds and ActiveX objects, can be no longer
than approximately 4 kilobytes.

O A memo fi eld can store up to 1 gigabyte of characters, but you can’t display a
memo larger than 64 kilobytes in a form or a datasheet.

Note
Clearly, if you try to store a 1-gigabyte memo (which requires 2 gigabytes of storage

because of double-byte character set support) or a 2-gigabyte ActiveX object in your

database fi le, your fi le will be full with the data from one record.

O An ActiveX object can be up to 2 gigabytes in size.

O There is no limit on the number of records in a table, but an Access 2007 database
cannot be larger than 2 gigabytes. If you have several large tables, you might need
to defi ne each one in a separate Access database and then attach them to the data-
base that contains the forms, reports, macros, and modules for your applications.
See Chapter 6, “Importing and Linking Data,” for details.

Now that you’ve started to get comfortable with creating databases and tables, you
can read the next chapter to learn how to make modifi cations to existing tables in a
database.

Note
Keep in mind that defi ning relationships with Referential Integrity turned on creates one

additional index in each participating table that counts toward the 32-index limit per

table.

Note
Clearly, if you try to store a 1-gigabyte memo (which requires 2 gigabytes of storage

because of double-byte character set support) or a 2-gigabyte ActiveX object in your

database fi le, your fi le will be full with the data from one record.

CHAPTER 5

Modifying Your Table Design
No matter how carefully you design your database, you can be sure that you’ll need
to change it at some later date. Here are some of the reasons you might need to

change your database.

O You no longer need some of the tables.

O You need to perform some new tasks that require not only creating new tables but
also inserting some linking fi elds in existing tables.

O You fi nd that you use some fi elds in a table much more frequently than others, so
it would be easier if those fi elds appeared fi rst in the table design.

O You no longer need some of the fi elds.

O You want to add some new fi elds that are similar to fi elds that already exist.

O You discover that some of the data you defi ned would be better stored as a dif-
ferent data type. For example, a fi eld that you originally designed to be all num-
bers (such as a U.S. ZIP Code) must now contain some letters (as in a Canadian
postal code).

O You have a number fi eld that needs to hold larger values or needs a different num-
ber of decimal places than you originally planned.

O You can improve your database design by splitting an existing table into two or
more tables using the Table Analyzer Wizard.

O You discover that the fi eld you defi ned as a primary key isn’t always unique, so
you need to change the defi nition of your primary key.

O You fi nd that some of your queries take too long to run and might execute more
quickly if you add an index to your table.

Before You Get Started . 204

Deleting Tables . 209

Renaming Tables . 211

Changing Field Names . 212

Moving Fields . 217

Inserting Fields . 220

Copying Fields . 222

Deleting Fields . 225

Changing Data Attributes . 225

Reversing Changes . 234

Using the Table Analyzer Wizard 234

Taking a Look at Lookup Properties 240

Working with Multi-Value Lookup Fields 245

Changing the Primary Key . 248

Compacting Your Database . 250

 203

Chapter 5

204 Chapter 5 Modifying Your Table Design
Note
The examples in this chapter are based on the tables and data in Housing.accdb and Con-
tacts.accdb on the companion CD included with this book and the Contact Tracking data-

base you built in Chapter 4, “Creating Your Database and Tables.” If you did not create

the Contact Tracking database, you can fi nd ContactTracking.accdb in the sample fi les

that you can use to follow along in this chapter. The results you see from the samples

you build in this chapter might not exactly match what you see in this book if you have

changed the sample data in the fi les. Also, all the screen images in this chapter were

taken on a Microsoft Windows Vista system with the display theme set to Blue, and Use

Windows-Themed Controls on Forms has been turned on in the sample databases.

This chapter takes a look at how you can make these changes easily and relatively pain-
lessly with Microsoft Offi ce Access 2007. If you want to follow along with the examples
in this chapter, you should fi rst create the Contact Tracking database described in
Chapter 4.

Note
You might have noticed that the Contacts table you defi ned for the Contact Tracking

database in Chapter 4 is quite different from the tblContacts table in the Conrad Systems

Contacts database on the companion CD. In this chapter, you’ll modify the Contacts table

you built in Chapter 4 so that it is more like the one on the companion CD. You’ll also

learn how to use the Table Analyzer Wizard to help you normalize an existing table that

contains data from several subjects.

Before You Get Started
Offi ce Access 2007 makes it easy for you to change the design of your database, even
when you already have data in your tables. You should, however, understand the poten-
tial impact of any changes you plan and take steps to ensure that you can recover your
previous design if you make a mistake. Here are some things to consider before you
make changes.

O Access 2007 does not automatically propagate changes that you make in tables
to any queries, forms, reports, macros, or modules. You must make changes to
dependent objects yourself, or confi gure Access to propagate the changes for you.
To do so, click the Microsoft Offi ce Button, click Access Options, and then in the
Current Database category, select the Perform Name AutoCorrect check box. See
“Setting Table Design Options” on page 39 for more details.

O You cannot change the data type of a fi eld that is part of a relationship between
tables. You must fi rst delete the relationship and then change the fi eld’s data type
and redefi ne the relationship.

Note
The examples in this chapter are based on the tables and data in Housing.accdb and Con-
tacts.accdb on the companion CD included with this book and the Contact Tracking data-

base you built in Chapter 4, “Creating Your Database and Tables.” If you did not create

the Contact Tracking database, you can fi nd ContactTracking.accdb in the sample fi les

that you can use to follow along in this chapter. The results you see from the samples

you build in this chapter might not exactly match what you see in this book if you have

changed the sample data in the fi les. Also, all the screen images in this chapter were

taken on a Microsoft Windows Vista system with the display theme set to Blue, and Use

Windows-Themed Controls on Forms has been turned on in the sample databases.

Note
You might have noticed that the Contacts table you defi ned for the Contact Tracking

database in Chapter 4 is quite different from the tblContacts table in the Conrad Systems

Contacts database on the companion CD. In this chapter, you’ll modify the Contacts table

you built in Chapter 4 so that it is more like the one on the companion CD. You’ll also

learn how to use the Table Analyzer Wizard to help you normalize an existing table that

contains data from several subjects.

 Before You Get Started 205

Ch
ap

te
r 5
O You cannot change the defi nition of any table that you have open in a query, a
form, or a report. You must close any objects that refer to the table you want to
change before you open that table in Design view. If you give other users access to
your database over a network, you won’t be able to change the table defi nition if
someone else has the table (or a query or form based on the table) open.

Before saving any changes that permanently alter or delete data in your database,

Access 2007 always prompts you for confi rmation and gives you a chance to cancel the

 operation.

Making a Backup Copy
The safest way to make changes to the design of your database is to make a backup
copy of the database before you begin. If you expect to make extensive changes to sev-
eral tables in your database, you should also make a copy of the .accdb fi le that contains
your database. You could use a utility such as Windows Explorer, but Access 2007
includes a handy feature for making backups easily. When you have the database open
that you want to back up, click the Microsoft Offi ce Button, click the Manage command,
and then click Back Up Database as shown in Figure 5-1. Access offers to create a copy
of your database with the current date appended to the fi le name.

Figure 5-1 The Back Up Database command creates a backup of your entire database fi le.

SIDE OUT Access Always Prompts You to Save Your Work

Before saving any changes that permanently alter or delete data in your database,

Access 2007 always prompts you for confi rmation and gives you a chance to cancel the

operation.

Chapter 5

206 Chapter 5 Modifying Your Table Design
If you want to change a single table, you can easily make a backup copy of that table
right in your database. Use the following procedure to copy any table—the structure and
the data together.

1. Open the database containing the table you want to copy. If the database is
already open, make sure the list of tables is showing in the Navigation Pane.
Click the top of the Navigation Pane to open the Navigation Pane menu and click
Object Type beneath Navigate To Category. Click the top of the Navigation Pane
again and then click Tables under Filter By Group, as shown in Figure 5-2, to
display only the tables contained in your database.

Figure 5-2 Click Object Type and Tables on the Navigation Pane menu to display only the
tables in your database.

2. Select the table you want to copy by clicking the table’s name or icon in the
Navigation Pane. The table name will be highlighted.

3. Click the Copy command in the Clipboard group on the Home tab of the Ribbon
as shown in Figure 5-3. This copies the entire table (structure and data) to the
Clipboard.

 Before You Get Started 207

Ch
ap

te
r 5
 Figure 5-3 Click the Copy command to copy a table from the Tables list.

4. Click the Paste command in the Clipboard group on the Home tab of the Ribbon.
Access opens the Paste Table As dialog box, shown in Figure 5-4. Type a new
name for your table. (When naming a backup copy, you might simply add Backup
and the date to the original table name, as shown in Figure 5-4.) The default
option is to copy both the structure and the data. (You also have the option of
copying only the table’s structure or of appending the data to another table.)

Figure 5-4 Enter the new name for the copied table in the Paste Table As dialog box.

Checking Object Dependencies
If you’re just starting out and learning Offi ce Access 2007 by reading this book
through from the beginning, you probably haven’t built anything but tables yet. In
Chapter 3 you learned that you can ask Access to show you what queries, forms, and
reports are dependent on each table, but the Object Dependencies command in Access
won’t provide very interesting results in a database with nothing but tables. You’ll fi nd
this tool invaluable after you have built dozens of objects and then need to make some
changes to your tables.

Chapter 5

208 Chapter 5 Modifying Your Table Design
As you learned in the previous chapter, you can select options to track and perform
Name AutoCorrect for objects by clicking the Microsoft Offi ce Button, clicking Access
Options, and then selecting the check boxes for these features in the Current Database
category. Access 2007 uses this AutoCorrect information not only to automatically
correct names but also to provide you with detailed information about which objects
depend on one another. If you’re about to make a change to a fi eld in a table, wouldn’t it
be good to know which queries, forms, and reports use that table before you make the
change? The Perform Name AutoCorrect option will help you out if you have selected
it, but it can’t always detect and fi x fi eld names when you have used them in an expres-
sion. You’ll learn more about creating expressions in Chapter 7, “Creating and Work-
ing with Simple Queries,” and in the chapters on using Microsoft Visual Basic later in
this book.

If you would like to see object dependencies in action on your computer, open one
of your own databases that contains tables, queries, forms, and reports, or open the
Conrad Systems Contacts sample database (Contacts.accdb) that you installed from
the companion CD. You can fi nd out which other objects depend on a particular object
(such as a table) by selecting the object that you’re planning to change in the Naviga-
tion Pane and then clicking Object Dependencies in the Show/Hide group on the Data-
base Tools tab of the Ribbon. If you haven’t selected the Track Name AutoCorrect Info
option, Access 2007 shows you the dialog box in Figure 5-5.

Figure 5-5 The Object Dependencies feature tells you it needs to turn on Track Name AutoCorrect
Info and examine all objects in your database.

Click OK to turn on Track Name AutoCorrect Info—the Object Dependencies com-
mand will take a few seconds or minutes to examine all your objects depending on the
number of objects you have in your database. Access shows you the result in the Object
Dependencies pane as shown in Figure 5-6. At the bottom of the Object Dependencies
pane in Figure 5-6, you can see a warning message that some objects were ignored.
Access displays this message if there are macros or modules present in your database
because macros and modules are not checked for object dependencies.

Notice that in many cases you will have to follow a chain of dependencies to fi nd all
the objects that might be affected by the change of a fi eld name in a table. For example,
in the Conrad Systems Contacts sample database, we use a query (qryContacts) rather
than the table (tblContacts) to provide records to the form that edits contact informa-
tion (frmContacts). If we were to scroll further down the Object Dependencies pane
looking for forms dependent on tblContacts, we would not fi nd the form frmContacts
listed.

 Deleting Tables 209

Ch
ap

te
r 5
Object Dependencies pane

Figure 5-6 The Object Dependencies pane shows you the list of objects that depend on the object
you selected in the Navigation Pane.

You can click the plus sign next to any object name to open an expanded list of depen-
dent objects as we did with qryContacts in Figure 5-6. Notice that we fi nd frmContacts
listed there as a dependent object of qryContacts, which is ultimately dependent on the
table we’re thinking about changing. When you fi nd an object that you want to investi-
gate further, you can click the object name in the Object Dependencies pane to open it
in Design view.

As you can imagine, this command can make maintaining your application much
 easier. Even if you have selected the Perform Name AutoCorrect option, you can use
this tool after you have modifi ed your table to verify that the changes you expect
were made.

Deleting Tables
You probably won’t need to delete an entire table very often. However, if you set up your
application to collect historical information—for example, total product sales by year—
you’ll eventually want to delete information that you no longer need. You also might

Chapter 5

210 Chapter 5 Modifying Your Table Design
want to delete a table if you’ve made extensive changes that are incorrect and it would
be easier to delete your work and restore the table from a backup.

To delete a table, select it in the Navigation Pane and press the Delete key (or click the
Delete command in the Records group on the Home tab of the Ribbon). Access 2007
opens the dialog box shown in Figure 5-7, which asks you to confi rm or cancel the
delete operation.

Even if you mistakenly confi rm the deletion, you can click the Undo command on the

Quick Access Toolbar to get your table back. In fact, you can undo up to the last 20

changes that you made in a window—either in the table’s Design view or in the Naviga-

tion Pane. However, after you save changes to a table design, you will not be able to

undo those changes.

Figure 5-7 This dialog box gives you the option of canceling the deletion of a table.

You can use the Cut command in the Clipboard group on the Home tab on the Ribbon to

delete a table. This method moves a copy of the table to the Clipboard. After you close

the database in which you’ve been working, you can open another database and paste

the table from the Clipboard into it.

If you have defi ned relationships between the table you want to delete and other tables,
Access 2007 displays another dialog box that alerts you and asks whether you want to
also delete the relationships. If you click Yes, Access deletes all relationships between
any other table and the table you want to delete and then deletes the table. (You can’t
have a relationship defi ned to a nonexistent table.) Even at this point, if you fi nd you
made a mistake, you can click Undo on the Quick Access Toolbar to restore both the
table and all its relationships.

SIDE OUT Access Is Forgiving When You Delete Something by Mistake

Even if you mistakenly confi rm the deletion, you can click the Undo command on the

Quick Access Toolbar to get your table back. In fact, you can undo up to the last 20

changes that you made in a window—either in the table’s Design view or in the Naviga-

tion Pane. However, after you save changes to a table design, you will not be able to

undo those changes.

SIDE OUT Using Cut to Move an Object to the Clipboard

You can use the Cut command in the Clipboard group on the Home tab on the Ribbon to

delete a table. This method moves a copy of the table to the Clipboard. After you close

the database in which you’ve been working, you can open another database and paste

the table from the Clipboard into it.

 Renaming Tables 211

Ch
ap

te
r 5
CAUTION!
When you undo a table deletion, Access 2007 might not restore all the previously

defi ned relationships between the table and other tables. You should verify the table

relationships in the Relationships window.

Renaming Tables
If you keep transaction data (such as receipts, deposits, or checks written), you might
want to save that data at the end of each month in a table with a unique name. One way
to save your data is to rename the existing table (perhaps by adding a date to the name).
You can then create a new table (perhaps by making a copy of the backup table’s struc-
ture) to start collecting information for the next month.

To rename a table, right-click on it in the Navigation Pane and click Rename on the
shortcut menu. Access 2007 places the name in Edit mode in the Navigation Pane so
that you can type a new name, as shown in Figure 5-8. Type the new name, and press
Enter to save it.

Figure 5-8 After clicking Rename on the shortcut menu, you can rename a table in the
Navigation Pane.

You can also edit the name of the object by selecting it in the Navigation Pane and press-

ing the F2 key. This puts the object name in Edit mode so that you can type a new name.

C U O !

SIDE OUT Using the Keyboard to Rename an Object

You can also edit the name of the object by selecting it in the Navigation Pane and press-

ing the F2 key. This puts the object name in Edit mode so that you can type a new name.

Chapter 5

212 Chapter 5 Modifying Your Table Design
If you enter the name of a table that already exists, Access 2007 displays a dialog box
that asks whether you want to replace the existing table, as shown in Figure 5-9. If you
click Yes, Access deletes the old table before performing the renaming operation. Even
if you replace an existing table, you can undo the renaming operation by clicking the
Undo command on the Quick Access Toolbar.

Figure 5-9 This dialog box asks whether you want to replace an existing table with the same name.

You can use the techniques you just learned for copying, renaming, and deleting tables

to copy, rename, and delete queries, forms, reports, macros, or modules.

Changing Field Names
Perhaps you misspelled a fi eld name when you fi rst created one of your tables. Or per-
haps you’ve decided that one of the fi eld names isn’t descriptive enough. As you learned
in Chapter 4, you can change the displayed name for a fi eld by setting its Caption
property. But you won’t necessarily want the hassle of giving the fi eld a caption every
time it appears in a query, a form, or a report. Fortunately, Access 2007 makes it easy to
change a fi eld name in a table—even if you already have data in the table.

Note
The next several examples in this chapter show you how to change the Contacts table

that you created in the previous chapter to more closely match the tblContacts table in

the Conrad Systems Contacts sample database.

You created the fi rst draft of the Contacts table by using a table template. Now you need
to make a few changes so that it will hold all the data fi elds that you need for your appli-
cation. The table template does not give you the option to rename the fi elds before creat-
ing them, but now you decide to rename one of the fi elds before beginning work on the
rest of your application.

SIDE OUT Renaming Other Access Objects

You can use the techniques you just learned for copying, renaming, and deleting tables

to copy, rename, and delete queries, forms, reports, macros, or modules.

Note
The next several examples in this chapter show you how to change the Contacts table

that you created in the previous chapter to more closely match the tblContacts table in

the Conrad Systems Contacts sample database.

 Changing Field Names 213

Ch
ap

te
r 5
Renaming a fi eld is easy. For example, the table template created a fi eld called Address,
but you’ve decided that you want to have two address fi elds because a contact could
have a work address and a home address in this database. It makes sense to change
the fi eld name to refl ect the actual data you intend to store in the fi eld, so let’s change
Address to WorkAddress. Open the Contacts table in the Contact Tracking database in
Design view, use the mouse to move the insertion point to the beginning of the Address
fi eld name, and then type Work. You can also click in the fi eld name, use the arrow keys
to position the insertion point just before the letter A, and type Work. As you learned in
the previous chapter, we recommend that you not have any spaces in your fi eld names,
so do not put a space between the words Work and Address. Your fi eld should now be
called WorkAddress. The table template also chose the Memo data type for this fi eld,
which is not necessary. Tab to the Data Type column, click the small arrow in the col-
umn (or press Alt+Down Arrow) to open the list, and select Text from the list of data
types. While you’re at it, press F6 to move to the Field Properties section of the window,
tab to the Field Size property, and change the fi eld size to 255. Then, tab down to the
Caption property, and change the fi eld caption to Work Address. Your result should
look like Figure 5-10.

Figure 5-10 You can change a fi eld name, a fi eld data type, and a fi eld caption in Design view.

Chapter 5

214 Chapter 5 Modifying Your Table Design
Comparing the Two Contacts Tables

As you follow along with the examples in this chapter, it might be useful to compare the

structure of the Contacts table you built in Chapter 4 and the actual tblContacts table in

the Conrad Systems Contacts sample database. If you exactly followed the instructions

in Chapter 4, your Contacts table in the Contact Tracking database should look like

Table 5-1. You can see the actual design of tblContacts in Table 5-2.

Table 5-1 Contacts

Field Name Type Length

ContactID AutoNumber

Company Text 255

Last Name Text 255

First Name Text 255

E-mail Address Text 255

Job Title Text 255

Business Phone Text 255

Home Phone Text 255

Mobile Phone Text 255

Fax Number Text 255

Address Text 255

City Text 255

State/Province Text 255

Zip/Postal Code Text 255

Country/Region Text 255

Web Page Hyperlink

Notes Memo

Attachments Attachment

Comparing the Two Contacts Tables

As you follow along with the examples in this chapter, it might be useful to compare the

structure of the Contacts table you built in Chapter 4 and the actual tblContacts table in

the Conrad Systems Contacts sample database. If you exactly followed the instructions

in Chapter 4, your Contacts table in the Contact Tracking database should look like

Table 5-1. You can see the actual design of tblContacts in Table 5-2.

Table 5-1 Contacts

Field Name Type Length

ContactID AutoNumber

Company Text 255

Last Name Text 255

First Name Text 255

E-mail Address Text 255

Job Title Text 255

Business Phone Text 255

Home Phone Text 255

Mobile Phone Text 255

Fax Number Text 255

Address Text 255

City Text 255

State/Province Text 255

Zip/Postal Code Text 255

Country/Region Text 255

Web Page Hyperlink

Notes Memo

Attachments Attachment

 Changing Field Names 215

Ch
ap

te
r 5
Table 5-2 tblContacts

Field Name Type Length

ContactID Auto Number

LastName Text 50

FirstName Text 50

MiddleInit Text 1

Title Text 10

Suffi x Text 10

ContactType Text 50

BirthDate Date/Time

DefaultAddress Integer

WorkAddress Text 255

WorkCity Text 50

WorkStateOrProvince Text 20

WorkPostalCode Text 20

WorkCountry Text 50

WorkPhone Text 30

WorkExtension Text 20

WorkFaxNumber Text 30

HomeAddress Text 255

HomeCity Text 50

HomeStateOrProvince Text 20

HomePostalCode Text 20

HomeCountry Text 50

HomePhone Text 30

MobilePhone Text 30

EmailName Hyperlink

Website Hyperlink

Photo Attachment

SpouseName Text 75

SpouseBirthDate Date/Time

Notes Memo

CommissionPercent Number Double

Inactive Yes/No

As you can see, we have a lot of work to do to make the two tables identical: rename

fi elds, move fi elds, insert fi elds, add new fi elds, and change data types and lengths.

Table 5-2 tblContacts

Field Name Type Length

ContactID Auto Number

LastName Text 50

FirstName Text 50

MiddleInit Text 1

Title Text 10

Suffi x Text 10

ContactType Text 50

BirthDate Date/Time

DefaultAddress Integer

WorkAddress Text 255

WorkCity Text 50

WorkStateOrProvince Text 20

WorkPostalCode Text 20

WorkCountry Text 50

WorkPhone Text 30

WorkExtension Text 20

WorkFaxNumber Text 30

HomeAddress Text 255

HomeCity Text 50

HomeStateOrProvince Text 20

HomePostalCode Text 20

HomeCountry Text 50

HomePhone Text 30

MobilePhone Text 30

EmailName Hyperlink

Website Hyperlink

Photo Attachment

SpouseName Text 75

SpouseBirthDate Date/Time

Notes Memo

CommissionPercent Number Double

Inactive Yes/No

As you can see, we have a lot of work to do to make the two tables identical: rename

fi elds, move fi elds, insert fi elds, add new fi elds, and change data types and lengths.

Chapter 5

216 Chapter 5 Modifying Your Table Design
Before we go any further, you should rename the remaining fi elds and add captions
so that they more closely match the fi elds in the tblContacts table in the Conrad
 Systems Contacts sample database. Following the preceding steps for renaming fi elds
and changing the Caption property, go through each of the fi elds and change them
as follows:

Old Name New Name Caption

Last Name LastName Last Name

First Name FirstName First Name

E-mail Address EmailName Email Name

Job Title Title

Business Phone WorkPhone Work Phone

Home Phone HomePhone Home Phone

Mobile Phone MobilePhone Mobile Phone

Fax Number WorkFaxNumber Fax Number

City WorkCity Work City

State/Province WorkStateOrProvince State/Province

Zip/Postal Code WorkPostalCode Postal Code

Country/Region WorkCountry Work Country

Web Page Website

Attachments Photo

Your table should now look like Figure 5-11. Click the Save button on the Quick Access
Toolbar to save the changes to the table.

Offi ce Access 2007 provides enhanced capabilities to move not only your data but also

your entire application to a Microsoft Windows SharePoint server. You’ll learn more

about these features in Chapter 22, “Working with Windows SharePoint Services.” When

you move or copy an Access table to a Windows SharePoint server, Windows SharePoint

Services stores the data in an object called a list. One shortcoming of Windows

 SharePoint Services lists is the fi elds do not have a Caption property, so a Windows

SharePoint Services list always displays the fi eld name for a column of data. Because

Microsoft is emphasizing the new Windows SharePoint Services features in Access 2007,

all the table templates use spaces in the fi eld names to make them more readable. As

you’ll learn later in Part 7, “Designing an Access Project,” the Conrad Systems Contacts

sample database is designed for you to easily migrate to SQL Server, not Windows

 SharePoint Services. If your application is more likely to upsize to SQL Server, you should

consider not using spaces in your fi eld names so that you won’t be forced to include

bracket or quote delimiters in your references to these fi eld names.

SIDE OUT Why the Field Names Have Spaces in the Table Templates

Offi ce Access 2007 provides enhanced capabilities to move not only your data but also

your entire application to a Microsoft Windows SharePoint server. You’ll learn more

about these features in Chapter 22, “Working with Windows SharePoint Services.” When

you move or copy an Access table to a Windows SharePoint server, Windows SharePoint

Services stores the data in an object called a list. One shortcoming of Windows

SharePoint Services lists is the fi elds do not have a Caption property, so a Windows

SharePoint Services list always displays the fi eld name for a column of data. Because

Microsoft is emphasizing the new Windows SharePoint Services features in Access 2007,

all the table templates use spaces in the fi eld names to make them more readable. As

you’ll learn later in Part 7, “Designing an Access Project,” the Conrad Systems Contacts

sample database is designed for you to easily migrate to SQL Server, not Windows

SharePoint Services. If your application is more likely to upsize to SQL Server, you should

consider not using spaces in your fi eld names so that you won’t be forced to include

bracket or quote delimiters in your references to these fi eld names.

 Moving Fields 217

Ch
ap

te
r 5
Figure 5-11 After renaming the fi elds in the Contacts table created from the template, it is begin-
ning to look more like the table in the Conrad Systems Contacts sample database.

Moving Fields
You might want to move a fi eld in a table defi nition for a number of reasons. Perhaps
you made an error as you entered or changed the information in a table. Or perhaps
you’ve discovered that you’re using some fi elds you defi ned at the end of a table quite
frequently in forms or reports, in which case it would be easier to fi nd and work with
those fi elds if they were nearer the beginning of your table defi nition.

The actual sequence of fi eld defi nitions in a table is not all that important. In the rela-

tional database model, there really is no defi ned sequence of fi elds in a row or rows in a

table. Access 2007, like most databases that implement the relational model, does allow

you to defi ne a fi eld order when you create a table. This order, or sequence of fi elds,

becomes the default order you see in a table datasheet or in a list of fi eld names when

you’re designing a query, form, or report.

We like to at least group fi elds together in some reasonable order so that they’re easy

to fi nd, and we like to place the primary key fi elds at the top of the list. There’s really no

hard and fast rule that you must follow for your database to work effi ciently.

SIDE OUT How Important Is the Sequence of Fields in Your Table?

The actual sequence of fi eld defi nitions in a table is not all that important. In the rela-

tional database model, there really is no defi ned sequence of fi elds in a row or rows in a

table. Access 2007, like most databases that implement the relational model, does allow

you to defi ne a fi eld order when you create a table. This order, or sequence of fi elds,

becomes the default order you see in a table datasheet or in a list of fi eld names when

you’re designing a query, form, or report.

We like to at least group fi elds together in some reasonable order so that they’re easy

to fi nd, and we like to place the primary key fi elds at the top of the list. There’s really no

hard and fast rule that you must follow for your database to work effi ciently.

Chapter 5

218 Chapter 5 Modifying Your Table Design
You can use the mouse to move one or more rows. Simply follow these steps.

1. To select a row you want to move, click its row selector.

If you want to move multiple contiguous rows, click the row selector for the fi rst
row in the group and scroll until you can see the last row in the group. Hold
down the Shift key and click the row selector for the last row in the group. The
fi rst and last rows and all rows in between will be selected. Release the Shift key.

2. Click and drag the row selector(s) for the selected row(s) to a new location. A
small shaded box attaches to the bottom of the mouse pointer while you’re
dragging, and a highlighted line will appear, indicating the position to which the
row(s) will move when you release the mouse button.

In the design for the tblContacts table in the Conrad Systems Contacts database, the
EmailName fi eld appears after all the address fi elds and before the Website fi eld. It cer-
tainly makes sense to place all the Web-related fi elds together. Select the EmailName
fi eld by clicking its row selector. Click the row selector again, and drag down until the
line between the WorkCountry fi eld and the Website fi eld is highlighted, as shown in
Figure 5-12.

Figure 5-12 You can drag the EmailName fi eld to a new position between the WorkCountry and
Website fi elds.

 Moving Fields 219

Ch
ap

te
r 5

When it comes to moving fi elds, you might fi nd it easier to use a combination of mouse

and keyboard methods. Use the mouse to select the row or rows you want to move. Then

activate Move mode by pressing Ctrl+Shift+F8, and use the arrow keys to position the

row(s). Press Esc to deactivate Move mode. As you experiment with Access 2007, you’ll

discover more than one way to perform many tasks, and you can choose the techniques

that work the best for you.

In Figure 5-13, the fi elds are positioned correctly.

Figure 5-13 The EmailName fi eld is now correctly placed.

In this exercise, we’ll move a couple of additional fi elds to make the design of Contacts
more similar to tblContacts. In the tblContacts table, the HomePhone and MobilePhone
fi elds appear just before the EmailName fi eld. Click the row selector for HomePhone,
hold down the Shift key, and click the row selector for MobilePhone to select both
fi elds. Drag and drop the two fi elds before the EmailName fi eld. Now that you’ve moved
HomePhone and MobilePhone out of the way, you can select both WorkPhone and
WorkFaxNumber and drag them to where they belong after the WorkCountry fi eld.
Finally, move the Notes fi eld after the Photo fi eld. After you’ve done this, your table
should look like Figure 5-14.

SIDE OUT Using the Keyboard Instead of the Mouse in Table Design

When it comes to moving fi elds, you might fi nd it easier to use a combination of mouse

and keyboard methods. Use the mouse to select the row or rows you want to move. Then

activate Move mode by pressing Ctrl+Shift+F8, and use the arrow keys to position the

row(s). Press Esc to deactivate Move mode. As you experiment with Access 2007, you’ll

discover more than one way to perform many tasks, and you can choose the techniques

that work the best for you.

Chapter 5

220 Chapter 5 Modifying Your Table Design
Figure 5-14 After moving several fi elds, the sequence of fi elds in your Contacts table is similar to
that in tblContacts.

Inserting Fields
Perhaps one of the most common changes you’ll make to your database is to insert
a new fi eld in a table. Up until now, we’ve renamed and moved the available fi elds to
more closely match tblContacts. If you take a look at the comparison of the two tables
again (Tables 5-1 and 5-2 on pages 214 and 215), you can see that we need to add sev-
eral more fi elds. Now you’re ready to insert fi elds to store the middle initial, suffi x,
contact type, default address indicator, and more. As you go through adding these new
fi elds, be sure to enter a description for each new fi eld as well as the existing fi elds.

First, select the row or move your insertion point to the row that defi nes the fi eld after
the point where you want to insert the new fi eld. In this case, if you want to insert a
fi eld for the middle initial between the FirstName and Title fi elds, place the insertion
point anywhere in the row that defi nes the Title fi eld. You can also select the entire row
by using the arrow keys to move to the row and then pressing Shift+Spacebar or by
clicking the row selector. Next, click the Design contextual tab, which is located below
Table Tools on the Ribbon. Finally, click the Insert Rows command in the Tools group,
as shown in Figure 5-15. (You can also click a fi eld row and press the Insert key to
insert a row above your selection.)

 Inserting Fields 221

Ch
ap

te
r 5
Figure 5-15 The Insert Rows command inserts a new row above a selected row or above the row in
which the insertion point is located.

Access 2007 adds a blank row that you can use to defi ne your new fi eld. Type the defi ni-
tion for the MiddleInit fi eld. Choose the Text data type, and set the Field Size property
to 1. Now move down to the WorkAddress fi eld, and insert another row above it. Enter
a Suffi x fi eld that has the Text data type with a fi eld size of 10. Do it one more time and
insert a ContactType fi eld between Suffi x and WorkAddress, set its data type to Text,
and set its length to 50. Insert a fi eld between ContactType and WorkAddress, name it
BirthDate, and set its data type to Date/Time. Insert another fi eld between BirthDate
and WorkAddress, name it DefaultAddress, set its data type to Number, and set the
fi eld size to Integer. The actual Conrad Systems Contacts application uses this fi eld to
indicate whether the work or home address is the default mailing address.

Move down to WorkFaxNumber and insert a fi eld above it. Enter a fi eld name of
WorkExtension, set its data type to Text, and set the fi eld size to 20. Now move down to
the bottom of the fi eld list and insert another new fi eld above Notes. Enter a fi eld name
of SpouseName, set its data type to Text, and set the fi eld size to 75. Insert another row
between the SpouseName and Notes fi elds, enter a fi eld name of SpouseBirthDate, and
set its data type to Date/Time. Move to the blank row beyond Notes (you can use an
existing blank row to add a fi eld at the end), and create a fi eld named CommissionPer-
cent with a data type of Number and a fi eld size of Double. Finally, move down to the
empty row below CommissionPercent, create a new fi eld named Inactive, and set its
data type to Yes/No.

At this point, your Table window in Design view should look something like the one
shown in Figure 5-16. (We entered information in the Description properties of all
fi elds we’re going to keep. You can change your descriptions to match the fi gure.) Don’t
worry about setting other properties just yet. As you can see, we are getting closer to the
exact design specifi cations of tblContacts in the Conrad Systems Contacts database, but
we still have more things to change.

Chapter 5

222 Chapter 5 Modifying Your Table Design
Figure 5-16 The Contacts table with additional fi elds inserted and descriptions defi ned.

You can move the insertion point between the upper part and the lower part of any

Table or Query window in Design view by pressing F6.

Copying Fields
As you create table defi nitions, you might fi nd that several fi elds in your table are simi-
lar. Rather than enter each of the fi eld defi nitions separately, you can enter one fi eld
defi nition, copy it, and then paste it as many times as necessary.

To fi nish defi ning our Contacts table, we need fi ve additional fi elds—HomeAddress,
HomeCity, HomeStateOrProvince, HomePostalCode, and HomeCountry. You could cer-
tainly insert a new row and type all the properties as you just did in the previous sec-
tion, but why not copy a fi eld that is similar and make minor changes to it?

SIDE OUT Using the Keyboard to Move Between Windows

You can move the insertion point between the upper part and the lower part of any

Table or Query window in Design view by pressing F6.

 Copying Fields 223

Ch
ap

te
r 5
For this part of the exercise, select the row for the WorkAddress fi eld defi nition by
clicking the row selector at the left of the row. Click the Copy command in the Clip-
board group on the Home tab, as shown in Figure 5-17.

Figure 5-17 Select the WorkAddress fi eld and click the Copy command on the Home tab of the
Ribbon to copy the fi eld to the Clipboard.

Move the insertion point to the row that should follow the row you’ll insert. (In this
case, move the insertion point to the HomePhone fi eld, which should follow your new
fi eld.) Insert a blank row by clicking Insert Rows in the Tools group of the Design
contextual tab below Table Tools on the Ribbon. (In this procedure you switch back
and forth between the Home tab and the Design contextual tab.) Select the new row
by clicking the row selector. Click the Paste command in the Clipboard group on the
Home tab of the Ribbon, as shown in Figure 5-18.

Figure 5-18 You can paste the copied WorkAddress fi eld into a new blank row.

Chapter 5

224 Chapter 5 Modifying Your Table Design
CAUTION!
If you click the Paste command when a row containing data is selected, the copied row

will replace the selected row. Should you make this replacement in error, click the Undo

command on the Quick Access Toolbar to restore the original row.

You can use the Paste command repeatedly to insert a copied row more than once.
Remember to change both the name and the description of the resulting fi eld or fi elds
before you save the modifi ed table defi nition. In this case, it’s a simple matter to change
the name of the copied row from WorkAddress to HomeAddress and to correct the
description and caption accordingly. Note that this procedure also has the benefi t of
copying any formatting, default value, or validation rule information.

If you’re careful, you don’t actually have to insert a blank row to paste a fi eld defi nition
from the Clipboard. You can also copy and paste multiple fi elds at a time. After you fi x
the HomeAddress fi eld name and description in the upper part of the window and cap-
tion in the lower part of the window, select the WorkCity fi eld, hold down the Shift key,
and select the WorkCountry fi eld. Click the Copy command to copy all four fi elds to
the Clipboard. Move down to the HomePhone fi eld again and click in the row but do not
select the row. Click the Paste button in the Clipboard group of the Home tab to insert
the four fi elds just above HomePhone. Change the name of the fi rst one to HomeCity,
the second to HomeStateOrProvince, the third to HomePostalCode, and the fourth to
HomeCountry and correct the descriptions and captions. You should now have a table
that’s almost identical to the tblContacts table in the Conrad Systems Contacts sample
database as shown in Figure 5-19. Be sure to save your changed table.

Figure 5-19 The Contacts fi eld list is now almost identical to tblContacts.

CAUTION!

 Changing Data Attributes 225

Ch
ap

te
r 5
Deleting Fields
Removing unwanted fi elds is easy. With the Table window open in Design view, select
the fi eld that you want to delete by clicking the row selector. You can extend the selec-
tion to multiple contiguous fi elds by holding down the Shift key and pressing the Up
and Down Arrow keys to select multiple rows. You can also select multiple contiguous
rows by clicking the row selector of the fi rst row and, without releasing the mouse but-
ton, dragging up or down to select all the rows you want. After you select the appropri-
ate fi elds, click Delete Rows in the Tools group of the Design tab below Table Tools on
the Ribbon. Or, press the Delete key to delete the selected fi elds.

We have one extra fi eld in our current Contacts table that we do not need—the Com-
pany fi eld that was created by the table template. (Remember that in Chapter 4 you
created a Company Contacts table to link contacts to their respective companies.) To
delete this fi eld, click the row selector next to the Company fi eld and then click the
Delete Rows button in the Tools group of the Design tab on the Ribbon. Your Contacts
table now matches the tblContacts table from the Conrad Systems Contacts database in
terms of the correct number of fi elds and fi eld names. Save these latest changes to the
Contacts table by clicking the Save button on the Quick Access Toolbar.

If a table contains one or more rows of data, Access displays a warning message when
you delete fi eld defi nitions in Design view, as shown in Figure 5-20. Click No if you
think you made a mistake. Click Yes to proceed with the deletion of the fi elds and the
data in those fi elds. Keep in mind that you can still undo this change up to the point
that you save the table.

Figure 5-20 This dialog box asks you to confi rm a fi eld deletion.

If you want to test this out in the sample table you have been building, make sure you
have saved your latest changes and then switch to Datasheet view by clicking the small
arrow below the View button in the Views group on the Home tab and then clicking
Datasheet View. Type your name in the Last Name and First Name fi elds and switch
back to Design view by clicking the small arrow below the View button again. Try delet-
ing any fi eld in the design, and Access will warn you that you may be deleting some
data as well.

Changing Data Attributes
As you learned in the previous chapter, Access 2007 provides a number of different
data types. These data types help Access work more effi ciently with your data and also
provide a base level of data validation; for example, you can enter only numbers in a
Number or Currency fi eld.

Chapter 5

226 Chapter 5 Modifying Your Table Design
When you initially design your database, you should match the data type and length
of each fi eld to its intended use. You might discover, however, that a fi eld you thought
would contain only numbers (such as a U.S. ZIP Code) must now contain some letters
(perhaps because you’ve started doing business in Canada). You might fi nd that one or
more number fi elds need to hold larger values or a different number of decimal places.
Access allows you to change the data type and length of many fi elds, even after you’ve
entered data in them.

Changing Data Types
Changing the data type of a fi eld in a table is simple. Open the table in Design view,
click in the Data Type column of the fi eld defi nition you want to change, click the arrow
button at the right to see the available choices, and select a new data type. You cannot
convert an OLE Object, an Attachment, or a ReplicationID data type to another data
type. With several limitations, Access can successfully convert every other data type to
any other data type, even when you have data in the table. Table 5-3 shows you the pos-
sible conversions and potential limitations when the table contains data.

CAUTION!
When the fi eld contents don’t satisfy the limitations noted in Table 5-3, Access 2007

deletes the fi eld contents (sets it to Null) when you save the changes.

Table 5-3 Limitations on Converting One Data Type to Another

Convert To From Limitations

Text Memo Access truncates text longer than 255 characters.

Hyperlink Might lose some data if the hyperlink string is lon-
ger than 255 characters.

Number, except
ReplicationID

No limitations.

AutoNumber No limitations except ReplicationID.

Currency No limitations.

Date/Time No limitations.

Yes/No Yes (–1) converts to Yes; No (0) converts to No.

Memo Text No limitations.

Hyperlink No limitations.

Number, except
ReplicationID

No limitations.

AutoNumber No limitations.

C U O !

 Changing Data Attributes 227

Ch
ap

te
r 5
Convert To From Limitations

Memo Currency No limitations.

Date/Time No limitations.

Yes/No Yes (–1) converts to Yes; No (0) converts to No.

Hyperlink Text If the text contains a valid hyperlink string consisting
of a display name, a # delimiter, a valid link address,
a # delimiter, and optional bookmark and ScreenTip,
Access changes the data type without modifying
the text. If the text contains only a valid link address,
Access surrounds the address with # delimiters to
form the hyperlink fi eld. Access recognizes strings
beginning with http://, ftp://, mailto:, news:,
\\servername, and d:\ as link addresses. Access also
assumes that a text string in the form text@text is an
e-mail address, and it adds mailto: to the beginning
of the string before converting it. If Access does
not recognize the text as a link, it converts the text
to [text]#http://[text]#, where [text] is the original
contents of the fi eld; the result is probably not a
valid link address.

Memo Same restrictions as converting from Text.

Number, except
ReplicationID

Possible, but Access converts the number to a text
string in the form [number]#http://[number]#,
where [number] is the text conversion of the original
numeric value; the result is probably not a valid link
address.

AutoNumber Possible, but Access converts the AutoNumber to
a text string in the form [number]#http://[number],
where [number] is the text conversion of the original
AutoNumber; the result is probably not a valid link
address.

Currency Possible, but Access converts the currency value to
a text string in the form [currency]#http://[currency],
where [currency] is the text conversion of the origi-
nal currency value; the result is probably not a valid
link address.

Date/Time Possible, but Access converts the date/time to a text
string in the form [date/time]#http://[date/time]#,
where [date/time] is the text conversion of the
original date or time value; the result is probably not
a valid link address.

Yes/No Possible, but Access converts the yes/no to a text
string in the form [yes/no]#http://[yes/no], where
[yes/no] is the text conversion of the original yes
(–1) or no (0) value; the result is probably not a valid
link address.

Chapter 5

228 Chapter 5 Modifying Your Table Design
Convert To From Limitations

Number Text Text must contain only numbers and valid separa-
tors. The number value must be within the range for
the Field Size property.

Memo Memo must contain only numbers and valid separa-
tors. The number value must be within the range for
the Field Size property.

Hyperlink Not possible.

Number (differ-
ent fi eld size or
precision)

Number must not be larger or smaller than can be
contained in the new fi eld size. If you change preci-
sion, Access might round the number.

AutoNumber The number value must be within the range for the
Field Size property.

Currency Number must not be larger or smaller than can be
contained in the Field Size property.

Date/Time If the Field Size is Byte, the date must be between
April 18, 1899, and September 11, 1900. If the new
Field Size is Integer, the date must be between April
13, 1810, and September 16, 1989. For all other fi eld
sizes, there are no limitations.

Yes/No Yes (–1) converts to –1; No (0) converts to 0.

AutoNumber Text Not possible if the table contains data.

Memo Not possible if the table contains data.

Hyperlink Not possible.

Number Not possible if the table contains data.

Currency Not possible if the table contains data.

Date/Time Not possible if the table contains data.

Yes/No Not possible if the table contains data.

Currency Text Text must contain only numbers and valid
 separators.

Memo Memo must contain only numbers and valid
 separators.

Hyperlink Not possible.

Number, except
Replication ID

No limitations.

AutoNumber No limitations.

Date/Time No limitations, but value might be rounded.

Yes/No Yes (–1) converts to $1; No (0) converts to $0.

 Changing Data Attributes 229

Ch
ap

te
r 5
Convert To From Limitations

Date/Time Text Text must contain a recognizable date and/or time,
such as 11-Nov-08 5:15 PM.

Memo Memo must contain a recognizable date and/or
time, such as 11-Nov-08 5:15 PM.

Hyperlink Not possible.

Number, except
Replication ID

Number must be between –657,434 and
2,958,465.99998843.

AutoNumber Value must be less than 2,958,466 and greater than
–657,433.

Currency Number must be between –$657,434 and
$2,958,465.9999.

Yes/No Yes (–1) converts to 12/29/1899; No (0) converts to
12:00:00 AM.

Yes/No Text Text must contain only one of the following values:
Yes, True, On, No, False, or Off.

Memo Text must contain only one of the following values:
Yes, True, On, No, False, or Off.

Hyperlink Not possible.

Number, except
Replication ID

Zero or Null converts to No; any other value con-
verts to Yes.

AutoNumber All values evaluate to Yes.

Currency Zero or Null converts to No; any other value con-
verts to Yes.

Date/Time 12:00:00 AM or Null converts to No; any other value
converts to Yes.

If you want to see how this works in the Contacts table you have been building, open
the table in Datasheet view and enter any last name and fi rst name in one or two rows.
We want to change the EmailName fi eld from the Text data type that the table template
provided to Hyperlink. Scroll right and enter an invalid e-mail address in one of the
rows in the form: Proseware email address. In another row, add the correct URL prefi x
in the form: mailto:jeffc@proseware.com.

Now, switch to Design view and change the data type of the EmailName fi eld from Text
to Hyperlink and save the change. Notice that Access 2007 gives you no warning about
any conversion problems because it knows it can store any text fi eld that is not larger
than 255 characters in a hyperlink, which can be up to 8,192 bytes. Save this change
to the table, switch back to Datasheet view, and scroll to the right to fi nd the changed
fi eld. You should see a result something like Figure 5-21.

Chapter 5

230 Chapter 5 Modifying Your Table Design
Figure 5-21 Access 2007 can convert the Text data type to Hyperlink, but will get it right only if the
text contains a recognizable protocol string.

Both entries look fi ne. However, if you click on the fi rst one, Access 2007 attempts
to open your browser because the full text stored in the hyperlink is Proseware email
address#http://Proseware email address#. Because the link address portion indicates the
HTTP protocol, your browser attempts to open instead of your e-mail program. Access
displays a message box that says it cannot follow the hyperlink. When you click on the
second link, it should open a blank message in your e-mail program with the To: line
fi lled in correctly. Access recognized the mailto: prefi x and converted the text correctly.

You can read more about working with hyperlinks in Chapter 10, “Using Forms.” We show
you how to make sure that Access correctly recognizes an e-mail name typed into a hyperlink
fi eld in Chapter 20, “Automating Your Application with Visual Basic.”

Changing Data Lengths
For text and number fi elds, you can defi ne the maximum length of the data that can
be stored in the fi eld. Although a text fi eld can be up to 255 characters long, you can
restrict the length to as little as 1 character. If you don’t specify a length for text, Access
2007 normally assigns the length you specify in the Table Design section in the Object
Designers category of the Access Options dialog box. (The default length is 255.) Access
won’t let you enter text fi eld data longer than the defi ned length. If you need more
space in a text fi eld, you can increase the length at any time; but if you try to redefi ne
the length of a text fi eld so that it’s shorter, you will get a warning message (like the
one shown in Figure 5-22) stating that Access will truncate any data fi eld that contains
data longer than the new length when you try to save the changes to your table. Note
also that it warns you that any validation rules you have designed might fail on the
changed data.

Figure 5-22 This dialog box informs you of possible data truncation problems.

 Changing Data Attributes 231

Ch
ap

te
r 5

Remember, you can change the default data type for a new fi eld and the default length

of new text and number fi elds by clicking the Microsoft Offi ce Button, clicking Access

Options, clicking the Object Designers category of the Access Options dialog box, and

then selecting your defaults in the Table Design section.

If you want to try this in your Contacts table, open it in Design view, change the length
of the MiddleInit fi eld to 10, and save the change. Switch to Datasheet view and type
more than one character in MiddleInit. Now switch back to Design view and set the
length of MiddleInit to y. When you try to save the change, you should see the error
message in Figure 5-22 (because you’re shortening the length of the MiddleInit fi eld).
Click Yes to allow the changes and then switch back to Datasheet view. You should fi nd
the data you typed truncated to one character in MiddleInit. Review Table 5-2 (page
215) and verify that each fi eld’s length in your Contacts table matches tblContacts in
the Conrad Systems Contacts database and make any necessary adjustments before
proceeding further.

Sizes for numeric data types can vary from a single byte (which can contain a value
from 0 through 255) to 2 or 4 bytes (for larger integers), 8 bytes (necessary to hold very
large fl oating-point or currency numbers), or 16 bytes (to hold a unique ReplicationID
or decimal number). Except for ReplicationID, you can change the size of a numeric
data type at any time, but you might generate errors if you make the size smaller. Access
also rounds numbers when converting from fl oating-point data types (Single or Double)
to integer or currency values.

Dealing with Conversion Errors
When you try to save a modifi ed table defi nition, Access 2007 always warns you if any
changes to the data type or fi eld length will cause conversion errors. For example, if
you change the Field Size property of a Number fi eld from Integer to Byte, Access warns
you if any of the records contain a number larger than 255. (Access deletes the contents
of any fi eld it can’t convert at all.) If you examine Table 5-3, you’ll see that you should
expect some data type changes to always cause problems. For example, if you change a
fi eld from Hyperlink to Date/Time, you can expect Access to delete all data. You’ll see a
dialog box similar to the one shown in Figure 5-23 warning you about fi elds that Access
will set to a Null value if you proceed with your changes. Click Yes to proceed with the
changes. You’ll have to examine your data to correct any conversion errors.

SIDE OUT Setting Field Defaults Through Access Options

Remember, you can change the default data type for a new fi eld and the default length

of new text and number fi elds by clicking the Microsoft Offi ce Button, clicking Access

Options, clicking the Object Designers category of the Access Options dialog box, and

then selecting your defaults in the Table Design section.

Chapter 5

232 Chapter 5 Modifying Your Table Design
Figure 5-23 This dialog box informs you of conversion errors.

If you click No, Access 2007 opens the dialog box shown in Figure 5-24. If you deleted
any fi elds or indexes, added any fi elds, or renamed any fi elds, Access will save those
changes. Otherwise, the database will be unchanged. You can correct any data type or
fi eld length changes you made, and then try to save the table defi nition again.

Figure 5-24 This dialog box appears if you decide not to save a modifi ed table defi nition.

Changing Other Field Properties
As you learned in Chapter 4, you can set a number of other properties that defi ne how
Access 2007 displays or validates a fi eld that have nothing to do with changing the
data type. These properties include Description, Format, Input Mask, Caption, Default
Value, Validation Rule, Validation Text, Required, Allow Zero Length, and Indexed.

If you have data in your table, changing some of these properties might elicit a warning
from Access. If you change or defi ne a validation rule, or set Required to Yes, Access
offers to check the new rule or requirement that a fi eld not be empty against the con-
tents of the table when you try to save the change. If you ask Access to test the data, it
checks all the rows in your table and opens a warning dialog box if it fi nds any rows
that fail. However, it doesn’t tell you which rows failed—we’ll show you how to do that in
Chapter 7. If you changed the rules for more than one fi eld, you’ll see the error dialog
box once for each rule that fails.

As you’ll learn later, when you defi ne queries, forms, and reports, these objects inherit
several of the properties that you defi ne for your table fi elds. In previous versions of
Access, the catch was that once you defi ned and saved another object that used table
fi elds, any subsequent change that you made to properties in table design didn’t change
automatically in other dependent objects. You had to go fi nd those properties yourself
and fi x them, or use a tool such as the Speed Ferret product from Black Moshannon
 Systems (www.moshannon.com). You would get the new property settings in any new
objects you created, but the old ones remained unchanged.

 Changing Data Attributes 233

Ch
ap

te
r 5
The good news is there’s a feature in Access 2007 that takes care of this problem for
some properties. To see how this works, you must fi rst make sure that you have this
option selected in Access Options as we showed you in the previous chapter. Click the
Microsoft Offi ce Button, click the Access Options button, click the Object Designers
category, and verify that you have selected the Show Property Update Options Buttons
check box. Click OK to close the Access Options dialog box.

Next, open the Contacts table in Design view in the Contact Tracking database you
have been building. Remember from the previous chapter that Access displays the
description on the status bar when the focus is on the Description fi eld in any data-
sheet or form. Click in the Description column next to the ContactID fi eld and change
the description from “Unique contact ID” to just “Contact ID” and then press Tab. As
soon as you do this, you’ll see an AutoCorrect smart tag that looks like a lightning bolt.
If you rest your mouse pointer near the smart tag, it tells you that it offers property
update options. Click the arrow next to the tag to see the options you can choose from
as shown in Figure 5-25. Access offers you these options whenever you change the
Description, Format, or Input Mask properties.

Figure 5-25 When you change a fi eld description, you see a smart tag offering property update
options.

You can click Update Status Bar Text Everywhere ContactID Is Used to ask Access to
also change this property wherever the ContactID fi eld is used in other objects. Of
course, you don’t have anything but tables in your sample database right now, so click-
ing this command won’t do anything. You can select Help On Propagating Field Proper-
ties to open the Help window to read how this works.

CAUTION!
You must click the Update Status Bar Text Everywhere ContactID Is Used command

immediately after you make the change in your table defi nition. If you move to another

fi eld or move to another property and make another change, the smart tag disappears.

You can make it reappear by returning to the property you changed and changing it

again. If you choose to make changes, Access opens an Update Properties dialog box

that lists all the objects it plans to change. You can reject all changes or selectively apply

the change to only some of the objects.

CAUTION!

Chapter 5

234 Chapter 5 Modifying Your Table Design
Reversing Changes
If you make several changes and then decide you don’t want any of them, you can
close the Table window without saving it. When you do this, Access opens the dialog
box shown in Figure 5-26. Simply click No to reverse all your changes. Click Cancel to
return to the Table window in Design view without saving or reversing your changes.

Figure 5-26 This dialog box gives you the option of reversing unsaved changes to a table.

You can always reverse up to the last 20 changes you made since you last saved the table

design by clicking the Undo button. You can also open the list next to the Undo button

to selectively undo a series of changes.

Using the Table Analyzer Wizard
Even if you use good design techniques (see Article 1, “Designing Your Database Appli-
cation” on the companion CD) and build a normalized database, you might not arrive at
the best design. In fact, you often cannot fully evaluate a database design until you use
the database and store data. Access 2007 includes the Table Analyzer Wizard that can
examine data in your tables (or data you import from another source) and recommend
additional refi nements and enhancements to your database design.

One of the key elements of good database design is the elimination of redundant data.
The Table Analyzer Wizard is particularly good at scanning data in your tables, iden-
tifying data repeated in one or more columns, and recommending alterations to your
design that break out the redundant data into separate tables. You can fi nd an example
of such redundant data in the Conrad Systems Contacts database (Contacts.accdb).
Imagine that a customer sent you a fi le containing company and contact informa-
tion. Sounds like a good, easy place to start collecting or adding to your contact data.
However, when you open the fi le, you see that most companies are listed several times
because the original data isn’t normalized. You’ll fi nd just such a table, saved as tblCon-
tacts4TableAnalyzer, in the Conrad Systems Contacts sample database.

You can see how the Table Analyzer Wizard works by using it on the tblContacts4Table-
Analyzer table. First, open the Conrad Systems Contacts database. Click the Database
Tools tab and then click the Analyze Table command in the Analyze group. Access
starts the Table Analyzer Wizard and displays the fi rst page, shown in Figure 5-27.

SIDE OUT Reversing Multiple Changes

You can always reverse up to the last 20 changes you made since you last saved the table

design by clicking the Undo button. You can also open the list next to the Undo button

to selectively undo a series of changes.

 Using the Table Analyzer Wizard 235

Ch
ap

te
r 5
Figure 5-27 The opening page of the Table Analyzer Wizard informs you about the problems it is
designed to correct.

This fi rst page is one of two introductory pages that explain what the wizard can do.
Click the Show Me An Example buttons to get a better understanding of the kinds of
problems the wizard can solve and to see how the wizard works. Click Next twice to get
to the fi rst “action” page in the wizard, shown in Figure 5-28.

Figure 5-28 Select the table you want to analyze in the Table Analyzer Wizard.

Chapter 5

236 Chapter 5 Modifying Your Table Design
On this page, you select the table you want to analyze. For this exercise, select the
tblContacts4TableAnalyzer table. (Note that you have a check box on this page to con-
tinue to show the two introductory pages each time you start the wizard. If you think
you understand how the wizard works, you can clear the check box to skip the intro-
ductory pages the next time you start the wizard.) Click Next.

On the next page, the wizard asks if you want to rearrange the fi elds in the target
table or if you want the wizard to decide the arrangement for you. If you know which
fi elds contain redundant data, you can make the decision yourself. Because the wizard
handles all the “grunt work” of splitting out lookup data, you might choose the latter
option in the future to further normalize tables in your application. For now, select the
Yes, Let The Wizard Decide option to see how effective it is. Click Next to start the anal-
ysis of your table. Figure 5-29 shows the result of the wizard’s analysis. (We’ve shifted
the contents of this fi gure to fi t the result in a single window.)

Rename Table
button

Figure 5-29 The Table Analyzer Wizard examines the data in your table and makes an initial
 recommendation.

In this case, the wizard did a pretty good job of identifying the separate company and
contact information and splitting the fi elds into two tables. It also recognized that
ContactType and Department have lots of repeating values and perhaps should both
be in separate lookup tables. There isn’t enough data (only 18 rows—and each contact
is related to only one company) in the table for the wizard to have noticed a many-to-
many relationship between companies and contacts. It probably kept the HomeState-
OrProvince fi eld with the company data because it didn’t see a different value across
multiple rows for the same company.

 Using the Table Analyzer Wizard 237

Ch
ap

te
r 5
We really don’t need to do much work to fi x this if we’re happy with the one-to-many
relationships. First, click on HomeStateOrProvince in Table2 and drag and drop it into
Table1 between HomeCity and HomePostalCode. Also move the Lookup To Table3
fi eld from Table2 to Table1 to correctly relate the contact type lookup information to
contacts instead of companies, and move the Department fi eld from Table4 to Table2
between CompanyName and Address. (The last move should remove Table4 from the
design window.)

After you have adjusted the way the wizard split your tables, the next step is to give
each of the new tables a new name. To rename a table, fi rst click the table name and
then click the Rename Table button in the upper part of the window. (You can also
double-click the table’s title bar.) The wizard opens a dialog box in which you can enter
a new name. You should change Table1 to Contacts, Table2 to Companies, and Table3 to
ContactTypes. Click Next when you are fi nished.

The next page asks you to verify the primary key fi elds for these tables. You can select
new fi elds for the primary key of each table or add fi elds to the primary key. The wiz-
ard couldn’t identify any naturally occurring unique value, so it generated a unique
ID (which will be an AutoNumber in the fi nal tables) for two of the tables. You need to
select the Contacts table and click the Add Generated Key button to create a primary
key for that table. Figure 5-30 shows the result of moving fi elds, assigning new names
to the tables, and adding a primary key. Click Next to accept the settings and go on to
an analysis of duplicate values in the lookup tables.

 Undo
 Add Generated Key
Set Unique Identifier

Figure 5-30 After adjusting what the wizard proposed, you’re ready to create the new tables.

Chapter 5

238 Chapter 5 Modifying Your Table Design
The Table Analyzer Wizard looks at values in the new tables to try to eliminate any pos-
sible duplicates created by typing errors. Figure 5-31 shows the result of this analysis
on the sample table. Because the wizard sees several rows with Marketing or Sales in
them, it suggests that some of these values might, in fact, be the same. You can use this
page to tell the wizard any correct values for actual mistyped duplicates. This could be
extremely useful if your incoming data had the same company listed several times but
with a slightly different spelling or address. The wizard will store only unique values
in the fi nal table. You could, if necessary, tell the wizard to substitute one set of similar
values for another to eliminate the near duplicates. In this case, you should tell the wiz-
ard to use the original value for all the values listed as duplicates by clicking the arrow
in the Correction fi eld and selecting the (Leave As Is) option as shown in Figure 5-31.
Click Next when you are fi nished to go on to the next page.

Figure 5-31 The Table Analyzer Wizard gives you the opportunity to fi x potentially duplicate
lookup values.

Finally, the wizard offers to create a new query that has the same name as the original
table. (See Figure 5-32.) If you’ve already been using the old table in queries, forms, and
reports, creating a new query that integrates the new tables into the original data struc-
ture means you won’t have to change any other objects in your database. In most cases,
the new query will look and operate just like the original table. Old queries, forms, and
reports based on the original table will now use the new query and won’t know the
 difference.

This is only an example, so select No, Don’t Create The Query. Click Finish to build
your new tables. The wizard also creates relationships among the new tables to make
sure you can easily re-create the original data structure in queries. Figure 5-33 shows
the three new tables built by the wizard.

 Using the Table Analyzer Wizard 239

Ch
ap

te
r 5

Figure 5-32 The fi nal page of the Table Analyzer Wizard lets you decide whether you want a query
to duplicate the original unnormalized data structure.

Figure 5-33 The Table Analyzer Wizard automatically separates your old data into the new table
structure.

Chapter 5

240 Chapter 5 Modifying Your Table Design
Notice that the wizard left behind an ID fi eld in the Contacts table as a link to the
 ContactTypes table. The values in the ContactTypes table are actually unique, so there’s
no reason not to use the actual value as the primary key instead of an artifi cial ID. We’ll
show you how to change the primary key later in this chapter.

 Taking a Look at Lookup Properties
As you have been working with table design, you’ve probably noticed that there’s a
Lookup tab available in the lower part of the Table window in Design view. You might
have also noticed that Access 2007 offers you a Lookup Wizard entry in the drop-down
list of data types and a Lookup Column option in the Tools group on the Design tab.
This feature allows you to predefi ne how you want the fi eld displayed in a datasheet,
form, or report. For example, if you have a DepartmentID fi eld in an Employees table
that stores the primary key value of the department for which the employee works, you
might want to display the department name rather than the number value when you
look at the data. If you’re displaying a Yes/No fi eld, you might want to provide a drop-
down list that shows options for invoiced and not invoiced instead of yes and no or true
and false.

In the sample databases, we defi ned Lookup properties for only a few fi elds—ones
for which we knew that we would later need a combo box with the relevant available
choices on one or more forms or reports. (You will also see combo boxes described as
drop-down lists.) One such example is in the Housing Reservations sample database
(Housing.accdb). Open the database, view the table objects, select tblEmployees, and
open it in Design view. Click the DepartmentID fi eld and then click the Lookup tab to
see the settings as shown in Figure 5-34.

As you can see, we have set the Display Control property to Combo Box. You see combo
boxes in Windows applications all the time. It’s a box that you can type in with a but-
ton on the right that you can click to drop down a list of values to select. In Access, you
tell the combo box what type of list you want (Row Source Type) and specify the source
of the list (Row Source). Access is a bit unusual because it lets you defi ne a list that
contains more than one column that you can display (Column Count), and it requires
you to specify which of the columns (Bound Column) actually supplies the value to be
stored when you pick an item from the list. This means that you might see a text value,
but the combo box stores a number.

 Taking a Look at Lookup Properties 241

Ch
ap

te
r 5
Figure 5-34 The DepartmentID fi eld in tblEmployees in the Housing Reservations sample database
has Lookup properties defi ned.

You can see this combo box in action by switching to Datasheet view. You can click in
the Department fi eld and type a name from the list, or click the arrow on the right and
select an item from the list as shown in Figure 5-35. Remember, DepartmentID is actu-
ally a number. If you didn’t defi ne the special settings on the Lookup tab, you would see
a list of numbers in the Department column. For details about these settings, see Table
5-4 on page 243.

Figure 5-35 The Lookup tab settings show you a combo box in Datasheet view.

We decided to go ahead and defi ne these properties in this table because we knew we
were probably going to use a combo box in one or more forms that we would build later
to display related department information while editing an employee record. By set-
ting the values in the table, we can avoid having to defi ne the combo box settings again

Chapter 5

242 Chapter 5 Modifying Your Table Design
when we build the forms. If you want to see how this works on a form, you can open
frmEmployeesPlain in the Housing Reservations database. (Although you can open the
“production” version of frmEmployees from the Navigation Pane, code in that form pre-
vents you from updating any data unless you are signed on to the application.) You can
see the result in Figure 5-36.

Figure 5-36 The table Lookup tab properties were inherited by the combo box on
 frmEmployeesPlain.

We recommend that only experienced users set the Lookup tab properties of a fi eld in

a table’s Design view. Unless you are fully aware of what the settings do, you can have

problems later when you look at the information in a datasheet or try to build a query

on the table. For example, if you look at the data in tblEmployees, you could mistakenly

decide that “Housing Administration” is a valid value in the DepartmentID fi eld. If you

try to build a query and fi lter the DepartmentID fi eld looking for that department name,

your query won’t run.

Table 5-4 gives you an overview of what the lookup settings mean. When you study
combo box controls later, in Chapter 11, “Building a Form,” you’ll see how you can
also use lookup properties to display lists from related tables in a form. In Chapter
11 we’ll also explore the Combo Box Wizard, which makes it easy to correctly defi ne
these settings.

SIDE OUT Lookup Tab Settings: For Advanced Users Only

We recommend that only experienced users set the Lookup tab properties of a fi eld in

a table’s Design view. Unless you are fully aware of what the settings do, you can have

problems later when you look at the information in a datasheet or try to build a query

on the table. For example, if you look at the data in tblEmployees, you could mistakenly

decide that “Housing Administration” is a valid value in the DepartmentID fi eld. If you

try to build a query and fi lter the DepartmentID fi eld looking for that department name,

your query won’t run.

 Taking a Look at Lookup Properties 243

Ch
ap

te
r 5
 Table 5-4 Lookup Properties

Lookup Property Setting Meaning

Display Control Check Box (Yes/No
fi elds only), Text
Box, List Box, or
Combo Box

Setting this property to Text Box or Check
Box disables lookups. List Box shows a list
of values in an open window. Combo Box
shows the selected value when closed and
shows the available list of values when
open.

Properties Available When You Set Display Control to List Box or Combo Box

Row Source Type Table/Query, Value
List, or Field List

Table/Query specifi es that you want rows
from a table or query to fi ll the list. If you
select Value List, you must enter the val-
ues you want displayed in the Row Source
property, separated by semicolons. The
Field List setting shows the names of the
fi elds from the table or query you enter in
Row Source—not the data in the rows.

Row Source Table Name, Query
Name, or a list of
values separated by
semicolons

Use a table name, query name, or enter
the text of the query (in SQL) that pro-
vides the list values when Row Source
Type is Table/Query. See Chapters 7 and
8 for details about building queries, and
Article 2 on the companion CD for details
about SQL. Enter a list of values separated
by semicolons when Row Source Type
is Value List. Use a table or query name
when Row Source Type is Field List.

Bound Column An integer value
from 1 to the num-
ber of columns in
the Row Source

Specify the column in the Row Source
that provides the value stored by the list
box or combo box.

Column Count An integer value
from 1 to 255

This determines the number of columns
available to display. (See Column Widths.)
When Row Source Type is Value List, this
setting determines how many consecutive
values you enter in Row Source make up
a logical row.

Column Heads No (default) or Yes Choose Yes to display the fi eld name at
the top of any displayed column when
you open the list.

Column Widths One width value
per column, sepa-
rated by semicolons

Specify a zero width if you do not want
the combo box or list box to display the
column. It is common to not display an
AutoNumber ID fi eld, but you might need
that fi eld in Row Source as the bound
column.

Chapter 5

244 Chapter 5 Modifying Your Table Design
Lookup Property Setting Meaning

Allow Multiple
Values

No (default) or Yes Choose Yes to allow the user to select
multiple values from Row Source for each
record. Caution: If you set this property to
Yes and save the table defi nition, you can-
not change the value back to No later.

Allow Value List
Edits

No (default) or Yes Choose Yes to allow the user to add and
edit items in the underlying Row Source.

List Item Edit Form Form Name Specify the name of a form that Access
will open for the user to add items to the
Row Source when the user enters a new
value that is not in the list specifi ed in
Row Source.

Properties That Apply to Combo Boxes Only

List Rows An integer value
between 1 and 255
(default is 8)

Specify how many rows the combo box
displays when you open the list. If this
setting is less than the number of rows
in Row Source, the combo box makes a
scroll bar available to move through the
list.

List Width Auto or a specifi c
width

Specify the width of the list when you
open it. Auto opens the list the width of
the fi eld display.

Limit To List No (default) or Yes Choose No to allow the user to enter
a value that’s not in the list. When the
bound column is not the fi rst dis-
played column, the combo box acts as
though Limit To List is Yes regardless of
the setting.

When we’re designing a combo box that displays multiple columns when dropped down,

we always specify a List Width value that’s the sum of the Column Width values plus 0.25

inch to allow for the vertical scroll bar.

SIDE OUT Allowing Space for the Scroll Bar

When we’re designing a combo box that displays multiple columns when dropped down,

we always specify a List Width value that’s the sum of the Column Width values plus 0.25

inch to allow for the vertical scroll bar.

 Working with Multi-Value Lookup Fields 245

Ch
ap

te
r 5

Wait a minute! What about the Lookup Wizard entry under Data Types? We recommend

that you never use this wizard. It often builds strange SQL for the Row Source property, it

always defi nes a relationship between the table you’re editing and the lookup table, and

it defi nes indexes on both fi elds. If the lookup table contains only a few rows, the index

is a waste of time and resources. As you learned in Chapter 4, there’s a limit of 32 indexes

on a table. We have seen some cases where we haven’t been able to build all the indexes

we need because the Lookup Wizard built these unnecessary indexes.

Working with Multi-Value Lookup Fields
In Chapter 1, “What Is Microsoft Access?,” we introduced you to the concept of complex
data. Access 2007 includes a new feature called Multi-Value Lookup Fields to handle
complex data. The purpose of lookup fi elds, as you just learned, is to display one value
in a fi eld but actually store a different value. For example, a lookup fi eld could store
the company ID in a fi eld for an invoice, but display the company name to the user for
easier data entry on a form or to show the name on a printed invoice report. Lookup
fi elds in this scenario take the guesswork out of trying to remember a specifi c company
ID number. Multi-Value Lookup Fields take this concept a step further by allowing you
to store multiple values in a single lookup fi eld. When you defi ne a fi eld as a Multi-Value
Lookup Field, Access provides a special control in the Datasheet view of the table simi-
lar to a combo box to display the list of valid values. When you drop down the combo
box list, you’ll see what looks like a list box that has a check box next to each of the
available value choices. Selecting the check box next to one or more of the values stores
the selected values in the fi eld.

Figure 5-37 shows an example of a Multi-Value Lookup Field in the Conrad Systems
Contacts database. Open the Contacts.accdb database and then open the tblContacts
table in Datasheet view. Any specifi c contact could be one or more contact types. The
Contact Type fi eld is designated as a Multi-Value Lookup Field, so the user can select
from any of the contact types in the database and mark them as related to the current
record. In Figure 5-37 you can see that John Viescas is both a developer and a distribu-
tor. By selecting the check boxes next to the available contact types, you tell Access
to store multiple values for this single record. Notice that after you tab away from this
fi eld, Access separates the values with commas.

SIDE OUT Why You Should Not Use the Lookup Wizard

Wait a minute! What about the Lookup Wizard entry under Data Types? We recommend

that you never use this wizard. It often builds strange SQL for the Row Source property, it r
always defi nes a relationship between the table you’re editing and the lookup table, and

it defi nes indexes on both fi elds. If the lookup table contains only a few rows, the index

is a waste of time and resources. As you learned in Chapter 4, there’s a limit of 32 indexes

on a table. We have seen some cases where we haven’t been able to build all the indexes

we need because the Lookup Wizard built these unnecessary indexes.

Chapter 5

246 Chapter 5 Modifying Your Table Design
Figure 5-37 A Multi-Value Lookup Field control allows you to select more than one value for
that fi eld.

Access also provides the list box control you see in a table in Datasheet view on a form
in Form view. Close the tblContacts table and then open the frmContactsPlain form in
Form view. In Figure 5-38 you can see the Contact Type fi eld, which displays an arrow
on the right side. Clicking the arrow drops down the list with the available choices of
contact types.

Figure 5-38 Access also provides a Multi-Value Lookup Field control in the frmContactsPlain form
of the Conrad Systems Contacts database.

 Working with Multi-Value Lookup Fields 247

Ch
ap

te
r 5
To set up a Multi-Value Lookup Field you must set the properties in the table in Design
view. Close the frmContactsPlain form and then open the tblContacts table in Design
view. (Because this is a linked table, Access will warn you that you cannot modify the
design. Click Yes in the warning dialog to open the table design and view the fi eld prop-
erties.) Click the ContactType fi eld and then click the Lookup tab under Field Proper-
ties to see the settings as shown in Figure 5-39. The Allow Multiple Values property has
been set to Yes, which tells Access that it can store multiple values in this fi eld.

Figure 5-39 Set the Allow Multiple Values property to Yes to enable this fi eld as a Multi-Value
Lookup Field.

Chapter 5

248 Chapter 5 Modifying Your Table Design
How Do Multi-Value Lookup Fields Maintain Data Normalization Rules?
If you are familiar with data normalization rules, you might be asking yourself how it

is possible to store multiple values in a single fi eld and still follow normalization rules.

Under the covers and hidden from the standard user interface, Access 2007 actually cre-

ates a many-to-many relationship with a hidden join table. All the work of creating this

join table and establishing the relationship rules is handled by Access when you set the

Allow Multiple Values property to Yes or choose to allow multiple values in the Lookup

Wizard. To ensure that only possible related values can be entered in the Multi-Value

Lookup Field, Access displays a combo box or list box control containing only the valid

related values for data entry. These Multi-Value Lookup Fields allow for better integra-

tion with Microsoft Windows SharePoint Services (version 3) complex data structures.

However, you cannot upsize any table that has a Multi-Value Lookup Field to SQL Server.

We converted the ContactType fi eld to a standard single-value fi eld to be able to upsize

it correctly. Although Multi-Value Lookup Fields can help novice developers create appli-

cations that deal with complex many-to-many relationships in a simple way, we recom-

mend that you learn to create such relationships properly when you need them in your

database using the appropriate linking table. We wish that Microsoft had made the spe-

cial multi-value control available for normal many-to-many relationships in Access 2007,

but that is not the case. The development team at Microsoft has promised to provide

further enhancements in future releases.

Changing the Primary Key
Article 1, “Designing Your Database Application,” on the companion CD discusses the
need to have one or more fi elds that provide a unique value to every row in your table.
This fi eld or group of fi elds with unique values is identifi ed as the primary key. If a table
doesn’t have a primary key, you can’t defi ne a relationship between it and other tables,
and Access 2007 has to guess how to link tables for you. Even if you defi ne a primary
key in your initial design, you might discover later that it doesn’t actually contain
unique values. In that case, you might have to defi ne a new fi eld or fi elds to be the pri-
mary key.

Let’s go back to the three tables we built earlier with the Table Analyzer Wizard. Sup-
pose you discover that users are becoming confused by the fact that ContactTypes_ID
is a number instead of the actual text. (See our comments about using the Lookup
Wizard on page 245.) You could keep the lookup table to help avoid duplicate values,
but there’s no reason not to store the actual text value in the Contacts table instead of
storing a linking ID.

To fi x this, you need to perform the following steps. Be sure to save your work at the
end of each step.

 1. Open the Contacts table in Design view and insert a new fi eld below
ContactTypes_ID named ContactType, data type Text, length 50.

How Do Multi-Value Lookup Fields Maintain Data Normalization Rules?
If you are familiar with data normalization rules, you might be asking yourself how it

is possible to store multiple values in a single fi eld and still follow normalization rules.

Under the covers and hidden from the standard user interface, Access 2007 actually cre-

ates a many-to-many relationship with a hidden join table. All the work of creating this

join table and establishing the relationship rules is handled by Access when you set the

Allow Multiple Values property to Yes or choose to allow multiple values in the Lookup

Wizard. To ensure that only possible related values can be entered in the Multi-Value

Lookup Field, Access displays a combo box or list box control containing only the valid

related values for data entry. These Multi-Value Lookup Fields allow for better integra-

tion with Microsoft Windows SharePoint Services (version 3) complex data structures.

However, you cannot upsize any table that has a Multi-Value Lookup Field to SQL Server.

We converted the ContactType fi eld to a standard single-value fi eld to be able to upsize

it correctly. Although Multi-Value Lookup Fields can help novice developers create appli-

cations that deal with complex many-to-many relationships in a simple way, we recom-

mend that you learn to create such relationships properly when you need them in your

database using the appropriate linking table. We wish that Microsoft had made the spe-

cial multi-value control available for normal many-to-many relationships in Access 2007,

but that is not the case. The development team at Microsoft has promised to provide

further enhancements in future releases.

 Changing the Primary Key 249

Ch
ap

te
r 5
2. Update the new ContactType fi eld with related information from the ContactTypes
table. We’ll show you how to do this easily with an update query in Chapter 9,
“Modifying Data with Action Queries.” For now, you can switch to Datasheet
view and copy what you see in the Lookup to ContactTypes fi eld to your new
ContactType fi eld. (There are only 18 rows, so this shouldn’t take you very long.)

3. Open the Relationships window and click the All Relationships button in the
Relationships group of the Design tab below Relationship Tools so that you can
see the additional relationships that the Table Analyzer Wizard built. Click on
the line between Contacts and ContactTypes and press the Delete key to remove
the relationship. (You must delete any relationship involving the primary key of a
table before you can change the key.) Click Yes to confi rm this action.

4. Open the Contacts table in Design view and delete the ContactTypes_ID fi eld.

5. Open the ContactTypes table in Design view and change the primary key from ID
to ContactType. (You can also select the ID fi eld and delete it if you like.)

Access provides several ways for you to accomplish this task. You could open the
Indexes window (as you learned in Chapter 4), delete the primary key defi nition,
and build a new one. A simpler way is to select the new fi eld you want as the pri-
mary key and then click the Primary Key button in the Tools group of the Design
contextual tab below Table Tools, as shown in Figure 5-40.

6. Finally, reopen the Relationships window and defi ne a new relationship between
ContactType in the ContactTypes table and your new ContactType fi eld in the
Contacts table.

Figure 5-40 Select the new fi eld that will become the primary key and then click Primary Key on
the Design tab to defi ne the key.

Chapter 5

250 Chapter 5 Modifying Your Table Design
Keep in mind that you can directly change the primary key for any table that does not
have any relationships defi ned. Also, when the table contains data, the new fi elds that
you choose for a primary key must have unique values in all the rows.

Compacting Your Database
As you delete old database objects and add new ones, the space within your .accdb fi le
can become fragmented. The result is that, over time, your database fi le can grow larger
than it needs to be to store all your defi nitions and data.

To remove unused space, you should compact your database periodically. No other
users should be accessing the database you intend to compact. You can compact the
database you currently have open by clicking the Microsoft Offi ce Button, clicking the
Manage command, and then clicking Compact And Repair Database. If you want to
compact another database, you must close your current database and then click the
Compact And Repair Database command again. Access 2007 opens the dialog box
shown in Figure 5-41.

Figure 5-41 Click the Microsoft Offi ce Button, Manage, and then Compact And Repair Database to
open the dialog box for specifying a database to compact.

 Compacting Your Database 251

Ch
ap

te
r 5
Select the database you want to compact, and then click Compact. Access asks you for a
name for the compacted database. You can enter the same name as the database you are
compacting, or you can use a different name. If you use the same name, Access warns
you that the original database of the same name will be replaced. If you proceed, Access
compacts your database into a temporary fi le. When compaction is successfully com-
pleted, Access deletes your old database and gives its name to the new compacted copy.

You can also set an option to compact the database each time you close it. Open your

database, click the Microsoft Offi ce Button, and then click the Access Options button. In

the Access Options dialog box, select the Current Database category and then select the

Compact On Close check box under Application Options. If multiple users are sharing the

same database, Access compacts the database when the last user closes it.

You now have all the information you need to modify and maintain your database table
defi nitions. In the next chapter, you’ll explore importing data from other sources and
linking to data in other fi les.

SIDE OUT Compacting a Database When You Close It

You can also set an option to compact the database each time you close it. Open your

database, click the Microsoft Offi ce Button, and then click the Access Options button. In

the Access Options dialog box, select the Current Database category and then select the

Compact On Close check box under Application Options. If multiple users are sharing the

same database, Access compacts the database when the last user closes it.

CHAPTER 6

Importing and Linking Data

You can certainly build all your tables, design queries, forms, and reports, and then
enter from scratch all the data into your empty tables. However, in many cases you’ll

have some of the data you need lying around in other fi les. For example, you might have
a customer list in a spreadsheet or a text fi le. Your list of products might be in another
non-Access database fi le. Microsoft Offi ce Access 2007 provides tools to help you bring
the data into your new application.

Although you can use Offi ce Access 2007 as a self-contained database and application
system, one of its primary strengths is that it allows you to work with many kinds of
data in other databases, in spreadsheets, or in text fi les. In addition to using data in
your local Access 2007 database, you can import (copy in) or link (connect to) data that’s
in text fi les, spreadsheets, other Access databases, dBASE, Paradox, and any other SQL
database that supports the Open Database Connectivity (ODBC) software standard
(including Microsoft Visual FoxPro). As you’ll learn later in Chapter 23, “Using XML,”
Access also supports fi les in eXtensible Markup Language (XML), which is the standard
format for defi ning and storing data on the Web.

A Word About Open Database Connectivity (ODBC)
If you look under the hood of Access, you’ll fi nd that it uses a database language called
SQL (Structured Query Language) to read, insert, update, and delete data. SQL grew out
of a relational database research project conducted by IBM in the 1970s. It has been
adopted as the offi cial standard for relational databases by organizations such as the
American National Standards Institute (ANSI) and the International Organization for
Standardization (ISO). When you’re viewing a query window in Design view, you can
see the SQL statements that Access uses by fi rst clicking the Design tab below Query
Tools, clicking the arrow below the View button in the Results group, and then clicking
the SQL View command.

A Word About Open Database
Connectivity (ODBC) . 253

Creating a Data Source to Link to an
ODBC Database . 255

Importing vs. Linking Database Files 259

Importing Data and Databases 260

Importing Spreadsheet Data . 273

Importing Text Files . 282

Modifying Imported Tables . 292

Linking Files . 292

Collecting Data via E-Mail . 304
 253

Chapter 6

254 Chapter 6 Importing and Linking Data
Article 2, “Understanding SQL,” on the companion CD provides more details about how
Access uses SQL. The Appendix, “Installing Your Software,” provides details about installing
and managing ODBC connections on your computer.

In an ideal world, any product that “speaks” SQL should be able to “talk” to any other
product that understands SQL. You should be able to build an application that can
work with the data in several relational database management systems using the same
database language. Although standards exist for SQL, most software companies have
implemented variations on or extensions to the language to handle specifi c features
of their products. Also, several products evolved before standards were well estab-
lished, so the companies producing those products invented their own SQL syntaxes,
which differ from the offi cial standard. An SQL statement intended to be executed by
 Microsoft SQL Server might require modifi cation before it can be executed by other
databases that support SQL, such as DB2 or Oracle, and vice versa.

To solve this problem, a group of infl uential hardware and software companies—more
than 30 of them, including Microsoft Corporation—formed the SQL Access Group.
The group’s goal was to defi ne a common base SQL implementation that its members’
products could all use to “talk” to one another. The companies jointly developed the
Common Language Interface (CLI) for all the major variants of SQL, and they committed
themselves to building CLI support into their products. About a dozen of these compa-
nies jointly demonstrated this capability in early 1992.

In the meantime, Microsoft formalized the CLI for workstations and announced that
Microsoft products—especially those designed for the Microsoft Windows operating
system—would use this interface to access SQL databases. Microsoft calls this formal-
ized interface the Open Database Connectivity (ODBC) standard. In the spring of 1992,
Microsoft announced that more than a dozen database and application software ven-
dors had committed to providing ODBC support in their products by the end of 1992.
With Access, Microsoft provides the basic ODBC Driver Manager and the driver to
translate ODBC SQL to the SQL understood by Microsoft SQL Server. Microsoft has
also worked with several database vendors to develop drivers for other databases. You
can see a diagram of the ODBC architecture in Figure 6-1.

Access was one of Microsoft’s fi rst ODBC-compliant products, and the ODBC Driver
Manager is a standard part of Microsoft’s operating systems. Microsoft has further
refi ned this architecture with ActiveX Data Objects (ADO). ADO is a special library of
objects that you can use to fetch and modify information about the database structure
and fetch and update data from any database, including Access. You can also fetch data
from ODBC databases using the standard Data Access Objects (DAO) library used to
manipulate native Access tables. After you’ve added the drivers for the other SQL data-
bases that you want to work with, you can use Access to build an application using data
from any of these databases.

 Creating a Data Source to Link to an ODBC Database 255

Ch
ap

te
r 6
Note
You can use ADO as a “universal interface” to both databases that support ODBC as well

as to those that do not. See Chapter 19, “Understanding Visual Basic Fundamentals,” for

details about working with ADO using Visual Basic.

Windows application using SQL
(such as Microsoft Access or Microsoft Excel)

Direct connection via Access
ACE engine to .accdb, spreadsheet
text, dBase, and Paradox

ODBC drivers for specific relational
databases (provided by database
vendor or third party)

SQL databases, local or remote

ODBC Driver Manager
(provided by Microsoft in Windows)

Data Access Objects (DAO) or
ActiveX Data Objects (ADO)

Figure 6-1 The Microsoft ODBC architecture allows any ODBC-enabled application to link to any
SQL database for which you have a driver.

Creating a Data Source to Link to an ODBC Database
Before you can connect to a database that requires ODBC, you must fi rst create a data
source—either a data source name (DSN) fi le or a data source entry in your Windows
registry. A data source is simply a named set of ODBC driver parameters that provide
the information the driver needs to dynamically link to the data. To create a new data
source name fi le or registry entry, on the External Data tab, in the Import group, begin
importing or linking a fi le by clicking More and then clicking ODBC Database. Access
2007 opens the Get External Data - ODBC Database dialog box. Select either the Import
The Source Data Into A New Table In The Current Database option or the Link To The
Data Source By Creating A Linked Table option, and then click OK. Click the New but-
ton in the Select Data Source dialog box to begin creating a new data source.

Note
You can use ADO as a “universal interface” to both databases that support ODBC as well

as to those that do not. See Chapter 19, “Understanding Visual Basic Fundamentals,” for

details about working with ADO using Visual Basic.

Chapter 6

256 Chapter 6 Importing and Linking Data
You can also create a new data source directly from the Select Data Source dialog box
by clicking the New button on either the File Data Source or Machine Data Source tab.
If you create a new fi le data source, Access 2007 stores a fi le with a .dsn fi le name exten-
sion in your default folder for data source name fi les. The resulting text fi le will contain
a list of keyword assignment statements to set the values needed by the driver. (You can
fi nd an example of a data source name fi le at the end of this section.) If you create a new
machine data source, Access stores the parameters in the Windows registry.

To create a new machine data source, click the Machine Data Source tab and click the
New button. Access displays the Create New Data Source wizard, shown here.

To create a data source that applies to all users on your computer, select System Data
Source (Applies To This Machine Only) and click Next. Access displays a list of the
available ODBC drivers on your system. To create a data source for SQL Server, select
SQL Server at the bottom of the list and click Next. Access confi rms that you are ready
to create a system data source for the driver you specifi ed. Click Finish, and Access dis-
plays the Create A New Data Source To SQL Server wizard, shown here.

 Creating a Data Source to Link to an ODBC Database 257

Ch
ap

te
r 6
Enter a name and description for your data source. To connect to the server on your
computer, enter your computer name in the Server box. If you are authorized to connect
to other servers on your network, click the arrow in the Server box. When you do that,
Access 2007 searches your network for other SQL servers and places the names of all
servers found in the list. Click Next to go to the next page, shown here.

Depending on how SQL Server 2005 is confi gured, you might need to enter a login
ID and password. By default, SQL Server 2005 uses your Windows logon information
(your user name and password) to authenticate you. This means that you don’t have
to enter your user name and password a second time when you access the SQL server.
If, however, the server is confi gured to use SQL authentication, you must select With
SQL Server Authentication Using A Login ID And Password Entered By The User, and
enter your login ID and password. Click Next to see the page where you can specify the
default database for this data source, as shown here.

Chapter 6

258 Chapter 6 Importing and Linking Data
If you are authorized to connect to more than one database on the server and you
want to connect to a database other than your default database, select the Change The
Default Database To check box. Access logs on to the server and returns a list of avail-
able database names. (The preceding fi gure shows the sample AdventureWorks data-
base that you can install with SQL Server 2005 selected.) If you don’t specify a database
name and if multiple databases exist on the server, you’ll be connected to the default
database for your login ID. (You don’t need to worry about the other options displayed
on this page.) Select the database you want, and click Next.

The last page shows various options, including the ability to change the language of
error messages or log data. You can leave these settings as they are and click Finish.
Access displays a fi nal confi rmation dialog box with a list of the settings you chose. If
you need to change anything, click Cancel and then use the Back button in the Create
A New Data Source To SQL Server wizard to correct your selections. You can click the
Test Data Source button to verify that Access can make a valid connection using your
settings. If the test runs successfully, click OK to create your new data source.

TROUBLESHOOTING
Why can’t I connect to my local instance of SQL Server 2005 Express Edition
using Windows authentication on my Windows Vista computer?
When you install SQL Server 2005 Express Edition on a system running Windows Vista,

the installation process fails to defi ne your Windows logon ID as an authorized user of

the system. To correct this problem, you must install Service Pack 2 for SQL Server 2005

Express Edition. At the end of the installation, you’ll be given the chance to defi ne and

authorize your logon ID. If you fail to do this, you must uninstall SQL Server 2005 Express

Edition, reinstall it with mixed mode authentication, defi ne a system administrator (user

ID is “sa”) password, and then use that logon to defi ne and authorize your Windows ID.

If you’re familiar with the parameters required by the driver, you can create your own
data source name fi le. A data source name fi le like the one listed here for SQL Server
begins with the [ODBC] section delimiter and then includes keyword assignment state-
ments for each piece of information the ODBC service needs to correctly load the driver
you want. (You can fi nd this fi le, named SQLServerLocal.dsn, on the companion CD.)
Note that you must supply your Windows user ID (your user name) and computer
name for YOURID and YOURCOMPUTER, respectively, to connect to the server run-
ning on your computer. You can edit any data source name fi le using a text editor such
as Notepad.

[ODBC]
DRIVER=SQL Server
UID=YOURID
DATABASE=AdventureWorks

TROUBLESHOOTING

 Importing vs. Linking Database Files 259

Ch
ap

te
r 6
WSID=YOURCOMPUTER
APP=Microsoft® Windows® Operating System
Trusted_Connection=Yes
SERVER=YOURCOMPUTER
Description=Sample DSN for SQL Server

The fi rst time you create a data source name fi le, you’ll probably want to use the Create
New Data Source wizard, but after you understand the structure of a valid data source
name fi le for a particular data source, it’s easy to modify an existing fi le or create a
new one.

Importing vs. Linking Database Files
You have the choice of importing or linking data from other databases, but how do you
decide which type of access is best? Here are some guidelines.

You should consider importing another database fi le when any of the following is true.

O The fi le you need is relatively small and is not changed frequently by users of the
other database application.

O You don’t need to share the data you create with users of the other database
 application.

O You’re replacing the old database application, and you no longer need the data in
the old format.

O You need to load data (such as customers or products as we mentioned earlier)
from another source to begin populating your Access tables.

O You need the best performance while working with the data from the other data-
base (because Access performs best with a local copy of the data in Access’s native
format).

On the other hand, you should consider linking another database fi le when any of the
following is true.

O The fi le is larger than the maximum capacity of a local Access database
(2 gigabytes).

O The fi le is changed frequently by users of the other database application.

O You must share the data on a network with users of the other database
 application.

O You’ll be distributing your application to several individual users, and you will
need to make changes to the queries, forms, reports, and modules in the applica-
tion without disturbing data already entered in the tables.

Chapter 6

260 Chapter 6 Importing and Linking Data

Even when we’re building an application that we know will be run by only a single user,

we usually create a separate .accdb fi le that contains all the tables and link those tables

back into the .accdb fi le that contains all our queries, forms, reports, and code. If we’ve

been careful creating our original table design, we rarely have to change it. But users are

always thinking up some new feature that they would like to have. We can add a new

form or report and send the user an update without having to disturb all the data they’ve

already entered.

If you look closely at the tables in the Conrad Systems Contacts sample database (Con-

tacts.accdb), you can see that most of the tables have a little arrow next to the table icon

in the Navigation Pane, like this:

This indicates that these tables are linked from another data source.

Note
The samples in this chapter use data you can fi nd in fi les on the companion CD. You can

import the data into or export the data from the Conrad Systems Contacts or Housing

Reservations databases. You might want to work from a copy of these databases to fol-

low along with the examples in this chapter. You can fi nd the result of following many of

these examples in the ImportLink.accdb sample database, which contains a Companies

table that has columns using nearly every available data type in Access.

Importing Data and Databases
You can copy data from a number of different fi le formats to create an Access table. In
addition to copying data from a number of popular database fi le formats, Access 2007
can also create a table from data in a spreadsheet or a text fi le. When you copy data
from another database, Access uses information stored by the source database system
to convert or name objects in the target Access table. You can import data not only from
other Access databases but also from dBASE, Paradox, and—using ODBC—any SQL
database that supports the ODBC standard (including Visual FoxPro).

Importing dBASE Files
To import a dBASE fi le, do the following:

 1. Open the Access database that will receive the dBASE fi le. If that database is
already open, close all open objects so that you see only the Navigation Pane.

SIDE OUT Using Linked Tables in a Complex Application Is a Good Idea

Even when we’re building an application that we know will be run by only a single user,

we usually create a separate .accdb fi le that contains all the tables and link those tables

back into the .accdb fi le that contains all our queries, forms, reports, and code. If we’ve

been careful creating our original table design, we rarely have to change it. But users are

always thinking up some new feature that they would like to have. We can add a new

form or report and send the user an update without having to disturb all the data they’ve

already entered.

If you look closely at the tables in the Conrad Systems Contacts sample database (Con-

tacts.accdb), you can see that most of the tables have a little arrow next to the table icon

in the Navigation Pane, like this:

This indicates that these tables are linked from another data source.

Note
The samples in this chapter use data you can fi nd in fi les on the companion CD. You can

import the data into or export the data from the Conrad Systems Contacts or Housing

Reservations databases. You might want to work from a copy of these databases to fol-

low along with the examples in this chapter. You can fi nd the result of following many of

these examples in the ImportLink.accdb sample database, which contains a Companies

table that has columns using nearly every available data type in Access.

 Importing Data and Databases 261

Ch
ap

te
r 6
2. On the External Data tab, in the Import group, click the More command, and
then click dBASE File, as shown here.

3. Access opens the Get External Data - dBASE File dialog box, shown here. Click
the Browse button to browse for the dBASE fi le you need to import.

Chapter 6

262 Chapter 6 Importing and Linking Data
4. Access opens the File Open dialog box, shown next. Select dBASE III, dBASE
IV, or dBASE 5, as appropriate, in the list to the right of the File Name box. (In
Windows XP, this list is labeled Files Of Type and appears below the File Name
box.) Select the source fi le folder, and then select or type the fi le name in the
File Name box. If you’re having diffi culty fi nding the fi le you want, type a search
string in the Search fi eld.

5. Click the Open button to return to the Get External Data - dBASE File dialog box
with the fi le path to the dBASE fi le you need in the File Name box. Make sure the
fi rst option, Import The Source Data Into A New Table In The Current Database, is
selected, and then click OK to import the dBASE fi le you selected. Access displays
a message that informs you of the result of the import procedure, as shown next.

 Importing Data and Databases 263

Ch
ap

te
r 6
If the import procedure is successful, the new table will have the name of the
dBASE fi le (without the fi le name extension). If Access fi nds a duplicate table
name, it will generate a new name by adding a unique integer to the end of the
name. For example, if you import a fi le named COMPANY.DBF and you already
have tables named Company and Company1, Access creates a table named
 COMPANY2.

6. Click the Close button to dismiss the message that confi rms the import
procedure.

You’ll fi nd a dBASE 5 fi le named COMPANIE.DBF on the companion CD. Follow the
procedure just described to import this fi le into the Conrad Systems Contacts sample
database or into a new blank database. When you open the table that Access creates
from this dBASE format data, you’ll see data for the sample companies, as shown in
Figure 6-2.

Chapter 6

264 Chapter 6 Importing and Linking Data
Figure 6-2 Access can import every data type supported in a dBASE fi le.

When you look at a table imported from dBASE in Design view, you’ll fi nd that Access
has converted the data types, as shown in Table 6-1.

Table 6-1 dBASE-to-Access Data Type Conversions

dBASE Data Type Converts to Access Data Type

Character Text

Numeric Number, Field Size property set to Double

Float Number, Field Size property set to Double

Logical Yes/No

Date Date/Time

Memo Memo

As we noted earlier, we created the COMPANIE dBASE fi le from the Companies table
you can fi nd in the ImportLink sample database. You can open these two tables side
by side to see the differences. First, dBASE doesn’t support fi eld names longer than 10
characters. So, CompanyName in the original fi le is shortened to COMPANYNAM, and
LastOrderDate appears as LASTORDERD. Also, dBASE doesn’t support Hyperlink, Cur-
rency, or Decimal data types, so it stores Hyperlink data types as Memo, and Currency
and Decimal data types as Number, Double.

 Importing Data and Databases 265

Ch
ap

te
r 6
Importing Paradox Files
The procedure for importing Paradox fi les is similar to the procedure for importing
dBASE fi les. To import a Paradox fi le, do the following:

1. Open the Access database that will receive the Paradox fi le. If that database is
already open, close all open objects so that you see only the Navigation Pane.

2. On the External Data tab, in the Import group, click the More command, and
then click Paradox File. Access opens the Get External Data - Paradox File dialog
box. Click the Browse button to browse for the Paradox fi le you need to import.
Access opens the File Open dialog box, as shown earlier on page 262.

3. Select the source fi le folder, and then select or type the fi le name in the File Name
box. If you’re having diffi culty fi nding the fi le you want, type a search string in
the Search fi eld.

4. Click the Open button to return to the Get External Data - Paradox File dialog
box with the fi le path to the Paradox fi le you need in the File Name box. Make
sure the fi rst option, Import The Source Data Into A New Table In The Current
Database, is selected and then click OK to import the Paradox fi le you selected.

5. If the Paradox fi le is encrypted, Access opens a dialog box that asks for the
password. Type the correct password and click OK to proceed, or click Cancel to
start over.

When you proceed, Access responds with a message that indicates the result of
the import procedure. If the import procedure is successful, the new table will
have the name of the Paradox fi le (without the fi le name extension). If Access
fi nds a duplicate table name, it will generate a new name by adding a unique inte-
ger to the end of the name as explained earlier about dBASE fi les.

6. Click Close to dismiss the message that confi rms the import procedure.

You can try this procedure using the Companie.db fi le that’s included on the
 companion CD.

When you look at a table imported from Paradox in Design view, you’ll fi nd that Access
has converted the data types, as shown in Table 6-2.

Chapter 6

266 Chapter 6 Importing and Linking Data
Table 6-2 Paradox-to-Access Data Type Conversions

Paradox Data Type Converts to Access Data Type

Alphanumeric Text

Number Number, Field Size property set to Double

Money Number, Field Size property set to Double

Short Number Number, Field Size property set to Integer

Long Integer Number, Field Size property set to Long Integer

Binary Coded Decimal Number, Field Size property set to Double

Date Date/Time

Time Date/Time

Timestamp Date/Time

Memo Memo

Formatted Memo Not supported

Graphic Not supported

OLE OLE Object (but Access won’t be able to activate the object)

Logical Yes/No

AutoIncrement AutoNumber

Binary Not supported

Bytes Not supported

Importing SQL Tables
To import a table from another database system that supports ODBC SQL (such as SQL
Server, Visual FoxPro, or Oracle), you must fi rst have the ODBC driver for that database
installed on your computer. Your computer must also be linked to the network that
connects to the SQL server from which you want to import data, and you must have an
account on that server. Check with your system administrator for information about
correctly connecting to the SQL server.

If you have SQL Server 2005 installed or have downloaded and installed SQL Server
2005 Express Edition, which you can download from www.microsoft.com/sql/editions/
express/default.mspx, you already have SQL Server at your disposal. See the Appendix for
instructions on how to install SQL Server 2005 Express Edition. One of the best ways
to be sure SQL Server is running on your computer is to use the SQL Server Confi gura-
tion Manager. You can start the Confi guration Manager from the Windows Start menu

 Importing Data and Databases 267

Ch
ap

te
r 6
in the Confi guration Tools folder under Microsoft SQL Server 2005. You can also start the
Confi guration Manager by running C:\Windows\System32\SQLServerManager.msc.
In the Confi guration Manager, select SQL Server 2005 Services and be sure the SQL
Server (MSSQLSERVER) service is marked as Running. If it is not running, right-click
the service name and click Start on the shortcut menu.

To import data from a SQL table, do the following:

1. Open the Access database that will receive the SQL data. If that database is
already open, close all open objects so that you see only the Navigation Pane.

2. On the External Data tab, in the Import group, click the More command, and
then click ODBC Database. Access opens the Get External Data - ODBC Database
dialog box. Make sure the Import The Source Data Into A New Table In The
Current Database option is selected and then click OK.

3. Access opens the Select Data Source dialog box, shown here, from which you can
select the data source that maps to the SQL server containing the table you want
to import.

You can select a data source name (.dsn) fi le that you created previously, or click
the Machine Data Source tab, as shown next, to see data sources that are already
defi ned for your computer.

Chapter 6

268 Chapter 6 Importing and Linking Data
TROUBLESHOOTING
Access won’t use ODBC for all fi le types.
Notice that the Machine Data Source tab lists installed sources for dBASE, Microsoft

Excel, Access, and Visual FoxPro fi les. Access will not let you use ODBC for dBASE, Excel,

and Access because it uses its own more effi cient direct connection via its database

engine. Access 2007 uses ODBC to import and link to Visual FoxPro, but you must have

Visual FoxPro installed on your computer to be able to work with Visual FoxPro tables

from Access.

If you don’t see the data source you need, see “Creating a Data Source to Link to
an ODBC Database” on page 255 for instructions. After you select a data source,
click OK.

4. When Access connects to the server, you’ll see the Import Objects dialog box,
which lists the available tables on that server, as shown next.

OU S OO G

 Importing Data and Databases 269

Ch
ap

te
r 6

If you want to import a Visual FoxPro table fi le (.dbf), select the Visual FoxPro
Tables driver on the Machine Data Source tab of the Select Data Source dialog
box and click OK. Access displays a Confi gure Connection dialog box. Select Free
Table Directory and click the Browse button to locate the folder that contains the
fi le that you want to import. Click OK, and Access displays the Import Objects
dialog box similar to the one shown here for SQL Server that lists all the Visual
FoxPro tables that exist in the folder you specifi ed.

Note
To be able to import or link Visual FoxPro tables, you must download and install the

latest Visual FoxPro ODBC driver. You can fi nd the latest driver at

http://msdn.microsoft.com/vfoxpro/downloads/updates/odbc/default.aspx.

5. From the list of tables or list of fi les, select the ones you want to import. If you
select a table name in error, you can click it again to deselect it or you can click
the Deselect All button to start over. Click OK to import the SQL tables you
selected.

6. If the import procedure is successful, the new table will have the name of the SQL
or Visual FoxPro table. If Access fi nds a duplicate table name, it will generate a
new name by adding a unique integer to the end of the name as explained earlier
about dBASE fi les.

Note
To be able to import or link Visual FoxPro tables, you must download and install the

latest Visual FoxPro ODBC driver. You can fi nd the latest driver at

http://msdn.microsoft.com/vfoxpro/downloads/updates/odbc/default.aspx.

Chapter 6

270 Chapter 6 Importing and Linking Data
Note
You’ve no doubt noticed by now that the different databases use different style conven-

tions (dbo.newstore, Newstore, NEWSTORE) for table names.

In general, Access converts SQL and Visual FoxPro data types to Access data types, as
shown in Tables 6-3 and 6-4.

Table 6-3 SQL-to-Access Data Type Conversions

SQL Data Type Converts to Access Data Type

CHAR[ACTER] Text, or Memo if more than 255 characters in length

VARCHAR Text, or Memo if more than 255 characters in length

TEXT Memo

TINYINT Number, Field Size property set to Byte

SMALLINT Number, Field Size property set to Integer

INT Number, Field Size property set to Long Integer

REAL Number, Field Size property set to Double

FLOAT Number, Field Size property set to Double

DOUBLE Number, Field Size property set to Double

DATE Date/Time

TIME Date/Time

TIMESTAMP Binary1

IMAGE OLE Object

1 The ACE database engine supports a Binary data type (raw hexadecimal), but the Access user
interface does not. If you link to a table that has a data type that maps to Binary, you will be able to
see the data type in the table defi nition, but you won’t be able to successfully edit this data in a data-
sheet or form. You can manipulate Binary data in Visual Basic.

Table 6-4 Visual FoxPro-to-Access Data Type Conversions

Visual FoxPro Data Type Converts to Access Data Type

Character Text

Numeric Number, Field Size property set to Integer

Float Number, Field Size property set to Double

Date Date/Time

Logical Yes/No

Memo Memo

General OLE Object

Note
You’ve no doubt noticed by now that the different databases use different style conven-

tions (dbo.newstore, Newstore, NEWSTORE) for table names.

 Importing Data and Databases 271

Ch
ap

te
r 6
Importing Access Objects
If the database from which you want to import data is another Access database, you
can import any of the six major types of Access objects: tables, queries, forms, reports,
macros, or modules. To achieve the same result, you can also open the source database,
select the object you want, click the Copy command in the Clipboard group on the
Home tab of the Ribbon, open the target database, and then click the Paste command
in the Clipboard group on the Home tab. Using the Import command, however, allows
you to copy several objects without having to switch back and forth between the two
databases.

To import an object from another Access database, take the following steps:

1. Open the Access database that will receive the object. If that database is already
open, close any open objects so that only the Navigation Pane is showing.

2. On the External Data tab, in the Import group, click the Access command. Access
opens the Get External Data - Access Database dialog box, shown here.

3. Click the Browse button to open the File Open dialog box, previously shown on
page 262. Select the folder and the name of the .accdb, .mdb, .adp, .mda, .accda,
.mde, .accde, or .ade fi le containing the object that you want to import, and then
click Open.

Chapter 6

272 Chapter 6 Importing and Linking Data
Note
Microsoft Offi ce Access 2007 provides a database utility to create a compiled version

of an .mdb or .accdb desktop application or .adp project fi le that contains no source

code. The compiled versions have .mde, .accde and .ade extensions, respectively. You

cannot import forms, reports, or modules from an .mde, .accde or .ade fi le. For details

about creating a compiled version of your application, see Chapter 25, “Distributing Your

 Application.”

4. Click OK. Access opens the Import Objects dialog box, shown here, which
provides tabs for each of the object types in the database you selected. First click
the tab for the object type, and then select the specifi c object you want to import.

If you select an object in error, you can click the name again to deselect it. If you
want to import all objects of a particular type, click the Select All button. You can
import multiple objects of different types by clicking each object tab in turn and
selecting the objects you want to import.

You can also click the Options button (which has been clicked in the preced-
ing illustration) to select additional options. If you import any tables from the
source database, you can select the option to import the table relationships (if
any) defi ned for those tables in the source database. If the object is a table, you
can select the option to import the table structure (the table defi nition) only or
to import the structure and the stored data. If your source database is an .mdb or

Note
Microsoft Offi ce Access 2007 provides a database utility to create a compiled version

of an .mdb or .accdb desktop application or .adp project fi le that contains no source

code. The compiled versions have .mde, .accde and .ade extensions, respectively. You

cannot import forms, reports, or modules from an .mde, .accde or .ade fi le. For details

about creating a compiled version of your application, see Chapter 25, “Distributing Your

Application.”

 Importing Spreadsheet Data 273

Ch
ap

te
r 6
.adp fi le created in a prior version of Access, you can select the Menus And Tool-
bars check box to import all the custom menus and toolbars from your source
database. Be aware, however, that these items appear on a special Add-Ins tab on
the Ribbon, and some of the commands you designed in your custom menus and
toolbars might not work in Access 2007. You can also select the Import/Export
Specs check box. (See the sidebar, “Defi ning an Import Specifi cation,” on page
291 for details.) If you select the Nav Pane Groups check box, Access imports any
custom Navigation Pane groups you have defi ned in the database. (See Chapter
2, “Exploring the New Look of Access 2007,” for details about creating custom
groups.) You can also choose to import a query object (the defi nition of the query)
by selecting As Queries under Import Queries; or you can ask Access to run the
query and import the data results into a table by selecting As Tables. (See Chap-
ter 7, “Creating and Working with Simple Queries,” for details about building and
using queries.) Click OK to copy the objects you selected to the current database.

 5. If the import procedure is successful, the new object will have the name of the
object you selected. If Access fi nds a duplicate name, it will generate a new name
by adding a unique integer to the end of the name as explained previously.
Because objects such as queries, forms, reports, macros, and modules might refer
to each other or to tables you’re importing, you should carefully check name
references if Access has to rename an imported object.

Note
If the source Access database is a secured fi le created in a previous Access version, you

must have at least read permission for the database, read data permission for the tables,

and read defi nition permission for all other objects in order to import objects. After you

import the objects into your database, you will own the copies of those objects in the

target database.

Importing Spreadsheet Data
Access 2007 also lets you import data from spreadsheet fi les created by Lotus 1-2-3,
Lotus 1-2-3 for Windows, and Microsoft Excel version 3 and later. You can specify a
portion of a spreadsheet or the entire spreadsheet fi le to import into a new table or to
append to an existing table. If the fi rst row of cells contains names suitable for fi eld
names in the resulting Access table, as shown in the Companies.xlsx spreadsheet in
Figure 6-3, you can tell Access to use these names for your fi elds.

Note
If the source Access database is a secured fi le created in a previous Access version, you

must have at least read permission for the database, read data permission for the tables,

and read defi nition permission for all other objects in order to import objects. After you

import the objects into your database, you will own the copies of those objects in the

target database.

Chapter 6

274 Chapter 6 Importing and Linking Data
Figure 6-3 The data in the fi rst row of this Excel spreadsheet can be used as fi eld names when you
import the spreadsheet into a new Access table.

 Preparing a Spreadsheet
Access 2007 determines the data type for the fi elds in a new table based on the val-
ues it fi nds in the fi rst few rows of data being imported (excluding the fi rst row if that
row contains fi eld names). When you import a spreadsheet into a new table, Access
stores alphanumeric data as the Text data type with an entry length of 255 characters,
numeric data as the Number type with the Field Size property set to Double, numeric
data with currency formatting as the Currency type, and any date or time data as the
Date/Time type. If Access fi nds a mixture of data in any column in the fi rst few rows, it
imports that column as the Text data type.

 Importing Spreadsheet Data 275

Ch
ap

te
r 6

If you want to append all or part of a spreadsheet to a target table, you should import

or link the entire spreadsheet as a new table and then use an append query to edit the

data and move it to the table you want to update. You can learn about append queries in

Chapter 9, “Modifying Data with Action Queries.”

If the fi rst several rows are not representative of all the data in your spreadsheet
(excluding a potential fi eld names row), you might want to insert a single “dummy”
row at the beginning of your spreadsheet with data values that establish the data type
you want to use for each column. You can easily delete that row from the table after you
import the spreadsheet. For example, if you scroll down in the Companies.xlsx sample
spreadsheet shown in Figure 6-3, you’ll fi nd that the last entry is a Canadian address, as
shown in Figure 6-4.

Figure 6-4 The Zip fi eld entry contains data that can’t be stored in numeric format.

Because Access sees only numbers in the fi rst few rows of the Zip column, it will use a
Number data type for the Zip fi eld. However, the entry for the Canadian address has
letters and spaces, which requires the fi eld to be defi ned as text. As you’ll see later, if
you attempt to import this spreadsheet without fi xing this problem, Access generates an
error for each row that contains nonnumeric data. Access sets the contents of fi elds it
cannot import to Null. You can solve this by inserting a dummy row at the top with the
proper data types in each column, moving the row to the top, or fi xing the one bad row
after you import the fi le.

Importing a Spreadsheet
To import a spreadsheet into an Access database, do the following:

 1. Open the Access database that will receive the spreadsheet. If that database is
already open, close any open objects so that you see only the Navigation Pane.

 2. On the External Data tab, in the Import group, click the Excel command to open
the Get External Data - Excel Spreadsheet dialog box shown next. (If you want to
import a Lotus 1-2-3 fi le, on the External Data tab, in the Import group, click More
and then click Lotus 1-2-3 File. Because you can only import a Lotus 1-2-3 fi le, you
won’t see the options to append or link the data.)

SIDE OUT Importing to a Temporary Table First

If you want to append all or part of a spreadsheet to a target table, you should import

or link the entire spreadsheet as a new table and then use an append query to edit the

data and move it to the table you want to update. You can learn about append queries in

Chapter 9, “Modifying Data with Action Queries.”

Chapter 6

276 Chapter 6 Importing and Linking Data
3. Click the Browse button to open the File Open dialog box shown on page 262.
Select the folder and the name of the spreadsheet fi le that you want to import and
click Open to return to the Get External Data - Excel Spreadsheet dialog box. If
you want to follow along with this example, select the Companies.xlsx fi le from
the companion CD.

4. Make sure the Import The Source Data Into A New Table In The Current Database
option is selected and then click OK. If your spreadsheet is from Excel version 5.0
or later, it can contain multiple worksheets. If the spreadsheet contains multiple
worksheets or any named ranges, Access shows you the fi rst page of the Import
Spreadsheet Wizard, as shown in the following illustration. (If you want to import
a range that isn’t yet defi ned, exit the wizard, open your spreadsheet to defi ne a
name for the range you want, save the spreadsheet, and then restart the import
process in Access.) Select the worksheet or the named range that you want to
import, and click Next to continue.

 Importing Spreadsheet Data 277

Ch
ap

te
r 6
5. After you select a worksheet or a named range, or if your spreadsheet fi le contains
only a single worksheet, the wizard displays the following page.

Chapter 6

278 Chapter 6 Importing and Linking Data
Select the First Row Contains Column Headings check box if you’ve placed
names at the tops of the columns in your spreadsheet. Click Next to go to the
next step.

6. On the next page, you can scroll left and right to the various fi elds and tell the
wizard which fi elds should be indexed in the new table. Your indexing choices are
identical to the ones you’ll fi nd for the Indexed property of a table fi eld in Design
view. You can also correct the data type of the fi eld. In this case, for the ID fi eld,
select Yes (No Duplicates) from the Indexed list and select Long Integer from the
Data Type list, as shown here, and for the Zip fi eld, select Yes (Duplicates OK).

As you move from fi eld to fi eld, the Data Type box displays the data type that the
wizard chooses for each fi eld (based on the data it fi nds in the fi rst few rows). If
what you see here is incorrect, click the arrow and select the correct data type
from the list. Previous versions of Access would not allow you to change the data
type here, but Access 2007 allows you to select the correct data type on this page
of the Import Spreadsheet Wizard. You can also choose to eliminate certain col-
umns that you don’t want to appear in the fi nal table. For example, it’s quite com-
mon to have intervening blank columns to control spacing in a spreadsheet that
you print. You can eliminate blank columns by scrolling to them and selecting
the Do Not Import Field (Skip) check box. Click Next to go to the next step.

7. On the next page, you can designate a fi eld as the primary key of the new table.
If you want, you can tell the wizard to build an ID fi eld for you that uses the
AutoNumber data type. (It so happens that this sample spreadsheet already has
a numeric ID fi eld that we’ll attempt to use as the primary key.) If multiple fi elds

 Importing Spreadsheet Data 279

Ch
ap

te
r 6
form a unique value for the primary key, you can tell the wizard not to create a
primary key. Later, you can open the resulting table in Design view to set the
primary key.

8. Click Next to go to the fi nal page of the wizard, where you can change the
name of your new table. (The Import Spreadsheet Wizard uses the name of the
spreadsheet or the named range you chose in step 4.) You can also select the
option to start the Table Analyzer Wizard to analyze your new table. See Chapter
4, “Creating Your Database and Tables,” for details about the Table Analyzer
Wizard. If you enter the name of an existing table, Access asks if you want to
replace the old table.

9. Click Finish on the last page to import your data. Access opens a dialog box that
indicates the result of the import procedure. If the procedure is successful, the
new table will have the name you entered in the last step. If you asked to create
a new table and Access found errors, you will fi nd a new table that has the name
of the import table you specifi ed with a $_ImportErrors suffi x. If you asked to
append the data to an existing table and Access found errors, you can choose to
complete the import with errors or go back to the wizard to attempt to fi x the
problem (such as incorrectly defi ned columns). You might need to exit the wizard
and correct data in the original spreadsheet fi le as noted in the following section.

Chapter 6

280 Chapter 6 Importing and Linking Data
Fixing Errors
In “Preparing a Spreadsheet” on page 274, you learned that Access 2007 determines
data types for the fi elds in a new table based on the values it fi nds in the fi rst several
rows being imported from a spreadsheet. Figures 6-3 and 6-4 show a spreadsheet
whose fi rst few rows would generate a wrong data type for the Zip column in a new
Access table. The Number data type that Access would generate for that fi eld, based on
the fi rst several entries, would not work for the last row, which contains character data.
In addition, one of the rows has a duplicate value in the ID column. If you attempt to
use this column as the primary key when you import the spreadsheet, you’ll get an addi-
tional error.

If you were to import that spreadsheet, Access would fi rst display an error message
similar to the one shown in Figure 6-5. This indicates that the wizard found a problem
with the column that you designated as the primary key. If you have duplicate values,
the wizard will also inform you. When the wizard encounters any problems with the
primary key column, it imports your data but does not defi ne a primary key. This gives
you a chance to correct the data in the table and then defi ne the primary key yourself.

Figure 6-5 Access displays this error message when it encounters a problem with your primary
key values.

In addition, if the wizard has any problems with data conversion, it displays a message
similar to the one shown in Figure 6-6.

Note that if your import was successful, you might want to select the Save Import Steps
check box before you click Close if you might run the exact same import again in the
future. You can fi nd all saved imports by clicking the Saved Imports button in the
Import group on the External Data tab.

When the Import Spreadsheet Wizard has problems with data conversion, it creates an
import errors table in your database (with the name of the spreadsheet in the title) that
contains a record for each error. Figure 6-7 shows the import errors table that Access
creates when you import the spreadsheet shown in Figure 6-3. Notice that the table lists
not only the type of error but also the fi eld and row in the spreadsheet in which the
error occurred. In this case, it lists the one row in the source spreadsheet that contains
the Canadian postal code. The row number listed is the relative row number in the
source spreadsheet, not the record number in the resulting table.

 Importing Spreadsheet Data 281

Ch
ap

te
r 6
 Import error message

Figure 6-6 Access displays this message at the top of the Save Import Steps page of the Get
 External Data - Excel Spreadsheet dialog box if it encounters data conversion errors while importing
a spreadsheet.

Figure 6-7 Here is the import errors table that results from importing the spreadsheet shown in
Figure 6-3.

Figure 6-8 shows the table that results from importing the spreadsheet shown in Figure
6-3. You can fi nd one row that has no entry in the Zip column. If you switch to Design
view, you can see that the Import Spreadsheet Wizard selected the Number data type
for the Zip fi eld. If you want to be able to store values that include letters, the Zip fi eld
must be a text fi eld. Notice that in Design view there is no primary key defi ned.

Chapter 6

282 Chapter 6 Importing and Linking Data
Duplicate ID values Missing Zip entry

Figure 6-8 After importing the spreadsheet shown in Figure 6-3, one row is missing a postal code
entry, and there is a duplicate value in the ID column.

You can correct some of the errors in the table in Design view. For example, you
can change the data type of the Zip fi eld to Text (and perhaps change the name to
 PostalCode), save the table, and then enter the missing value. For the row that has a
duplicate ID (16), you can switch to Datasheet view and either delete one of the rows or
supply a unique value. You can then set ID as the primary key in Design view.

Importing Text Files
You can import data from a text fi le into Access 2007 even though, unlike the data in a
spreadsheet, the data in a text fi le isn’t arranged in columns and rows in an orderly way.
You make the data in a text fi le understandable to Access either by creating a delimited
text fi le, in which special characters delimit the fi elds in each record, or by creating a
fi xed-width text fi le, in which each fi eld occupies the same location in each record.

 Preparing a Text File
You might be able to import some text fi les into Access 2007 without changing them,
particularly if a text fi le was created by a program using standard fi eld delimiters.
However, in many cases, you’ll have to modify the contents of the fi le, defi ne the fi le for
Access with an import specifi cation, or do both before you can import it. See the side-
bar, “Defi ning an Import Specifi cation,” on page 291 for details.

 Importing Text Files 283

Ch
ap

te
r 6
Setting Up Delimited Data
Access 2007 needs some way to distinguish where fi elds start and end in each incom-
ing text string. Access supports four standard separator characters: a comma, a tab, a
semicolon, and a space. When you use a comma as the separator (a very common tech-
nique), the comma (or the carriage return at the end of the record) indicates the end of
each fi eld, and the next fi eld begins with the fi rst nonblank character. The commas are
not part of the data. To include a comma within a text string as data, you must enclose
all text strings within single or double quotation marks (the text qualifi er). If any of
your text strings contain double quotation marks, you must enclose the strings within
single quotation marks, and vice versa. Access accepts only single or double quotation
marks (but not both) as the text qualifi er, so all embedded quotes in a fi le that you want
to import into Access must be of the same type. In other words, you can’t include a sin-
gle quotation mark in one fi eld and a double quotation mark in another fi eld within the
same fi le. Figure 6-9 shows a sample comma-separated and double-quote-qualifi ed text
fi le. You can fi nd this fi le (CompaniesCSV.txt) on the companion CD.

Figure 6-9 A comma-separated and double-quote-delimited text fi le uses commas between the
fi eld values and surrounds text values in double quotations marks.

Another common way to separate data is to use the tab character between fi elds. In
fact, when you save a spreadsheet fi le as text in most spreadsheet programs, the pro-
gram stores the columns with tab characters between them. Figure 6-10 shows one
of the worksheets from the CompaniesTABxl.txt Excel spreadsheet saved as text in
 WordPad. (You can see the tab alignment marks that we placed on the ruler to line up
the columns.) Notice that Excel added double quotation marks around several of the
text fi elds—the company names that contain a comma. Because this fi le is tab delim-
ited, Access accepts the text fi elds without quotation marks. However, if all or part of
your incoming data contains a text qualifi er surrounding some of the fi elds, you should
specify that qualifi er when you import the data. If you do not do that, Access imports
the qualifi er characters as well.

Chapter 6

284 Chapter 6 Importing and Linking Data
Figure 6-10 A tab-separated text fi le uses tab characters to separate the fi elds.

As with data type analysis, Access examines the fi rst few rows of your fi le to determine
the delimiter and the text qualifi er. Notice in Figure 6-10 that tabs are clearly the delim-
iter, but three of the company name fi elds are qualifi ed with double quotes. As you’ll see
later, if you want to import a fi le that is delimited differently, you can specify different
delimiters and separators in the Import Text Wizard. The important thing to remember
is that your data should have a consistent data type in all the rows for each column—just
as it should in spreadsheet fi les. If your text fi le is delimited, the delimiters must be con-
sistent throughout the fi le.

Setting Up Fixed-Width Data
Access 2007 can also import text fi les when the fi elds appear in fi xed locations in each
record in the fi le. You might encounter this type of fi le if you download a print output
fi le from a host computer. Figure 6-11 shows a sample fi xed-width text fi le. Notice that
each fi eld begins in exactly the same location in all the records. (To see this sort of
fi xed spacing on your screen, you must display the fi le using a monospaced font such as
 Courier New.) Unlike delimited fi les, to prepare this type of fi le for importing, you must
fi rst remove any heading or summary lines from the fi le. The fi le must contain only
records, with the data you want to import in fi xed locations.

 Importing Text Files 285

Ch
ap

te
r 6
Figure 6-11 A fi xed-width text fi le contains data in fi xed-width columns.

Importing a Text File
Before you can import a text fi le, you’ll probably need to prepare the data or defi ne the
fi le for Access 2007 with an import specifi cation, or both, as discussed in “Preparing
a Text File” on page 282. After you do that, you can import the text fi le into an Access
database by doing the following:

1. Open the Access database that will receive the text data. If that database is
already open, close any objects so that only the Navigation Pane is visible.

2. On the External Data tab, in the Import group, click the Text File command, as
shown here.

3. Access opens the Get External Data - Text File dialog box shown next. Click the
Browse button to open the File Open dialog box shown previously on page 262.
Select the folder and the name of the fi le you want to import. (For these examples,

Chapter 6

286 Chapter 6 Importing and Linking Data
we used the CompaniesTAB.txt and CompaniesFIX.txt fi les on the companion
CD.) Click the Open button in the File Open dialog box to return to the Get
External Data - Text File dialog box.

4. Make sure the Import The Source Data Into A New Table In The Current Database
option is selected and then click OK. Access starts the Import Text Wizard and
displays the fi rst page of the wizard, as shown next. On this page, the wizard
makes its best guess about whether the data is delimited or fi xed-width. It
displays the fi rst several rows of data, which you can examine to confi rm the
wizard’s choice. If the wizard has made the wrong choice, your data is probably
formatted incorrectl. You should exit the wizard and fi x the source fi le as
suggested in “Preparing a Text File” on page 282. If the wizard has made the
correct choice, click Next to go to the next step.

 Importing Text Files 287

Ch
ap

te
r 6
5. If your fi le is delimited, the Import Text Wizard displays the following page.

Chapter 6

288 Chapter 6 Importing and Linking Data
Here you can verify the character that delimits the fi elds in your text fi le and the
qualifi er character that surrounds text strings. Remember that usually when you
save a delimited text fi le from a spreadsheet program, the fi eld delimiter is a tab
character and you’ll fi nd quotation marks only around strings that contain com-
mas. If the wizard doesn’t fi nd a text fi eld with quotation marks in the fi rst few
lines, it might assume that no text is surrounded by quotes, and therefore it might
set the Text Qualifi er fi eld to {none}. You might need to change the Text Quali-
fi er fi eld from {none} to " if this is the case. (You’ll need to do this if you use the
 CompaniesTABxl.txt sample fi le.) Also be sure to select the First Row Contains
Field Names check box if your fi le has column names in the fi rst row. If you don’t
do that, the wizard assigns generic fi eld names (Field1, Field2, and so on) and
might misidentify the fi eld data types.

If your fi le is in fi xed-width format, the wizard displays this page. (We have
scrolled to the right to show one of the problems.)

Instead of showing delimiting characters, the wizard offers a graphic representa-
tion of where it thinks each fi eld begins. To change the defi nition of a fi eld, you
can drag any line to move it. You can also create an additional fi eld by clicking at
the position on the display where fi elds should be separated. If the wizard creates
too many fi elds, you can double-click any extra delimiting lines to remove them.
In the example shown in the preceding illustration (using the CompaniesFIX.txt
fi le on the companion CD), the wizard assumes that the street number is sepa-
rate from the rest of the address. It also assumes that the State and Zip fi elds
are one fi eld. Because many of the spaces in the sample Comments fi eld line
up, it splits this fi eld into several fi elds. You can double-click the line following

 Importing Text Files 289

Ch
ap

te
r 6
the street number to remove it. You can click between the state and zip data to
separate those into two fi elds. Finally, you can double-click all the extra lines the
wizard inserted in Comments to turn that into one fi eld. Click Next to go to the
next step.

6. If you decided to create a new table in the Get External Data - Text File dialog box,
the wizard displays the page shown here. Use this page to specify or confi rm fi eld
names (you can change fi eld names even if the fi rst row in the text fi le contains
names), select fi eld data types, and set indexed properties. If you’re working in a
fi xed-width text fi le, you should provide the fi eld names; otherwise, Access names
the fi elds Field1, Field2, and so on.

If you decided to append the data to an existing table, either the columns must
exactly match both the count and the data type of the columns in the target table
(left to right) or the fi le must be a delimited fi le with column names in the fi rst
row that match column names in the target table.

7. Click Next to go to the next page, where you can select a primary key, much
as you did for spreadsheet fi les. Click Next when you are fi nished setting a
primary key.

8. On the fi nal page of the wizard, you confi rm the name of the new table or
the target table. You can also select the check box to start the Table Analyzer
Wizard to analyze your new table. See Chapter 4 for details about the Table
Analyzer Wizard. If you enter the name of an existing table, Access asks if you
want to replace the old table. Click Finish to import your data. Access displays a
confi rmation message at the top of the Get External Data - Text File dialog box

Chapter 6

290 Chapter 6 Importing and Linking Data
to show you the result of the import procedure. If the wizard encounters an error
that prevents any data from being imported, it creates an import errors table in
your database (with the name of the text fi le in the title) that contains a record for
each error. The fi nal page of the wizard also includes a check box you can select
to save the import steps you just completed.

Fixing Errors
While importing text fi les, you might encounter errors that are similar to those
described in “Importing Spreadsheet Data” on page 273. For example, when you
append a text fi le to an existing table, some rows might be rejected because of duplicate
primary keys. Unless the primary key for your table is an AutoNumber fi eld, the rows
you append from the text fi le must contain primary key fi elds and the values in those
fi elds must be unique.

For delimited text fi les, Access 2007 determines the data type (and delimiter and text
qualifi er) based on the fi elds in the fi rst several records being imported. If a number
appears in a fi eld in the fi rst several records but subsequent records contain text data,
you must enclose that fi eld in quotation marks in at least one of the fi rst few rows so
that Access will use the Text data type for that fi eld. If a number fi rst appears without
decimal places, Access will use the Number data type with the Field Size property set to
Long Integer. This setting will generate errors later if the numbers in other records con-
tain decimal places. You can also explicitly tell Access the data type to use by defi ning
a custom import specifi cation. See “Defi ning an Import Specifi cation” on the next page
for details.

Access displays a message if it encounters any errors. As with errors that are generated
when you import a spreadsheet, Access creates an import errors table. The table con-
tains a record for each error. The import errors table lists not only the type of error but
also the column and row in the text fi le in which the error occurred. The errors you can
encounter with a text fi le are similar to those described earlier for a spreadsheet fi le.

You can correct some errors in the table in Design view. For example, you can change
the data type of a fi eld if the content of the fi eld can be converted to the new data type.
With other errors, you must either add missing data in Datasheet view or delete the
imported records and import the table again after correcting the values in the text fi le
that originally caused the errors.

For details about modifying your table design, see Chapter 5, “Modifying Your Table Design.”
See Table 5-3 on page 207 for data conversion limitations.

 Importing Text Files 291

Ch
ap

te
r 6
Defi ning an Import Specifi cation
If you are likely to import the same fi xed-width fi le often (for example, a text fi le you

receive from a mainframe once a month) or if you want to be able to use a macro or a

Visual Basic procedure to automate importing a text fi le, you can use the Import Text

Wizard to save an import specifi cation for use by your automation procedures. To do so,

begin by clicking Text File in the Import group on the External Data tab. Next, select the

fi le you want to import and click OK. Access now opens the Import Text Wizard, which

you should use to examine your fi le, and verify that the wizard identifi es the correct

fi elds. At this point, click the Advanced button to see an Import Specifi cation dialog box

like the one shown here.

For fi xed-width specifi cations, you can defi ne the fi eld names, data types, start column,

width, indexed properties, and whether or not to skip a fi eld. You can identify the lan-

guage in the Language box and the character set in the Code Page box. You can also

specify the way Access recognizes date and time values and numeric fractions. (For

example, for a fi le coming from a non-U.S. computer, the Date Order might be DMY, and

the Decimal Symbol might be a comma.) Click the Save As button to save your specifi ca-

tion, and give it a name. You can also click the Specs button to load and edit other previ-

ously saved specifi cations. The loaded specifi cation is the one Access uses to import the

current fi le.

Defi ning an Import Specifi cation
If you are likely to import the same fi xed-width fi le often (for example, a text fi le you

receive from a mainframe once a month) or if you want to be able to use a macro or a

Visual Basic procedure to automate importing a text fi le, you can use the Import Text

Wizard to save an import specifi cation for use by your automation procedures. To do so,

begin by clicking Text File in the Import group on the External Data tab. Next, select the

fi le you want to import and click OK. Access now opens the Import Text Wizard, which

you should use to examine your fi le, and verify that the wizard identifi es the correct

fi elds. At this point, click the Advanced button to see an Import Specifi cation dialog box

like the one shown here.

For fi xed-width specifi cations, you can defi ne the fi eld names, data types, start column,

width, indexed properties, and whether or not to skip a fi eld. You can identify the lan-

guage in the Language box and the character set in the Code Page box. You can also

specify the way Access recognizes date and time values and numeric fractions. (For

example, for a fi le coming from a non-U.S. computer, the Date Order might be DMY, and

the Decimal Symbol might be a comma.) Click the Save As button to save your specifi ca-

tion, and give it a name. You can also click the Specs button to load and edit other previ-

ously saved specifi cations. The loaded specifi cation is the one Access uses to import the

current fi le.

Chapter 6

292 Chapter 6 Importing and Linking Data
Modifying Imported Tables
When you import data from an external source, Access 2007 often has to use default
data types or lengths that can accommodate all the incoming data. You will then need
to correct these default settings for your needs. For example, Access assigns a maxi-
mum length of 255 characters to text data imported from a spreadsheet or a text fi le.
Even when the source of the data is another database, Access might choose numeric
data types that can accept the data but that might not be correct. For example, numeric
data in dBASE might be of the Integer type, but Access stores all numeric data from
dBASE with a Field Size setting of Double.

Unless you’re importing data from an SQL or Paradox database that has a primary key
defi ned, Access does not defi ne a primary key in the new table, so you must do that
yourself. Also, if you did not include fi eld names when importing a text or spreadsheet
fi le, you’ll probably want to enter meaningful names in the resulting table.

Linking Files
You can link tables from other Access databases—whether the other databases are local
or on a network—and work with the data as if these tables were defi ned in your current
Access database. If you want to work with data stored in another database format sup-
ported by Access (dBASE, Paradox, or any SQL database that supports ODBC, includ-
ing Visual FoxPro), you can link the data instead of importing it.

Note
Although you can import queries, forms, reports, macros, and modules from another

Access database fi le, you cannot link these types of objects. Any object that Access needs

to run (rather than simply be a container for data) must be in your local database.

In most cases, you can read data, insert new records, delete records, or change data just
as if the linked fi le were an Access table in your database. You can also link text and
spreadsheet format data so that you can process it with queries, forms, and reports in
your Access database. You can only read the data in linked text and spreadsheet fi les.

This ability to link data is especially important when you need to access data on a host
computer or share data from your application with many other users.

Note
Although you can import queries, forms, reports, macros, and modules from anothert
Access database fi le, you cannot link these types of objects. Any object that Access needs

to run (rather than simply be a container for data) must be in your local database.

 Linking Files 293

Ch
ap

te
r 6
Note
Access 2007 supports linking to dBASE or Paradox versions 5.0 and earlier, and it allows

full update if it can fi nd the associated index fi les. If you need to work with later versions,

you must install the Borland Database Engine (BDE).

Security Considerations
If you attempt to link a fi le or a table from a database system that is protected, Access
2007 asks you for a password. If the security information you supply is correct and
Access successfully links the secured data, Access optionally stores the security infor-
mation with the linked table entry so that you do not have to enter this information
each time you or your application opens the table. Access stores this information in the
hidden Connect property of a linked table, so a knowledgeable person might be able to
retrieve it by writing code to examine this property. Therefore, if you have linked sensi-
tive information to your Access database and have supplied security information, you
should consider encrypting your database. Consult Chapter 25 for information about
encrypting your Access database.

If you are linking your database to SQL Server tables and are using Windows domain
security, you can set options in SQL Server to accept the Windows domain user ID if
the user logs on correctly to the network. Therefore, you won’t need to store security
information with the link. If your server contains particularly sensitive information,
you can disable this option to guard against unauthorized access from logged on but
unattended network workstations.

Performance Considerations
Access 2007 always performs best when working with its own fi les on your local com-
puter. If you link tables or fi les from other databases on other computers, you might
notice slower performance. In particular, you can expect slower performance if you
connect over a network to a table or a fi le in another database, even if the remote table is
an Access table. You won’t see any performance difference if you link to Access tables in
another .accdb fi le on your local computer.

When sharing data over a network, you should consider how you and other people can
use the data in a way that maximizes performance. For example, instead of working
directly with the tables, you should work with queries on the shared data whenever
possible to limit the amount of data you need at any one time. When inserting new data
in a shared table, you should use an Access form that is set only for data entry so that
you don’t have to access the entire table to add new data.

You can view and set options for multiple users sharing data by clicking the Microsoft
Offi ce Button, clicking Access Options, and then clicking the Advanced category in
the Access Options dialog box, as shown in Figure 6-12. The original settings for these
options are often appropriate when you share data over a network, so it’s a good idea to
consult your system administrator before making changes.

Note
Access 2007 supports linking to dBASE or Paradox versions 5.0 and earlier, and it allows

full update if it can fi nd the associated index fi les. If you need to work with later versions,

you must install the Borland Database Engine (BDE).

Chapter 6

294 Chapter 6 Importing and Linking Data
Figure 6-12 In the Advanced section of the Advanced category in the Access Options dialog box,
you can set options that affect the performance of linked tables.

One very important consideration is record locking. When Access 2007 needs to
update data in a shared fi le, it must lock the data to ensure that no other computer is
trying to write the same data at the same time. You should set options so that records
are not locked if you are simply browsing through data. Even if your application fre-
quently updates and inserts data, you should leave Default Record Locking set to No
Locks. With this setting, Access 2007 locks individual records only for the short period
of time that it is writing the row, so the chance of receiving an update error while two
users are trying to update the same row at the exact same time is very small.

If you want to ensure that no one else can change a record that you have begun to
update, you should set Default Record Locking to Edited Record. Note, however, that
no other user will be able to edit a record that another has begun to change. If a user
begins to type a change in a record and then goes off for lunch, no one else will be able
to change that record from another computer until that user either saves the row or
clears the edit.

 Linking Files 295

Ch
ap

te
r 6

We never set either All Records or Edited Record as the default. Either one can cause

extra overhead while updating data and can lock out other users unnecessarily. In the

rare case that an update confl ict occurs with No Locks, Access gives the second user the

opportunity to refresh the data and reenter the blocked update. Also, you can set record

locking individually in forms and reports. See Chapter 12, “Customizing a Form,” and

Chapter 16, “Advanced Report Design,” for details.

You can set options to limit the number of times Access 2007 will retry an update to a
locked record and how long it will wait between retries. You can also control how often
Access reviews updates made by other users to shared data by setting the refresh inter-
val. If this setting is very low, Access will waste time performing this task repeatedly.

Access 97 (version 8) and earlier locked an entire 2-KB page each time you updated,
inserted, or deleted rows. This meant that only one user could update any of the rows
stored physically within the page. The page size in Access 2000 increased to 4 KB, but
Access 2000 (version 9) and later also support record-level locking that eliminates lock-
ing collisions when two users attempt to update different rows stored on the same data
storage page. Unless you are designing an application that frequently needs to update
hundreds of rows at a time (for example, with action queries), you should leave the
Open Databases By Using Record-Level Locking check box selected.

Linking Access Tables
To link a table from another Access database to your database, do the following:

 1. Open the Access database to which you want to link the table. If that database is
already open, close any objects so that only the Navigation Pane is visible.

 2. On the External Data tab, in the Import group, click the Access command, and
then select Link To The Data Source By Creating A Linked Table in the Get
External Data - Access Database dialog box shown next.

SIDE OUT Leave Default Record Locking Alone

We never set either All Records or Edited Record as the default. Either one can cause

extra overhead while updating data and can lock out other users unnecessarily. In the

rare case that an update confl ict occurs with No Locks, Access gives the second user the

opportunity to refresh the data and reenter the blocked update. Also, you can set record

locking individually in forms and reports. See Chapter 12, “Customizing a Form,” and

Chapter 16, “Advanced Report Design,” for details.

Chapter 6

296 Chapter 6 Importing and Linking Data
3. Click the Browse button to open the File Open dialog box shown earlier on
page 262, which lists the types of databases you can link. Select the folder and
the name of the .accdb, .mdb, .mda, .accda, .mde, or .accde fi le that contains
the table to which you want to link. (You cannot link tables from an .adp or
.ade fi le because those are actually tables in SQL Server—use an ODBC link to
the server directly as explained in “Linking SQL Tables” on page 301.) If you’re
connecting over a network, select the logical drive that is assigned to the network
server containing the database you want. If you want Access to automatically
connect to the network server each time you open the table, type the full network
location (also known as the UNC or Universal Naming Convention name) in the
File Name box instead of selecting a logical drive. For example, on a Windows
network you might enter a network location such as

\\dbsvr\access\shared\northwind.accdb

After you select the Access database fi le you want, click the Open button to return
to the Get External Data - Access Database dialog box, and then click OK to see
the tables in that database.

4. Access opens the Link Tables dialog box, shown next, which lists the tables
available in the database you selected. Select one or more tables, and click OK to
link the tables to the current database. If the link procedure is successful, the new
table will have the name of the table you selected.

 Linking Files 297

Ch
ap

te
r 6
Access marks the icon for linked tables in the Navigation Pane with an arrow, as
shown next. If Access fi nds a duplicate name, it generates a new name by adding
a unique integer to the end of the name as described earlier. Because objects such
as forms, reports, macros, and modules might refer to the linked table by its origi-
nal name, you should carefully check name references if Access has to rename a
linked table.

One problem with using linked data in an application that you’re going to distribute to

someone else is the location of the linked fi les on your computer might not be exactly

the same as it is on your user’s computer. For example, the internal Connect property

might point to D:\MyDatabases\MyData.accdb, but your user installs the application on

the C drive. You might have noticed that a form always opens when you open the Conrad

Systems Contacts sample database and that it takes a few seconds before it returns you

to the Navigation Pane. We wrote code behind this initial form that verifi es the table links

and fi xes them. You can learn how we built this code in Chapter 25.

SIDE OUT Keeping the Connect Property Current

One problem with using linked data in an application that you’re going to distribute to

someone else is the location of the linked fi les on your computer might not be exactly

the same as it is on your user’s computer. For example, the internal Connect property

might point to D:\MyDatabases\MyData.accdb, but your user installs the application on

the C drive. You might have noticed that a form always opens when you open the Conrad

Systems Contacts sample database and that it takes a few seconds before it returns you

to the Navigation Pane. We wrote code behind this initial form that verifi es the table links

and fi xes them. You can learn how we built this code in Chapter 25.

Chapter 6

298 Chapter 6 Importing and Linking Data
A linked table

Linking dBASE and Paradox Files
Linking fi les from a foreign database is almost as easy as linking an Access table. To
link to a fi le from dBASE or Paradox, do the following:

1. Open the Access database to which you want to link the fi le. If that database is
already open, close any objects so that only the Navigation Pane is visible.

2. On the External Data tab, in the Import group, click the More command, and
then click dBASE File or Paradox File, as appropriate. Select Link To The Data
Source By Creating A Linked Table in the Get External Data - dBASE File (or Get
External Data - Paradox File) dialog box, as shown next.

 Linking Files 299

Ch
ap

te
r 6
3. Click the Browse button to open the File Open dialog box shown earlier on page
262, which lists the types of dBASE or Paradox fi les to which you can link. Select
dBASE III, dBASE IV, dBASE 5, or Paradox, as appropriate, in the list to the right
of the File Name box, and then select the folder and the name of the fi le to which
you want to link. If you’re connecting over a network, select the logical drive that
is assigned to the network server that contains the database you want. If you
want Access to automatically connect to the network server each time you open
the linked fi le, type the full network location in the File Name box instead of
selecting a logical drive. For example, on a Windows network you might enter a
network location such as

\\dbsvr\dbase\shared\newstore.dbf

4. Click the Open button to return to the Get External Data - dBASE File dialog box,
and then click OK to link to the selected dBASE or Paradox fi le.

5. If you selected an encrypted Paradox fi le, Access opens a dialog box that asks you
for the correct password. Type the correct password and click OK to proceed, or
click Cancel to start over. If the link procedure is successful, the new table will
have the name of the fi le you selected (without the fi le name extension). If Access
fi nds a duplicate name, it will generate a new name by adding a unique integer to
the end of the name.

Chapter 6

300 Chapter 6 Importing and Linking Data
Linking Text and Spreadsheet Files
Linking a text fi le or an Excel spreadsheet fi le is almost identical to importing these
types of fi les, as discussed earlier in this chapter. (You cannot link Lotus 1-2-3 fi les; you
can only import them.) As noted, you can only read linked text and Excel spreadsheet
fi les.

To link a spreadsheet fi le or a text fi le, do the following:

1. Open the Access database to which you want to link the fi le. If that database is
already open, close any objects so that only the Navigation Pane is visible.

2. On the External Data tab, in the Import group, click the Excel or Text File
command. Select Link To The Data Source By Creating A Linked Table in the Get
External Data dialog box, as shown here.

3. Click the Browse button to open the File Open dialog box shown earlier on page
262. Select the folder and the name of the fi le to which you want to link. If you’re
connecting over a network, select the logical drive that is assigned to the network
server that contains the database you want. If you want Access to automatically
connect to the network server each time you open the linked fi le, type the full
network location in the File Name box instead of choosing a logical drive, path,
and fi le name. For example, on a Windows network you might enter a network
location such as

\\fi lesvr\excel\shared\companies.xlsx

 Linking Files 301

Ch
ap

te
r 6
4. Click the Open button to return to the Get External Data dialog box, and then
click OK to start the Link Spreadsheet Wizard or the Link Text Wizard.

5. Follow the steps in the wizard, which are identical to the steps for importing a
spreadsheet or text fi le, as described earlier in this chapter.

CAUTION!
You can have the same problems with delimiters, text qualifi ers, data types, and primary

keys noted under importing. You might need to correct or reformat the data in your text

or spreadsheet fi le to be able to successfully link to it. For example, if Access guesses the

wrong data type for a column in an Excel fi le, you will see #Error in fi elds that have the

incorrect data type.

Linking SQL Tables
To link a table from another database system that supports ODBC SQL, you must have
the ODBC driver for that database installed on your computer. Your computer must also
be linked to the network that connects to the SQL server from which you want to link
a table, and you must have an account on that server. Check with your system adminis-
trator for information about correctly connecting to the SQL server.

If you have SQL Server 2005 installed or have downloaded and installed SQL Server
2005 Express Edition, you already have an SQL server at your disposal. See the Appen-
dix for instructions about how to install SQL Server 2005 Express Edition. One of the
best ways to be sure SQL Server is running on your computer is to use the SQL Server
Confi guration Manager. You can start the Confi guration Manager from the Windows
Start menu in the Confi guration Tools folder under Microsoft SQL Server 2005. You can
also start the Confi guration Manager by running C:\Windows\System32\SQLServer-
Manager.msc. In the Confi guration Manager, choose SQL Server 2005 Services and be
sure the SQL Server (MSSQLSERVER) service is marked as Running. If it is not run-
ning, right-click the service name and click Start on the shortcut menu.

To link an SQL table, do the following:

1. Open the Access database to which you want to link the SQL table. If that
database is already open, close all open objects so that you see only the
Navigation Pane.

2. On the External Data tab, in the Import group, click the More command, and
then click ODBC Database. Access opens the Get External Data - ODBC Database
dialog box. Make sure the Link To The Data Source By Creating A Linked Table
option is selected and then click OK.

3. Access opens the Select Data Source dialog box, shown earlier on page 267, in
which you can select the data source that maps to the SQL server containing the
table you want to link. Select a data source, and click OK. If you don’t see the data

C U O !

Chapter 6

302 Chapter 6 Importing and Linking Data
source you need, see “Creating a Data Source to Link to an ODBC Database” on
page 255 for instructions. The ODBC driver displays the SQL Server Login dialog
box for the SQL data source that you selected if the server is not set up to accept
your Windows login. If you are linking to a Visual FoxPro database or fi le, the
ODBC driver displays the Confi gure Connection dialog box.

4. When you are required to enter a login ID and password, and if you are
authorized to connect to more than one database on the server and you want to
connect to a database other than your default database, enter your login ID and
password. Then click the Options button to open the lower part of the dialog box.
When you click in the Database box, Access logs on to the server and returns a
list of available database names. Select the one you want, and click OK. If you
don’t specify a database name and if multiple databases exist on the server,
Access will connect you to the default database for your login ID.

TROUBLESHOOTING
You can’t connect to a specifi c database using trusted authentication because
you use more than one data source.
When you connect to a server using trusted authentication (your Windows user ID), you

automatically connect to the database specifi ed in the data source. You might need to

create more than one data source if you need to connect to more than one database on

that server. See “Creating a Data Source to Link to an ODBC Database” on page 255 for

details about defi ning ODBC data sources.

For Visual FoxPro, specify the database name or FoxPro fi le folder and click OK.

When Access connects to the server or Visual FoxPro database, you’ll see the Link
Tables dialog box, similar to the Import Objects dialog box shown earlier on page
269, which lists the available tables on that server.

5. From the list of tables, select the ones you want to link. If you select a table name
in error, you can click it again to deselect it, or you can click the Deselect All
button to start over. Click OK to link to the tables you selected.

6. If the link procedure is successful, the new table will have the name of the SQL
table or Visual FoxPro fi le (without the fi le name extension). If Access fi nds a
duplicate name, it will generate a new name by adding a unique integer to the end
of the name.

Modifying Linked Tables
You can make some changes to the defi nitions of linked tables to customize them for
use in your Access 2007 environment. When you attempt to open the table in Design
view, Access opens a dialog box to warn you that you cannot modify certain properties
of a linked table. You can still click OK to open the linked table in Design view.

TROUBLESHOOTING

 Linking Files 303

Ch
ap

te
r 6
You can open a linked table in Design view to change the Format, Decimal Places,
Caption, Description, and Input Mask property settings for any fi eld. You can set these
properties to customize the way you look at and update data in Access forms and
reports. You can also give any linked table a new name for use within your Access data-
base (although the table’s original name remains unchanged in the source database)
to help you better identify the table or to enable you to use the table with the queries,
forms, and reports that you’ve already designed.

Changing a table’s design in Access has no effect on the original table in its source
database. However, if the design of the table in the source database changes, you must
relink the table to Access. You must also unlink and relink any table if your user ID or
your password changes.

Unlinking Linked Tables
It is easy to unlink tables that are linked to your Access database. In the Navigation
Pane, simply select the table you want to unlink and then press the Delete key or click
the Delete command in the Records group on the Home tab of the Ribbon. Access dis-
plays the confi rmation message shown in Figure 6-13. Click Yes to unlink the table.
Unlinking the table does not delete the table; it simply removes the link from your table
list in the Navigation Pane.

Figure 6-13 Access displays a message to confi rm that you want to unlink a table.

Note
If you click the Cut command in the Clipboard group on the Home tab of the Ribbon to

unlink a table, Access does not display the confi rmation message shown in Figure 6-13.

Using the Linked Table Manager
If you move some or all of your linked tables to a different location, you must either
delete your linked tables and relink them or update the location information before
you can open the tables. You can easily update the location information in the table
links by using the Linked Table Manager. To use this handy utility, open the database
that contains linked tables that you need to relink, and on the Database Tools tab, in

Note
If you click the Cut command in the Clipboard group on the Home tab of the Ribbon to

unlink a table, Access does not display the confi rmation message shown in Figure 6-13.

Chapter 6

304 Chapter 6 Importing and Linking Data
the Database Tools group, click the Linked Table Manager command. The utility opens
a dialog box that displays all the linked tables in your database, as shown in Figure
6-14. Simply select the check boxes for the ones that you think need to be verifi ed and
updated, and then click OK. If any linked table has been moved to a different location,
the Linked Table Manager prompts you with a dialog box so that you can specify the
new fi le location. You can also select the Always Prompt For New Location check box to
verify the fi le location for all linked tables.

Figure 6-14 You can use the Linked Table Manager to correct links to fi les that have moved.

Now you have all the information you need to import and link data using Access 2007.
For information on how to export data see Article 3, “Exporting Data,” on the
companion CD.

Collecting Data via E-Mail
Access 2007 introduces a new feature that allows you to collect data through e-mail and
import it into your database. The data is collected through either HTML forms or rich
Microsoft Offi ce InfoPath 2007 forms. Access 2007 allows you to either update existing
data in a table or add new records to a table. By integrating Access 2007 with e-mail col-
lection capabilities, you can have users update and add information to your database
from different locations. This feature can be used, for example, in a club membership
application that periodically needs to update its member records.

To use the e-mail data collection capabilities in Access 2007, you must also have
 Microsoft Offi ce Outlook 2007 installed to send the data entry forms and to process the
data returned. If you are sending the data collection forms in HTML format, your recipi-
ents need only have an e-mail client program that accepts HTML. If you want to send
Offi ce InfoPath 2007 collection forms, you also need to have InfoPath 2007 installed.
The users receiving these forms must also have Offi ce Outlook 2007 and InfoPath 2007
installed to fi ll out the forms and send them back.

 Collecting Data via E-Mail 305

Ch
ap

te
r 6
Note
To demonstrate the various capabilities of collecting data through e-mail, we use the

ContactsDataCopy.accdb and TasksEmailCollection.accdb sample databases on the com-

panion CD. This TasksEmailCollection.accdb sample database is based on the Tasks data-

base template with sample records added to the two tables.

Collecting Data via HTML Forms
Open ContactsDataCopy.accdb from the folder where you installed your sample fi les.
Click the Navigation Pane menu, click Object Type under Navigate To Category, and
then click Tables under Filter By Group to display the list of tables in the database. For
the continued success of the Conrad Systems business, its owners need to fi nd new
customers who want to purchase their products. One of the best ways to fi nd leads
to potential new customers is to ask existing customers. The existing contacts in the
Conrad Systems Contacts database could provide names of people through their own
personal network of friends who could in turn become new clients. By using the data
collection feature in Access 2007, you could send an e-mail form to all the existing
contacts in the database, asking whether they know of anyone who might be interested
in Conrad Systems’ products. To entice existing contacts to provide some names, you
could offer an incentive of free support time.

You can update a single table using e-mail data collection, or you can update two or
more tables if you use a saved select query as the record source for the data entry form.
You’ll learn about creating queries using multiple tables in Chapter 8, “Building Com-
plex Queries.” For this example, let’s create an e-mail form to collect data to add a new
record to the tblContacts table. Because we’re going to send an e-mail message to the
contacts in the tblContacts table, you’ll need to add your name and e-mail address if you
want to follow along in this section. Open the tblContacts table in Datasheet view, go to
the new record at the end, add your name and valid e-mail address, and save the record.
Do not add any text to display if you use the Insert Hyperlink dialog box. (We’ll explain
why later in this section.) Close the table when you’re done. Next, right-click the tblCon-
tacts table in the Navigation Pane and click Collect And Update Data Via E-Mail on the
shortcut menu, as shown in Figure 6-15. Alternatively, you can select the table in the
Navigation Pane and click the Create E-Mail button in the Collect Data group on the
External Data tab on the Ribbon.

Note
To demonstrate the various capabilities of collecting data through e-mail, we use the

ContactsDataCopy.accdb and TasksEmailCollection.accdb sample databases on the com-

panion CD. This TasksEmailCollection.accdb sample database is based on the Tasks data-

base template with sample records added to the two tables.

Chapter 6

306 Chapter 6 Importing and Linking Data
Collect and update data via e-mail

Figure 6-15 You can begin the process of collecting data via e-mail by using the table’s shortcut
menu or the Create E-Mail button on the Ribbon.

Access opens the fi rst page of the e-mail collection wizard, as shown in Figure 6-16.
This fi rst page is an introductory page, which outlines the steps you take to complete
the process. For this example you need to complete six major steps. (If you are adding
records to a table with no records, Access displays fi ve steps on this fi rst page.) Click
Next to proceed to the second page of the wizard.

 Collecting Data via E-Mail 307

Ch
ap

te
r 6
Figure 6-16 The fi rst page of the e-mail collection wizard is an introductory page.

The second page of the wizard, shown in Figure 6-17, asks you to choose between creat-
ing an HTML form or an InfoPath form for data entry. Remember that the people who
receive the InfoPath form need to have InfoPath 2007 and Outlook 2007 installed on
their computers to be able to read and fi ll out the data form. When you send an HTML
form, the recipient needs only an e-mail client that can handle messages in HTML. For
this example, select HTML Form (the default) and click Next.

Chapter 6

308 Chapter 6 Importing and Linking Data
Figure 6-17 The second page of the wizard asks you to choose a type of form.

The next page of the wizard, shown in Figure 6-18, asks you to choose whether users
receive a blank form or a form that includes data from within the database they will
update. If you chose a table that has no records, a table that does not have a primary key
defi ned, or a query that combines two or more tables, you will not see this page of the
wizard. In those cases, Access assumes you only want to add new records, so it does not
display this page. Note also that to send data to update, you must have available within
one of your database tables the e-mail address of the recipient.

 Collecting Data via E-Mail 309

Ch
ap

te
r 6
Figure 6-18 You can choose to collect new information or update existing records on this page of
the wizard.

When you select the Collect New Information Only option after choosing to send an
HTML message, the recipients can only send back a reply that inserts one record into
your table. To insert multiple records, the recipients must send multiple messages.
If you select Update Existing Information after choosing to send an HTML message,
recipients can view and update all the records you send. The information the recipient
returns in a reply will overwrite the existing rows. For this current example, select Col-
lect New Information Only, and then click Next to continue.

On the next page of the wizard, shown in Figure 6-19, you decide which fi elds from the
table or query to include in the e-mail form. By default, Access automatically places any
fi elds whose Required property is set to Yes in the Fields To Include In E-Mail Message
list on the right. Access also puts the * symbol next to any required fi elds.

Chapter 6

310 Chapter 6 Importing and Linking Data
Figure 6-19 Select which fi elds to include on the form, in what order to display them, and what
labels to display on the form.

You can select any fi eld in the Fields In Table list and click the single right arrow (>) but-
ton to copy that fi eld to the Fields To Include In E-Mail Message list. You can also click
the double right arrow (>>) button to copy all available fi elds to the Fields To Include
In E-Mail Message list. If you copy a fi eld in error, you can select that fi eld and click the
single left arrow (<) button to remove it from the list. You can remove all fi elds and start
over by clicking the double left arrow (<<) button.

Notice that Access did not include the primary key of the tblContacts table (the Con-

tactID fi eld) in the list of available fi elds. Whenever the primary key is the AutoNumber

data type, you cannot include the fi eld regardless of whether you are adding or updating

records. If the primary key is not an AutoNumber data type, you should include it only

when adding records. When updating records, Access includes the key value in the data

it sends in the e-mail form, but the user cannot see nor update it. The only case that

requires the primary key fi eld is when the key is not an AutoNumber and the user will be

inserting records. When adding records to a table that has a primary key that is not an

AutoNumber data type, the user must supply a key value that is unique to be able to add

data to the table via e-mail.

SIDE OUT Including the Primary Key in the Data Collection Process

Notice that Access did not include the primary key of the tblContacts table (the Con-

tactID fi eld) in the list of available fi elds. Whenever the primary key is the AutoNumber

data type, you cannot include the fi eld regardless of whether you are adding or updating

records. If the primary key is not an AutoNumber data type, you should include it only

when adding records. When updating records, Access includes the key value in the data

it sends in the e-mail form, but the user cannot see nor update it. The only case that

requires the primary key fi eld is when the key is not an AutoNumber and the user will be

inserting records. When adding records to a table that has a primary key that is not an

AutoNumber data type, the user must supply a key value that is unique to be able to add

data to the table via e-mail.

 Collecting Data via E-Mail 311

Ch
ap

te
r 6
For this example, you want to include some of the fi elds in the tblContacts table, but not
all of them. The existing Conrad Systems contacts might not know the information for
every fi eld, but they should be able to fi ll out at least the basic information for new con-
tacts, such as last name, fi rst name, and e-mail address. Select the LastName fi eld and
then click the single right arrow (>) to move the fi eld to the Fields To Include In E-Mail
Message list. Now repeat this procedure and move the following fi elds to the Fields
To Include In E-Mail Message list: FirstName, MiddleInit, Title, Suffi x, WorkPhone,
WorkExtension, MobilePhone, EmailName, and Website. These 10 fi elds should suffi ce
for obtaining information on prospective leads.

After you move fi elds to the Fields To Include In E-Mail Message list, the up and down
arrows to the right of this list become available along with the Field Properties section.
You can click the up and down arrows to change the order of the fi elds you are includ-
ing in the form. For this example, select the LastName fi eld and click the down arrow
twice to move it down two spots in the display order. (You could have moved the First-
Name and MiddleInit fi elds before the LastName fi eld, but we wanted you to see how
to change the order of fi elds within the list.) Access fi lls in the fi eld’s Caption property
(or the fi eld name if the fi eld does not have a caption) in the Label To Display In Front
Of The Field In The E-Mail Message box under Field Properties. You can customize this
label to display different text or leave it as is. (You’re limited to using 64 characters for a
custom label.) For this example, click the FirstName fi eld and type Enter the First Name
of the new contact here… as the label for the FirstName fi eld, as shown in Figure 6-20.

If you do not want to allow the recipient to enter any information or change existing
data in that fi eld, you could select the Read-Only check box. (This option is more suited
for updating data when you want to display data in a fi eld from an existing record, but
do not want the user to change it.) For this example, do not select this check box for
any of the fi elds. If you like, you can experiment with entering captions for some of the
other fi elds—we had you change one caption so that you can see the result in the e-mail
message. Click Next to continue to the next page.

TROUBLESHOOTING
Why can’t I see all the fi elds from my table in the data collection process?
You might have noticed that not only the AutoNumber primary key ContactID fi eld but

also the ContactType and Photo fi elds from the tblContacts table are not shown as avail-

able fi elds. You cannot use AutoNumber, Attachment, OLE Object, or Multi-Value Field

Lookup data types in the data collection process. None of these data types are sup-

ported for e-mail collection in Access 2007. You will have to add or update these fi elds

manually.

TROUBLESHOOTING

Chapter 6

312 Chapter 6 Importing and Linking Data
Figure 6-20 Change the display order by moving the LastName fi eld down two positions and type
a more descriptive label for the FirstName fi eld.

The next page of the wizard, shown in Figure 6-21, asks you to specify whether you
want to manually process the replies as they arrive (the default) or let Outlook and
Access automatically process the replies. By default, all replies are stored in an Outlook
folder called Access Data Collection Replies. If you want to change where Outlook saves
replies, click the Access Data Collection Replies link on this page. The wizard opens the
Select Folder dialog box in Outlook where you can select the Outlook folder you want
to use or create a new folder. After you select a different folder, the link on the wizard
page changes to the name of this folder.

 Collecting Data via E-Mail 313

Ch
ap

te
r 6
Figure 6-21 Choose whether to have the replies automatically processed or to manually process
them yourself.

To have the replies automatically processed, select the Automatically Process Replies
And Add Data To tblContacts check box (the default). For our example, make sure this
option is selected. The Set Properties To Control The Automatic Processing Of Replies
link allows you to customize various settings for automatic processing. Click this link
to open the Collecting Data Using E-Mail Options dialog box, as shown in Figure 6-22.

Chapter 6

314 Chapter 6 Importing and Linking Data

Figure 6-22 You can set options for processing e-mail forms in the Collecting Data Using E-Mail
Options dialog box.

The default settings for adding data are as shown in Figure 6-22. If you clear the Auto-
matically Process Replies And Add Data To The Database check box under Import Set-
tings, all the other options in this dialog box become unavailable, and you will have to
manually process all the e-mail replies. Selecting the second check box, Discard Replies
From Those To Whom You Did Not Send The Message, instructs Outlook 2007 not to
process replies from people to whom you did not send the e-mail form. “Discard” in this
case is a bit of a misnomer because the replies will remain in the data collection folder
in Outlook—Outlook simply won’t process them. You can, however, manually process
these replies if you so choose.

Selecting the third check box, Accept Multiple Replies From Each Recipient, allows a
recipient to reply to the e-mail form message more than once. Each reply is automati-
cally processed upon arrival. If you clear this check box, only the fi rst reply is pro-
cessed, but all other replies remain in the Outlook folder. You can then choose to either
manually process these additional replies or delete them. In our example, one of your
contacts might know the names of several people who could potentially be interested in
buying products that Conrad Systems offers. Leaving this check box selected allows the
recipient to provide more than one name to you.

Note
The Accept Multiple Replies From Each Recipient check box does not apply to multiple

records within an InfoPath form. If a recipient adds more than one record to an InfoPath

form, each record is processed because all the records are stored in one e-mail message.

The fourth check box, Allow Multiple Rows Per Reply, applies only to InfoPath forms. If
you select this check box, the recipient can insert additional rows in the form to create
more records. Each record in the form is then automatically processed. The fi fth check
box, Only Allow Updates To Existing Data, also applies only to InfoPath forms. Select

Note
The Accept Multiple Replies From Each Recipient check box does not apply to multiple

records within an InfoPath form. If a recipient adds more than one record to an InfoPath

form, each record is processed because all the records are stored in one e-mail message.

 Collecting Data via E-Mail 315

Ch
ap

te
r 6
this check box to prevent a recipient from adding new records in the InfoPath form
when updating data. If you clear this check box, the user can add new records in the
InfoPath form as well as update existing data. Because we have asked the wizard to col-
lect new information only, this option is unavailable.

Under Settings For Automatic Processing, you can specify the maximum number of
replies to be automatically processed. The default for Number Of Replies To Be Pro-
cessed is 25. You can enter any positive integer between 1 and 10 billion for this setting.
If Outlook receives more replies than the number you entered, you can still process the
remaining replies manually. If you want all replies to be automatically processed, enter
a number larger than the number of replies you expect to receive.

Under Date And Time To Stop, you can defi ne a date and time to have Outlook stop
processing any further replies to this message. Any replies received after that time are
stored in the Outlook folder, but are not automatically processed. You can, however,
choose to manually process replies received after this date. Leave all the settings at
their defaults for this example, click Cancel to close the dialog box, and then click Next
to go to the next page of the wizard.

This setting might be required in time-sensitive situations. For example, you might be

conducting a survey that has to be completed before a certain date. To ensure that no

records are updated or added after the cutoff date, you can designate a date and time to

stop automatic processing in the Collecting Data Using E-Mail Options dialog box.

On the next page of the wizard, shown in Figure 6-23, you can choose whether to enter
the e-mail addresses using Outlook 2007 or have Access use e-mail addresses that are
stored in the database. If you choose Enter The E-Mail Addresses In Microsoft Offi ce
Outlook (the default), you can either type each recipient’s address in the Outlook mes-
sage or you can choose addresses from your Outlook address book. If you select Use
The E-Mail Addresses Stored In A Field In The Database, you can use addresses that are
stored in the table you are adding or editing. You can also use e-mail addresses stored
in a fi eld in a related table. For this example, you’ll use the e-mail addresses stored in
the tblContacts table, so select Use The E-Mail Addresses Stored In A Field In The Data-
base, and then click Next to continue.

Note
This page of the wizard appears only when you are adding new information. If you are

updating records, you must have a fi eld containing the e-mail addresses in the table you

are updating or in a related table being updated.

SIDE OUT Why Set a Date to Stop Processing Replies?

This setting might be required in time-sensitive situations. For example, you might be

conducting a survey that has to be completed before a certain date. To ensure that no

records are updated or added after the cutoff date, you can designate a date and time to

stop automatic processing in the Collecting Data Using E-Mail Options dialog box.

Note
This page of the wizard appears only when you are adding new information. If you are

updating records, you must have a fi eld containing the e-mail addresses in the table you

are updating or in a related table being updated.

Chapter 6

316 Chapter 6 Importing and Linking Data
Note
If you select the Enter The E-Mail Addresses In Microsoft Offi ce Outlook option and click

Next, the wizard allows you customize the subject of the message and include an intro-

ductory message for your recipients. After Access creates the message, you can click the

To button in the Outlook message to open your Outlook address book and select one or

more recipients for this message or manually type an e-mail address, and then click Send

to send the message.

Figure 6-23 Access asks for the source of the e-mail addresses on this page of the wizard.

On the next page of the wizard, shown in Figure 6-24, you tell Access which fi eld con-
tains the recipients’ e-mail addresses. When you fi rst see this page of the wizard, the
default option is to select a fi eld within the current table or query. If a fi eld with e-mail
addresses exists in the table you are updating, click the arrow in the Select A Field
box below The Current Table Or Query and select the fi eld that contains the e-mail
addresses. In this example, Access correctly found the EmailName fi eld and selected it
for you.

Note
If you select the Enter The E-Mail Addresses In Microsoft Offi ce Outlook option and click

Next, the wizard allows you customize the subject of the message and include an intro-

ductory message for your recipients. After Access creates the message, you can click the

To button in the Outlook message to open your Outlook address book and select one or

more recipients for this message or manually type an e-mail address, and then click Send

to send the message.

 Collecting Data via E-Mail 317

Ch
ap

te
r 6
Figure 6-24 You can choose a fi eld in the current table or query or in an associated table from
which to obtain the e-mail addresses.

You can also select the An Associated Table option to fi nd the e-mail addresses in an
associated table (one that is defi ned as related to the target table in the Relationships
window). After you select An Associated Table, Access enables the Select A Field box
beneath this option. First specify the linking fi eld from the current table or query, and
then select the fi eld containing the e-mail addresses in the list of fi elds from the related
table. In this sample database there is a relationship defi ned between the ContactID
fi eld in the tblContacts table and the ContactID fi eld in the tblCompanyContacts,
tblContactEvents, and tblCompanies tables. Because ContactID is associated with more
than one table, Access displays two lists, as shown in Figure 6-25. The fi rst list displays
the names of the associated tables. Choose the table you want, and then select the asso-
ciated fi eld from the second list, which displays the names of all the fi elds in the table
you select from the fi rst list. Note that if the fi eld you choose under An Associated Table
is associated with only one table, Access displays only one list with the names of the
fi elds in the associated table. Because the tblContacts table already contains the e-mail
addresses you need, select The Current Table Or Query (if it isn’t already), select the
EmailName fi eld from the list, and then click Next to continue.

Chapter 6

318 Chapter 6 Importing and Linking Data
Figure 6-25 Select the associated table and fi eld that contain the e-mail addresses.

On the next page of the wizard, Customize The E-Mail Message, you can specify the
Subject line of the e-mail, write an introductory message, and choose in which Outlook
message fi eld the address will appear (To, Cc, or Bcc), as shown in Figure 6-26. We
designed our introduction to explain to our customers what the purpose of our mes-
sage is and to offer them an incentive to provide us with some new contact information.
In the Subject box, type

Special offer for BO$$ customers!

In the Introduction box, type

We hope you’re enjoying our BO$$ software and fi nd it useful. Send us the contact
information for any of your friends whom you think would benefi t from our software,
and we’ll extend your support contract for one month for free for each contact who
buys our product. Simply fi ll in the information below and send it back to us, and we’ll
do the rest!

To start, please make sure to click Reply fi rst to fi ll out the form. Click Send when you
are fi nished. To send information for more than one contact, click Reply again, fi ll out
another form, and then click Send when you are fi nished.

Thank you for your business!

Conrad Systems Development.

 Collecting Data via E-Mail 319

Ch
ap

te
r 6
If you were updating existing rows, Outlook must be able to validate the update by
matching the e-mail address of the sender with an e-mail fi eld stored in the table being
updated or in a related table. You won’t be able to specify an e-mail address not already
in the database, but you can instruct Access where to put the e-mail address in the mes-
sage being sent. Leave this set to the default—To Field—to have the address displayed in
the To fi eld in the Outlook message. Click Next to continue.

Figure 6-26 Enter a descriptive subject line and introduction on this page of the wizard and specify
where to place the e-mail address in the sent messages.

We recommend that in your introductory message for HTML forms, you always include

text instructing the recipient to click the Reply button before starting. It’s not always

intuitive from an end user’s perspective that they fi rst need to click Reply in order to fi ll

out the form. By including some additional instruction in the introduction, you can avoid

potential misunderstandings and support calls.

SIDE OUT Instruct the Recipient to Click Reply

We recommend that in your introductory message for HTML forms, you always include

text instructing the recipient to click the Reply button before starting. It’s not always

intuitive from an end user’s perspective that they fi rst need to click Reply in order to fi ll

out the form. By including some additional instruction in the introduction, you can avoid

potential misunderstandings and support calls.

Chapter 6

320 Chapter 6 Importing and Linking Data
The next page of the wizard, shown in Figure 6-27, informs you that Access has all the
information it needs to create the e-mail form and message. This page also provides
information on how to view the status of e-mail messages and how Outlook will pro-
cess the replies if you chose to have them automatically processed. Click Next to go to
the fi nal page of the wizard.

Figure 6-27 Access is now ready to create your e-mail form.

You can choose which recipients to send the HTML form to on this page of the wizard,
as shown in Figure 6-28. Because you asked Access to fetch the e-mail addresses from a
fi eld in your table, the wizard shows you the list of addresses that it found. Each e-mail
address to which you’re about to send the message is shown in the list with a check box
at its right. Above the list, on the right, is a Select All check box. If you select this check
box, Access selects all the e-mail addresses in the list. You can individually clear any
check boxes next to the addresses to have Access not send the e-mail form to that per-
son. If you added your e-mail address in the tblContacts table as instructed at the begin-
ning of this section, select the check box for your e-mail address and clear all the other
check boxes. (Much as we like to hear from our readers, we really don’t need an e-mail
message from you every time you follow this example!) Click Send to have Access create
the form message and send it using Outlook. You won’t be able to edit the messages
 further before Access sends them.

 Collecting Data via E-Mail 321

Ch
ap

te
r 6
Figure 6-28 You can select the people to whom you want to send the message on the fi nal page
of the wizard.

In the initial release of Access 2007, there is a bug in the program that might prevent

Access from sending the message if the fi eld containing e-mail addresses is a Hyperlink

data type and the address is formatted to display different text. As you’ll learn in Chapter

7, you can add a descriptor in the Text To Display box at the top of the Edit Hyperlink dia-

log box. All the e-mail addresses in the ContactsDataCopy.accdb sample database display

the name of the contact—Jeff Conrad, John Viescas, and so on—as shown in Figure 6-28.

If you want to be sure the data collection process works, use e-mail addresses in a plain

text fi eld or ensure that the hyperlink includes no display text.

If you chose to enter the e-mail addresses instead of using addresses in the database,
Access opens a new Outlook message with the information you provided in the wizard,
as shown in Figure 6-29. (The message might not receive immediate focus, so look on
your Windows taskbar for the message and maximize the window if necessary.) Figure
6-29 shows what your preview message looks like if you followed the previous instruc-
tions but chose to enter the e-mail addresses instead of using addresses in the database.

SIDE OUT Considerations with Hyperlink Fields in Data Collection

In the initial release of Access 2007, there is a bug in the program that might prevent

Access from sending the message if the fi eld containing e-mail addresses is a Hyperlink

data type and the address is formatted to display different text. As you’ll learn in Chaptery
7, you can add a descriptor in the Text To Display box at the top of the Edit Hyperlink dia-

log box. All the e-mail addresses in the ContactsDataCopy.accdb sample database display

the name of the contact—Jeff Conrad, John Viescas, and so on—as shown in Figure 6-28.

If you want to be sure the data collection process works, use e-mail addresses in a plain

text fi eld or ensure that the hyperlink includes no display text.

Chapter 6

322 Chapter 6 Importing and Linking Data
You can see the subject line you typed in the wizard and the custom introductory
message at the top of the body section. Following the introduction, you can see Access
has added some important information in a Note section. You can manually adjust the
text in this part of the message body or leave it as is. (The warning about not altering
the message applies to the recipient.) The rest of the message body has the 10 fi elds we
selected to include in this form. In Figure 6-29, you can also see the custom label we
used for the FirstName fi eld. After previewing the message, you can click the To button
to open your Outlook address book and select one or more recipients to send this mes-
sage to or manually type an e-mail address, and then click Send to send the message.

Figure 6-29 You can preview your message if you choose to manually enter the e-mail addresses.

Filling Out the HTML Form
When recipients receive the e-mail message form, it appears in their Inbox with the
 subject line you specifi ed in the wizard, as shown in Figure 6-30. If you sent this mes-
sage to yourself to see how this process works, open the message now to see what it
looks like.

 Collecting Data via E-Mail 323

Ch
ap

te
r 6
Figure 6-30 An e-mail data collection form has arrived in the Inbox.

When you open the message as a recipient, you see all the information you previewed in
Figure 6-29 if you chose to manually enter the e-mail addresses. (If you chose to use the
e-mail addresses found in the table, this is the fi rst time you’ll see the completed mes-
sage.) If you scroll down the message, you can see the form fi elds you need to fi ll in, but
Outlook locks the fi elds and prevents you from fi lling them in. To be able to fi ll in the
form fi elds, you need to click Reply fi rst, as we discussed previously. Click Reply now
and begin fi lling in the 10 fi elds, as shown in Figure 6-31. (We entered the information
for a fi ctitious employee found in the Housing Reservations sample database.)

Figure 6-31 After clicking Reply, you can fi ll in the fi elds on the form.

In Figure 6-31, you’ll notice additional instructions beneath each form fi eld. The HTML
form recognizes the data type and size of each table fi eld and displays some helpful text

Chapter 6

324 Chapter 6 Importing and Linking Data
for the user. The FirstName fi eld’s Field Size property is set to 50, so the HTML form
instructs the user to enter any text up to 50 characters. For fi elds defi ned as a Hyper-
link data type—such as the EmailName and Website fi elds—the HTML form instructs
the user to enter a hyperlink address in this fi eld. For fi elds defi ned as the Number data
type, the user is prompted to enter a numeric value. If you look at Figure 6-31, you’ll
also see that the HTML form includes a link under both the Title and Suffi x form fi elds.
These fi elds are designed to require a specifi c set of values with a lookup combo box or
list box. When Access builds your e-mail message using HTML, it includes the lookup
values at the bottom of the HTML form. Press and hold down the Ctrl key and click
the link labeled Click This Link (a bookmark actually) beneath the Title fi eld. Outlook
moves you to the bottom of the HTML form, as shown in Figure 6-32. You can see the
four title values and their numeric equivalents defi ned in the tlkpTitles table (Dr., Mr.
Mrs., and Ms.) and the four suffi x values defi ned in the tlkpSuffi xes table (II, Jr., PhD,
and Sr.). Find the values you need to enter for the two fi elds and then either scroll back
up in the form or click the Title or Suffi x link on the left to move back up in the form. At
the bottom of the message, Outlook places a sentence instructing the user to click Send
to submit the information. After you fi nish fi lling in the form, click Send to send the
message back to yourself.

You might see HTML tags in an HTML or InfoPath update data collection form for fi elds

defi ned in your table as Memo data types with the Text Format property set to Rich Text.

If you highlight all the text and HTML tags in the HTML form fi eld, you’ll see a mini-bar
appear over the fi eld with a group of controls to format the text. (You won’t see this

mini-bar on an InfoPath form.) These controls are similar to the controls in the Rich Text

group on the Home tab in Access 2007. If you change or remove any rich text formatting

on the data collection form, Outlook exports the new formats into the Access fi eld.

CAUTION!
Be careful when using fi elds defi ned as lookup values in a data collection form because

Access needs to load all of these values into the HTML or InfoPath form. If your lookup

table has hundreds or thousands of records, it will take Access a very long time to load all

this information into the data collection form. In this example, we purposely omitted the

WorkPostalCode and HomePostalCode fi elds because the related lookup table (tlkpZips)

has more than 50,000 rows!

SIDE OUT Formatting Rich Text Fields

You might see HTML tags in an HTML or InfoPath update data collection form for fi elds

defi ned in your table as Memo data types with the Text Format property set to Rich Text.

If you highlight all the text and HTML tags in the HTML form fi eld, you’ll see a mini-bar
appear over the fi eld with a group of controls to format the text. (You won’t see this

mini-bar on an InfoPath form.) These controls are similar to the controls in the Rich Text

group on the Home tab in Access 2007. If you change or remove any rich text formatting

on the data collection form, Outlook exports the new formats into the Access fi eld.

C U O !

 Collecting Data via E-Mail 325

ap
te

r 6
Figure 6-32 Access includes the lookup values at the bottom of the HTML form to help you enter
the correct values in the form fi elds.

Having Outlook Automatically Process the Replies
After the message returns to you, Outlook places it in the folder you designated in the
wizard. In our example, we left the designated folder set to the default—Access Data
Collection Replies. In Figure 6-33, you can see that the message has arrived in the
appropriate folder. You chose to have this message automatically processed, so Outlook
immediately exported the new record to the tblContacts table. Notice, under the Data
Collection Status column, that Outlook successfully exported the record to Access. You
can open the message to see how the recipient fi lled in the form fi elds, but it’s not neces-
sary to open the reply in order to have Outlook export the data.

CAUTION!
If you’re using an HTTP-based e-mail system such as MSN or Hotmail, your new mes-

sages arrive in the inbox for your e-mail account, not the primary Inbox in Outlook. You’ll

have to move the messages to your Outlook Inbox and process them manually by open-

ing each message and clicking the Export To Access button on the message Ribbon.

C U O !
Ch

Chapter 6

326 Chapter 6 Importing and Linking Data
Figure 6-33 Access automatically processes the message when you receive it.

Minimize your Outlook program and then maximize the ContactsDataCopy.accdb
database again (or open the database if you closed it) to see if the record has been
added. Select the tblContacts table in the Navigation Pane and then open it in Datasheet
view. As you can see in Figure 6-34, a new record has been added to the table with the
contact information you provided on the HTML form. Our client has helped add new
information to the database without ever opening Access; in fact, the recipients do not
even need to have Access installed for this process.

Figure 6-34 Our new contact information has now been added to the tblContacts table.

 Collecting Data via E-Mail 327

pt
er

 6
Collecting Data Using InfoPath Forms
Access 2007 also allows you to send InfoPath forms to e-mail recipients to collect data.
Unlike HTML forms, InfoPath forms provide richer tools, such as the ability to display
drop-down lists. To be able to reply to messages sent with InfoPath forms, your recipi-
ents need to have Outlook 2007 and InfoPath 2007 installed on their computers. In
addition to demonstrating collecting data through InfoPath forms, we’ll choose differ-
ent options in the wizard so that you can understand some of the other features avail-
able with using InfoPath.

Open TasksEmailCollection.accdb from the folder where you installed your sample
fi les. For this example, we’ll update an existing record in the Tasks table and add a new
record to the Tasks table. However, because updating data via e-mail requires an e-mail
address in the database to validate your authority to perform the update, you’ll need to
add yourself and your e-mail address if you want to follow along in this section. You’ll
also need to add a task assigned to you that you can update. Open the Contacts table
in Datasheet view, go to the new record at the end, add your name and valid e-mail
address, and save the record. Open the Tasks table in Datasheet view, and add a new
sample task assigned to yourself. Close both tables when you’re done.

Close any open database objects, select the Tasks table in the Navigation Pane, and on
the External Data tab, in the Collect Data group, click the Create E-Mail button. Alterna-
tively, you can right-click the table in the Navigation Pane and click Collect And Update
Data Via E-Mail on the shortcut menu. Access opens the fi rst page of the e-mail collec-
tion wizard, as shown in Figure 6-35. This fi rst page is an introductory page, which out-
lines the steps you take to complete the process. For this example, you need to complete
six major steps. Click Next to proceed to the second page of the wizard.
Ch
a

Chapter 6

328 Chapter 6 Importing and Linking Data
Figure 6-35 The fi rst page of the wizard outlines the steps you take to collect data through e-mail.

The second page of the wizard, shown in Figure 6-36, asks you to choose between creat-
ing an HTML form or an InfoPath form for data entry. Remember that the people who
receive the InfoPath form need to have InfoPath 2007 and Outlook 2007 installed on
their computers to be able to read and fi ll out the data form. For this example, select
Microsoft Offi ce InfoPath Form and click Next.

 Collecting Data via E-Mail 329

Ch
ap

te
r 6
Figure 6-36 Select the second option to create an InfoPath form.

The next page of the wizard, shown in Figure 6-37, asks you to choose whether users
should receive a blank form or a form that includes data from within the database they
will update. If you chose a table that has no records, a table that does not have a pri-
mary key defi ned, or a query that combines two or more tables, you will not see this
page of the wizard. (You’ll learn more about creating queries using two or more tables
in Chapter 8.) If you select the fi rst option after having chosen the InfoPath form on the
previous page, a recipient of your e-mail can add one or more records with each reply.
The recipients can add additional records by clicking the Insert A Row command on the
InfoPath form.

Chapter 6

330 Chapter 6 Importing and Linking Data
Figure 6-37 You can choose to collect new information or update existing records on this page of
the wizard.

You can use the second option, Update Existing Information, only if e-mail addresses
are stored in a fi eld in the table or a related table. With this option, e-mail recipients can
view or update one or more records with each reply, depending on how many records
are associated with their e-mail address. Recipients can also add additional records
by clicking the Insert A Row command on the InfoPath form unless you disable this
capability in an option presented later in the wizard. In this example, you will update
the existing record in the Tasks table and create a new record, so select Update Existing
Information and then click Next to proceed.

On the next page of the wizard, shown in Figure 6-38, you decide which fi elds from the
table or query to include in the e-mail form. By default, Access automatically places any
fi elds whose Required property is set to Yes in the Fields To Include In E-Mail Message
list on the right. Notice that Access places the Title and Status fi elds in the Fields To
Include In E-Mail Message list because they are required fi elds. For this example, we
want to use all the fi elds in the Tasks table, so click the double right arrow (>>) button
to move the remaining six fi elds to the list on the right, as shown in Figure 6-38. If you
don’t want to include all fi elds and you move a fi eld in error, you can select that fi eld
and move it back by clicking the left arrow (<) button. If you decide you want to start
over, you can remove all fi elds (except the required fi elds) by clicking the double left
arrow (<<) button.

 Collecting Data via E-Mail 331

Ch
ap

te
r 6
Figure 6-38 Move all the fi elds in the Tasks table to the Fields To Include In E-Mail Message list.

Notice that Access fi lls in the fi eld’s Caption property (or the fi eld name if the fi eld does
not have a caption) in the Label To Display In Front Of The Field In The E-Mail Message
box under Field Properties. You can customize this label to display different text or
leave it as is. For this example, leave each of the label captions set to their defaults. The
recipients will see the fi elds in the order that they appear in the list on the right. You
can select any fi eld in this list and move it up or down in the sequence by clicking the
up and down arrows to the right of the list. The default sequence is fi ne for this exam-
ple, so you don’t need to move any fi elds. Also, leave the Read-Only check box cleared
for all of the fi elds, and then click Next to continue to the next page.

The next page of the wizard, shown in Figure 6-39, asks you to specify how you want to
manage the replies. By default, all replies are stored in an Outlook folder called Access
Data Collection Replies. If you want to change where Outlook saves replies, click the
Access Data Collection Replies link. The wizard opens the Select Folder dialog box in
Outlook where you can select the Outlook folder you want to use or create a new folder.
In this case, leave the default Access Data Collection Replies folder as the destination
folder. In the HTML example earlier, you chose to have Outlook automatically process
the replies. In this example, leave the Automatically Process Replies And Add Data To
Tasks check box cleared so that you can see how to manually process the replies. The
Only Allow Updates To Existing Data check box is available only when you are updat-
ing data and you have chosen to automatically process the replies. If you choose to
automatically process the replies and then select this option, Access does not allow new

Chapter 6

332 Chapter 6 Importing and Linking Data
records to be added to the table. This option appears dimmed in our example because
we are going to manually process the replies. Remember also from the HTML example
that when you ask Outlook to automatically process replies, you can click Set Proper-
ties To Control The Automatic Processing Of Replies. For details, refer to Figure 6-22 on
page 314. Click Next to continue.

Figure 6-39 Leave these check boxes cleared to manually process the replies.

On the next page of the wizard, shown in Figure 6-40, you tell Access which fi eld con-
tains the recipients’ e-mail addresses. When you fi rst see this page of the wizard, the
default option is to select a fi eld within the current table or query. If an e-mail address
exists in the table you are updating, click the arrow in the Select A Field box below The
Current Table Or Query and select the fi eld that contains the e-mail addresses. How-
ever, in this case, no e-mail addresses are stored in the Tasks table in this database;
rather, they are stored in the E-mail Address fi eld in the Contacts table, so select the An
Associated Table option.

 Collecting Data via E-Mail 333

ha
pt

er
 6
Figure 6-40 You can choose a fi eld in the current table or query or in an associated table from
which to obtain the e-mail addresses.

After you select An Associated Table, Access enables the Select A Field box beneath this
option. You need to select the fi eld in the Tasks table that links to a related fi eld in the
Contacts table. In this database there is a relationship defi ned between the Assigned To
fi eld in the Tasks table and the ID fi eld in the Contacts table. Select Assigned To in this
box, and Access displays one additional option, as shown in Figure 6-41. Access dis-
plays all the fi elds in the Contacts table in the Select A Field box. Select E-mail Address
from the list of fi elds and then click Next to go to the next page of the wizard. Note
that if the fi eld you choose under An Associated Table is associated with more than one
table, Access displays two lists. The fi rst list displays the names of the associated tables.
Choose the table you want, and then select the associated fi eld from the second list,
which displays the names of all the fi elds in the table you select from the fi rst list.
C

Chapter 6

334 Chapter 6 Importing and Linking Data
Figure 6-41 Select E-mail Address from the fi eld list for the Contacts table.

On the next page of the wizard, you can specify the Subject line of the e-mail, write
an introductory message, and choose in which Outlook message fi eld the address will
appear (To, Cc, or Bcc), as shown in Figure 6-42. In the Subject box, type

Update Assigned Tasks

In the Introduction box, type

Please fi ll out the form included in this message to update the Task information and
send it back to me.

Click Submit when you are fi nished.

Thank you.

Because you chose to update data, three options appear at the bottom of this page,
under Add Recipients’ E-Mail Addresses In The. To be able to validate the updating of
existing rows, Outlook must be able to match the e-mail address of the sender with an
e-mail fi eld stored in the table being updated or in a related table. You won’t be able to
specify an e-mail address not already in the table, but you can tell Access where to put
the e-mail address in the message being sent. Leave this set to the default option—To
Field—to have the address displayed in the To fi eld in the Outlook message. Click Next
to continue.

 Collecting Data via E-Mail 335

Ch
ap

te
r 6
Figure 6-42 Enter a descriptive subject line and introduction on this page of the wizard and specify
where to place the e-mail address in the sent messages.

The last page of the wizard, shown in Figure 6-43, informs you that Access has all the
information it needs to create the e-mail form and message. You’ll notice in Figure 6-43
that Access displays a warning message at the bottom of this page. You might see any
one of three possible messages in this box:

O “Note: These e-mail messages might contain data that is of a confi dential or sen-
sitive nature.” Access always displays this message when you update existing
records because the recipients might see data currently in the table that is of a
sensitive nature. You might consider removing from the e-mail any fi elds with
sensitive data if you are concerned that this could be a problem.

O “You currently have an exclusive lock on the database; automatic processing will
fail until the lock is released.” Outlook cannot process replies if you have the data-
base open in exclusive mode. In order to process the replies, you need to close
the database and then reopen it in shared mode. By default, Access should open
all databases in shared mode unless you changed the setting in the Advanced cat-
egory of the Access Options dialog box. You can also open a database in exclusive
or shared mode using the Open dialog box if you click the arrow on the Open
button and then click the appropriate command (such as Open Exclusive).

O “Some records do not contain a valid address in the specifi ed e-mail address
fi eld. No data will be returned for these rows.” Before you get to this page of the

Chapter 6

336 Chapter 6 Importing and Linking Data
wizard, Access runs a quick scan for any Null values in the e-mail address fi eld
you designated on the previous page of the wizard. Access displays this warning
message if it fi nds any Null values because it will not be able to send a message for
all records that could be updated. You can either proceed with the data collection
process with some being left out, or cancel the wizard and then add any missing
e-mail addresses to the table.

Click Next to go to the fi nal page of the wizard.

Figure 6-43 Access displays potential issues that might cause problems with the data collection
process.

You can choose which recipients to send the InfoPath form to on the fi nal page of the
wizard, as shown in Figure 6-44. Each e-mail address related to a record you’re about
to send out for update is shown in the list with a check box at its right. Above the list,
to the right, is a Select All check box. If you select this check box, Access selects all
the e-mail addresses in the list. You can individually clear any check boxes next to the
addresses to have Access not send the e-mail form to that person. When we ran our
example, there was only one e-mail address related to the one record in the Tasks table.
If you added your e-mail address in the Contacts table and a related record in the Tasks
table as instructed at the beginning of this section, select your e-mail address and clear
the check box next to jconrad@mvps.org. (Much as we like to hear from our readers, we
really don’t need an e-mail message from you every time you follow this example!) Click
Send to have Access create the form message and send it using Outlook 2007.

 Collecting Data via E-Mail 337

Ch
ap

te
r 6
Figure 6-44 You can select the people to whom you want to send the message on the fi nal page
of the wizard.

Filling Out the InfoPath Form
When recipients receive an e-mail form created using InfoPath, the message arrives in
their Inboxes with an attachment. After opening the message, a recipient can fi ll out
the form and update the information. Unlike HTML forms, InfoPath allows you to send
forms that are easier for the recipients to fi ll out. In Figure 6-45, you can see that the
Status fi eld is displayed as a combo box. The recipient must select from one of the fi ve
available Status options because this fi eld is a lookup fi eld in the Tasks table.

With InfoPath forms, you can have more control over the data that comes back in the
replies. You achieve this by designing fi elds in your tables that require a specifi c set
of values with a lookup combo box or list box. When Access builds your e-mail mes-
sage using InfoPath, it includes the lookup values in the InfoPath form. If you were, for
example, to send an HTML form with the same fi elds in the Tasks table, the recipients
can see all the lookup values listed at the bottom of the form. However, they could still
type any value into the Status box, including text that is not one of your fi ve choices.
Outlook will encounter errors processing the HTML reply if it tries to export that
record into the Tasks table in Access because the Limit To List property of the Status
fi eld is set to True. In Figure 6-45, you also see a button next to any date fi eld, which
opens a calendar for you to select a date, just as you can from within Access. If you use

Chapter 6

338 Chapter 6 Importing and Linking Data
InfoPath forms, you can reduce the number of problems with inaccurate data, and make
it easier for users to fi ll out the form with the built-in InfoPath form controls.

Figure 6-45 InfoPath forms allow you to use combo box controls for data entry.

For this example, change the status from Not Started to Completed by selecting Com-
pleted in the Status box, and change the value in the % Complete fi eld from 0 to 100
to indicate the task is 100 percent complete. You can also create a new record in the
InfoPath form by clicking the Insert A Row link in the lower-left corner of the form, as
shown in Figure 6-46. For example, you might want to assign a new task to yourself or
another contact in the database.

Figure 6-46 Click Insert A Row on an InfoPath form to add additional records.

After you click the link, a new InfoPath form appears below the existing form with
blank fi elds, as shown in Figure 6-47. You can now fi ll out the form fi elds for a new
record. You’ll notice the two required fi elds—Title and Status—have a red asterisk on the
right to indicate to the recipient that those fi elds are required. You might also notice the
InfoPath form recognizes the data type and size of each table fi eld and displays some
helpful text for the user. The Title fi eld’s Field Size property is set to 150, so InfoPath

 Collecting Data via E-Mail 339

Ch
ap

te
r 6
instructs the user to enter any text up to 150 characters. The % Complete fi eld is a
Number data type in the Tasks table, so InfoPath instructs the user to enter a numeric
value in this fi eld.

Figure 6-47 The recipient of the e-mail can add new records in the InfoPath form if you selected
this option in the wizard.

If you like, you can create a new record in this blank InfoPath form using the following
information:

Title Review Chapter 6

Status Not Started

Priority (1) High

% Complete 0

Assigned To John Viescas

Description Please review all the changes to Chapter 6

Start Date Click the calendar control and click the current date

Due Date Click the calendar control and select the date three days after the
 start date

Your completed record should be similar to Figure 6-48.

Chapter 6

340 Chapter 6 Importing and Linking Data
Figure 6-48 Fill out the blank form to add a new record to the Tasks table.

If you want to create more records, you can scroll down and click the Insert A Row link
again to display an additional blank form. If you need to delete a record, click the arrow
button in the upper-left corner of the InfoPath form and then click Remove on the menu
that appears, as shown in Figure 6-49. You can also insert a new blank record above or
below the current record by clicking the Insert Above or Insert Below option.

Figure 6-49 Click Remove to delete a record in the InfoPath form.

After you update the fi rst record and add the new record on this InfoPath form, click
Submit on the Outlook Standard toolbar to send this message. Outlook opens a con-
fi rmation dialog box where you can modify the To, Cc, or Bcc addresses, change the
subject, and enter explanatory text. Click Send in that dialog box to send your updates.
Outlook displays a confi rmation message box indicating that the form was submitted
successfully.

 Collecting Data via E-Mail 341

Ch
ap

te
r 6
Note
After you click Submit to send the message and then close the message, InfoPath dis-

plays a message that the form was changed and asks if you want to save the changes.

You don’t need to save the form because Outlook has already sent the message.

Manually Processing the Replies
When you collect data via e-mail, you can choose to have the replies automatically
processed or to manually process them yourself. In our example using InfoPath forms,
you chose to manually process the replies. In Figure 6-50 you can see the message is in
the destination folder, but the Data Collection Status column indicates Message Unpro-
cessed. No data has yet been exported to the Tasks table.

Figure 6-50 The Data Collection Status column in Outlook indicates that the message has not been
processed.

To manually process this reply, right-click the message in Outlook 2007 and click
Export Data To Microsoft Offi ce Access on the shortcut menu, as shown in Figure 6-51.

Access opens the Export Data To Microsoft Access dialog box, as shown in Figure 6-52.
You can see that the fi rst record is the one with updates, and the second is the new
record. You can use the horizontal scroll bar to scroll to the right to see what data will
be added or changed in the various fi elds. If you fi nd something inaccurate, perhaps an
invalid Start Date or Due Date value, you can click Cancel to stop the export process.
You can then send the message back to the recipient and ask for corrected data. See
“Managing and Resending Data Collection Messages from Access” on page 343 for more
information. All the data in this example should be fi ne, so click OK to have Outlook
export the data to Access.

Note
After you click Submit to send the message and then close the message, InfoPath dis-

plays a message that the form was changed and asks if you want to save the changes.

You don’t need to save the form because Outlook has already sent the message.

Chapter 6

342 Chapter 6 Importing and Linking Data
Figure 6-51 Use the message’s context-sensitive menu within Outlook to export the data to Access.

Figure 6-52 You can review the data to be exported to Access in this dialog box.

If the export process is successful, Outlook displays a confi rmation dialog box. Click
OK to close the dialog box. If Outlook encounters any errors in the export process, it
displays a message indicating that it failed to export all or part of the data. In this case,
you should resend the message and ask for corrected data.

 Collecting Data via E-Mail 343

ap
te

r 6
Return to the TasksEmailCollection.accdb sample database and open the Tasks table in
Datasheet view. In Figure 6-53, you can see the fi rst record is updated with the correct
data—the Status fi eld is now changed from Not Started to Completed and the % Com-
plete fi eld is changed from 0 to 100 to indicate the task is 100 percent complete. You
can also see that the new record concerning Chapter 6 has been added.

Figure 6-53 The updated and new data is now added to the Tasks table.

 Managing and Resending Data Collection Messages from Access
You can review the status of sent data collection messages and resend messages by
clicking the Manage Replies button in the Collect Data group on the External Data
tab on the Ribbon. Access opens the Manage Data Collection Messages dialog box, as
shown in Figure 6-54. Under Select A Data Collection Message, you can see the example
message we sent, which table or query the message was based on, the message type,
and the destination Outlook folder. When you select a message in the list, the Message
Details section in the bottom half of the dialog box displays the fi elds included in the
message, the date and time the message was created and last sent, whether the reply
was automatically or manually processed, and the date and time to stop automatic
 processing.

To delete a message from this dialog box, select it and then click the Delete This E-Mail
Message button. To review the message options, select the message and click the Mes-
sage Options button. Access opens the Collecting Data Using E-Mail Options dialog
box previously shown in Figure 6-22 on page 314. Here you can review and modify the
settings for the message. For example, if you set the original message to automatically
process replies, you can turn off automatic processing, change the number of messages
to be processed, or change the automatic processing end date. You can also turn on
automatic processing if it wasn’t enabled in the original message. Note that any changes
you make apply to new replies you receive.
Ch

Chapter 6

344 Chapter 6 Importing and Linking Data
Figure 6-54 You can review the status of sent messages in the Manage Data Collection Messages
dialog box.

If want to send a message again—either because the recipient entered incorrect or
incomplete data or you want the recipient to send new data—you can select the mes-
sage and click the Resend This E-Mail Message button. You might also want to send the
same message to additional people or resend it to someone who failed to receive the
initial message. Note that you cannot go to Outlook and forward a data collection mes-
sage; you must use the resend process. When you click the Resend This E-Mail Message
button, Access restarts the Collecting Data Through E-Mail Messages wizard beginning
with the page that asks you how you want to process replies, as shown in Figure 6-55.
(This page is similar to Figure 6-39 page 332.) You can adjust any settings—such as man-
ual or automatic replies or where the e-mail addresses come from—and customize the
message details. You can click through the remaining steps of the wizard and then click
Create or Send depending on what type of message (HTML or InfoPath) you are send-
ing. Access creates a new message and sends it to the recipients using Outlook 2007.

 Collecting Data via E-Mail 345

Ch
ap

te
r 6
Figure 6-55 The resend process takes you back to this data collection wizard page.

Note that the resend process starts beyond the point in the wizard where you select

the format of the message (HTML or InfoPath), choose whether records will be added or

updated, and specify the fi elds in the message. If you do not need to adjust the format of

the message, the add or update option, or the fi elds used in the data collection message,

you can simply resend a previous message. If, however, you need to choose different

fi elds or a different table or query to update, you must create a new message.

Now that you know how to build tables, modify them, and import and link them, it’s
time to move on to more fun stuff—building queries on your tables—in the next chapter.

SIDE OUT Starting Over or Resending?

Note that the resend process starts beyond the point in the wizard where you select

the format of the message (HTML or InfoPath), choose whether records will be added or

updated, and specify the fi elds in the message. If you do not need to adjust the format of

the message, the add or update option, or the fi elds used in the data collection message,

you can simply resend a previous message. If, however, you need to choose different

fi elds or a different table or query to update, you must create a new message.

CHAPTER 7

Creating and Working
with Simple Queries

In the last three chapters, you learned how to create tables, modify them, and link or
import tables from other data sources. Although you can certainly build forms and

reports that get their data directly from your tables, most of the time you will want to
sort or fi lter your data or display data from more than one table. For these tasks, you
need queries.

When you defi ne and run a select query, which selects information from the tables and
queries in your database, Microsoft Offi ce Access 2007 creates a recordset of the selected
data. In most cases, you can work with a recordset in the same way that you work with
a table: You can browse through it, select information from it, print it, and even update
the data in it. But unlike a real table, a recordset doesn’t actually exist in your database.
Offi ce Access 2007 creates a recordset from the data in the source tables of your query
at the time you run the query. Action queries—which insert, update, or delete data—will
be covered in Chapter 9, “Modifying Data with Action Queries.”

As you learn to design forms and reports later in this book, you’ll fi nd that queries are
the best way to focus on the specifi c data you need for the task at hand. You’ll also fi nd
that queries are useful for providing choices for combo and list boxes, which make
entering data in your database much easier.

Note
The examples in this chapter are based on the tables and data from the Conrad Systems

Contacts sample database (Contacts.accdb), a backup copy of the data for the Contacts

sample database (ContactsDataCopy.accdb), the Housing Reservations database (Hous-

ing.accdb), and the backup copy of the data for the Housing Reservations sample data-

base (HousingDataCopy.accdb) on the companion CD included with this book. The query

results you see from the sample queries you build in this chapter might not exactly match

what you see in this book if you have reloaded the sample data using zfrmLoadData in

either application or have changed any of the data in the tables.

Note
The examples in this chapter are based on the tables and data from the Conrad Systems

Contacts sample database (Contacts.accdb), a backup copy of the data for the Contacts

sample database (ContactsDataCopy.accdb), the Housing Reservations database (Hous-

ing.accdb), and the backup copy of the data for the Housing Reservations sample data-

base (HousingDataCopy.accdb) on the companion CD included with this book. The query

results you see from the sample queries you build in this chapter might not exactly match

what you see in this book if you have reloaded the sample data using zfrmLoadData in

either application or have changed any of the data in the tables.

Selecting Data from a Single Table 349

Testing Validation Rule Changes 381

Working in Query Datasheet View 384
 347

Chapter 7

348 Chapter 7 Creating and Working with Simple Queries
Access 2007 provides two ways to begin creating a new query:

O Click the Query Wizard button in the Other group on the Create tab on the Rib-
bon. A dialog box appears that lets you select one of the four query wizards.
(You’ll learn about query wizards in Chapter 8, “Building Complex Queries.”)

O Click the Query Design button in the Other group on the Create tab on the Rib-
bon to begin creating new query using the query designer.

To open an existing query in Design view, make sure you have queries showing in the
Navigation Pane. To display all the queries in your database, click the bar at the top of
the Navigation Pane and click Object Type under Navigate To Category and then click
Queries under Filter By Group. You can open the query you want in Design view by
selecting the query in the Navigation Pane and then pressing Ctrl+Enter. You can also
right-click a query name in the Navigation Pane and click Design View on the shortcut
menu. Figure 7-1 shows the list of queries for the Conrad Systems Contacts database.
Please note that the fi gure shows you only some of the queries in the database. Use
the scroll bar in the Navigation Pane to see the complete list of queries available in the
 Conrad Systems Contacts database.

Query list in
Navigation Pane

 Query Design button
Query Wizard button

Figure 7-1 The Navigation Pane has been fi ltered to show all the queries in the Conrad Systems
Contacts database.

 Selecting Data from a Single Table 349

Ch
ap

te
r 7
Figure 7-2 shows a query that has been opened in Design view. The upper part of the
Query window contains fi eld lists, and the lower part contains the design grid.

Design grid

 Field lists of tables or
queries used in this query

Figure 7-2 A query open in Design view shows the tables and fi eld lists.

Selecting Data from a Single Table
One advantage of using queries is that they allow you to fi nd data easily in multiple
related tables. Queries are also useful, however, for sifting through the data in a single
table. All the techniques you use for working with a single table apply equally to more
complex multiple-table queries. This chapter covers the basics about building queries to
select data from a single table. The next chapter shows you how to build more complex
queries with multiple tables, totals, parameters, and more.

The easiest way to start building a query on a single table is to click the Query Design
button in the Other group on the Create tab (see Figure 7-1). Open the Conrad Systems
Contacts database and then click the Query Design button. Access 2007 displays the
Show Table dialog box on top of the query design grid as shown in Figure 7-3.

Chapter 7

350 Chapter 7 Creating and Working with Simple Queries
Figure 7-3 The Show Table dialog box allows you to select one or more tables or queries to build a
new query.

Select tblContacts on the Tables tab of the Show Table dialog box and then click Add to
place tblContacts in the upper part of the Query window. Click Close in the Show Table
dialog box to view the window shown in Figure 7-4.

As mentioned earlier, the Query window in Design view has two main parts. In the
upper part you fi nd fi eld lists with the fi elds for the tables or queries you chose for this
query. The lower part of the window is the design grid, in which you do all the design
work. Each column in the grid represents one fi eld that you’ll work with in this query.
As you’ll see later, a fi eld can be a simple fi eld from one of the tables or a calculated fi eld
based on several fi elds in the tables.

You use the fi rst row of the design grid to select fi elds—the fi elds you want in the result-
ing recordset, the fi elds you want to sort by, and the fi elds you want to test for values. As
you’ll learn later, you can also generate custom fi eld names (for display in the resulting
recordset), and you can use complex expressions or calculations to generate a calcu-
lated fi eld.

The second row shows you the name of the table from which you selected a fi eld. If you
don’t see this row, you can display it by clicking Table Names in the Show/Hide group
on the Design tab below Query Tools. This isn’t too important when building a query

 Selecting Data from a Single Table 351

Ch
ap

te
r 7
on a single table, but you’ll learn later that this row provides valuable information when
building a query that fetches data from more than one table or query.

Figure 7-4 The Query window in Design view for a new query on tblContacts shows the table with
its list of fi elds in the top part of the window.

In the Sort row, you can specify whether Access 2007 should sort the selected or calcu-
lated fi eld in ascending or in descending order. In the Show row, you can use the check
boxes to indicate the fi elds that will be included in the recordset. By default, Access
2007 includes all the fi elds you place in the design grid. Sometimes you’ll want to
include a fi eld in the query to allow you to select the records you want (such as contacts
born in a certain date range), but you won’t need that fi eld in the recordset. You can
add that fi eld to the design grid so that you can defi ne criteria, but you should clear the
Show check box beneath the fi eld to exclude it from the recordset.

Finally, you can use the Criteria row and the row(s) labeled Or to enter the criteria you
want to use as fi lters. After you understand how a query is put together, you’ll fi nd it
easy to specify exactly the fi elds and records that you want.

Specifying Fields
The fi rst step in building a query is to select the fi elds you want in the recordset. You
can select the fi elds in several ways. Using the keyboard, you can tab to a column in
the design grid and press Alt+Down Arrow to open the list of available fi elds. (To move
to the design grid, press F6.) Use the Up Arrow and Down Arrow keys to highlight the
fi eld you want, and then press Enter to select the fi eld.

Chapter 7

352 Chapter 7 Creating and Working with Simple Queries
Another way to select a fi eld is to drag it from one of the fi eld lists in the upper part of
the window to one of the columns in the design grid. In Figure 7-5, the LastName fi eld
is being dragged to the design grid. When you drag a fi eld, the mouse pointer turns
into a small rectangle.

LastName field being dragged and
dropped in the design grid

Figure 7-5 You can drag a fi eld from the table fi eld list to a column in the design grid.

At the top of each fi eld list in the upper part of the Query window (and also next to the
fi rst entry in the Field drop-down list in the design grid) is an asterisk (*) symbol. This
symbol is shorthand for selecting “all fi elds in the table or the query” with one entry
on the Field line. When you want to include all the fi elds in a table or a query, you don’t
have to defi ne each one individually in the design grid unless you also want to defi ne
some sorting or selection criteria for specifi c fi elds. You can simply add the asterisk to
the design grid to include all the fi elds from a list. Note that you can add individual
fi elds to the grid in addition to the asterisk in order to defi ne criteria for those fi elds,
but you should clear the Show check box for the individual fi elds so that they don’t
appear twice in the recordset.

For this exercise, select ContactID, LastName, FirstName, WorkStateOrProvince, and
BirthDate from the tblContacts table in the Conrad Systems Contacts database. You
can select the fi elds one at a time by dragging and dropping them in the design grid.
You can also double-click each fi eld name, and Access will move it to the design grid
into the next available slot. Finally, you can click on one fi eld you want and then hold
down the Ctrl key as you click on additional fi elds or hold down the Shift key to select a
group of contiguous fi elds. Grab the last fi eld you select and drag them all to the design

 Selecting Data from a Single Table 353

Ch
ap

te
r 7
grid. If you switch the Query window to Datasheet view at this point, you’ll see all the
records, containing only the fi elds you selected from the underlying table.

Another easy way to select all the fi elds in a table is to double-click the title bar of the

fi eld list in the upper part of the Query window—this highlights all the fi elds. Then click

any of the highlighted fi elds and drag them as a group to the Field row in the design

grid. While you’re dragging, the mouse pointer changes to a multiple rectangle icon,

indicating that you’re dragging multiple fi elds. When you release the mouse button,

you’ll see that Access 2007 has copied all the fi elds to the design grid for you.

Setting Field Properties
In general, a fi eld that is output by a query inherits the properties defi ned for that fi eld
in the table. You can defi ne a different Description property (the information that is
displayed on the status bar when you select that fi eld in a Query window in Datasheet
view), Format property (how the data is displayed), Decimal Places property (for
numeric data other than integers), Input Mask property, Caption property (the column
heading), and Smart Tags property. We’ll show you the details of how to use a smart tag
in Chapter 12, “Customizing a Form.”

For details about fi eld properties, see Chapter 4, “Creating Your Database and Tables.”

When you learn to defi ne calculated fi elds later in this chapter, you’ll see that it’s a good
idea to defi ne the properties for these fi elds. If the fi eld in the query is a foreign key
linked to another table, you can also set the Lookup properties as described in Chap-
ter 5, “Modifying Your Table Design.” Access propagates Lookup properties that you
have defi ned in your table fi elds; however, you can use the properties on the Lookup tab
in the query’s Property Sheet pane to override them.

Note
The Access 2007 query designer lets you defi ne Lookup properties for any text or

numeric fi eld (other than AutoNumber). The fi eld doesn’t have to be a defi ned foreign

key to another table. You might fi nd this useful when you want the user to pick from a

restricted value list—such as M or F for a Gender fi eld.

To set the properties of a fi eld, click any row of that fi eld’s column in the design grid,
and then click the Property Sheet button in the Show/Hide group of the Design

SIDE OUT Another Way to Select All Fields

Another easy way to select all the fi elds in a table is to double-click the title bar of the

fi eld list in the upper part of the Query window—this highlights all the fi elds. Then click

any of the highlighted fi elds and drag them as a group to the Field row in the design

grid. While you’re dragging, the mouse pointer changes to a multiple rectangle icon,

indicating that you’re dragging multiple fi elds. When you release the mouse button,

you’ll see that Access 2007 has copied all the fi elds to the design grid for you.

Note
The Access 2007 query designer lets you defi ne Lookup properties for any text or

numeric fi eld (other than AutoNumber). The fi eld doesn’t have to be a defi ned foreign

key to another table. You might fi nd this useful when you want the user to pick from a

restricted value list—such as M or M F for a Gender fi eld.F

Chapter 7

354 Chapter 7 Creating and Working with Simple Queries
 contextual tab to display the property sheet, shown in Figure 7-6. Even though the
fi elds in your query inherit their properties from the underlying table, you won’t see
those properties displayed here. For example, the BirthDate fi eld in tblContacts has
both its Description and Caption set to Birth Date and a Format set to mm/dd/yyyy. If
you click in the BirthDate fi eld in your query and open the property sheet, you will see
that none of the properties show values. Use the property settings in the property sheet
to override any inherited properties and to customize how a fi eld looks when viewed
for this query. Try entering new property settings for the BirthDate fi eld, as shown in
Figure 7-6.

Figure 7-6 In the property sheet, you can set properties for the BirthDate fi eld.

One of the quickest ways to see if a fi eld in a query has the properties you want is to

switch to Datasheet view. If the fi eld isn’t displayed the way you want, you can switch

back to Design view and override the properties in the query.

If you make these changes and switch to Datasheet view, you’ll see that the BirthDate
column heading is now Birthday; that the date displays day name, month name, day
number, and year; and that the text on the status bar matches the new description, as
shown in Figure 7-7. (Grab the right edge of the Birthday header with your mouse and
drag it right to open the column so that you can see all the date values.)

SIDE OUT Switching Views to Check Field Properties

One of the quickest ways to see if a fi eld in a query has the properties you want is to

switch to Datasheet view. If the fi eld isn’t displayed the way you want, you can switch

back to Design view and override the properties in the query.

 Selecting Data from a Single Table 355

Ch
ap

te
r 7
Field format is now long date

A new description is displayed on the status bar

Field caption is changed

Figure 7-7 The BirthDate fi eld is now displayed with new property settings.

Entering Selection Criteria
The next step is to further refi ne the records you want by specifying criteria on one or
more fi elds. The example shown in Figure 7-8 selects contacts working in the state of
California.

Entering selection criteria in a query is similar to entering a validation rule for a fi eld,
which you learned about in Chapter 4. To look for a single value, simply type it in the
Criteria row for the fi eld you want to test. If the fi eld you’re testing is a text fi eld and the
value you’re looking for has any blank spaces in it, you must enclose the value in quota-
tion marks. Note that Access adds quotation marks for you around single text values.
(In Figure 7-8, we typed CA, but Access replaced what we typed with "CA" after we
pressed Enter.)

If you want to test for any of several values, enter the values in the Criteria row,
 separated by the word Or. For example, specifying CA Or NC searches for records for
California or North Carolina. You can also test for any of several values by entering
each value in a separate Criteria or Or row for the fi eld you want to test. For example,
you can enter CA in the Criteria row, NC in the next row (the fi rst Or row), and so on—
but you have to be careful if you’re also specifying criteria in other fi elds, as explained
in the section “AND vs. OR” on page 357.

Chapter 7

356 Chapter 7 Creating and Working with Simple Queries
Figure 7-8 When you specify "CA" as the selection criterion in the design grid, Access returns only
records with a WorkStateOrProvince equal to California.

You should be careful when entering criteria that might also be an Access 2007 keyword.

In the examples shown here, we could have chosen to use criteria for the two-character

abbreviation for the state of Oregon (OR)—but or, as you can see in the examples, is also

a keyword. In many cases, Access is smart enough to fi gure out what you mean from the

context. You can enter

Or Or Ca

in the Criteria row under State, and Access assumes that the fi rst Or is criteria (by placing

quotation marks around the word for you) and the second Or is the Boolean operator

keyword. If you want to be sure that Access interprets your criteria correctly, always place

double quotation marks around criteria text. If you fi nd that Access guessed wrong, you

can always correct the entry before saving the query.

In the section “AND vs. OR,” you’ll see that you can also include a comparison operator in

the Criteria row so that, for example, you can look for values less than (<), greater than or

equal to (>=), or not equal to (<>) the value that you specify.

Working with Dates and Times in Criteria
Access 2007 stores dates and times as 8-byte decimal numbers. The value to the left
of the decimal point represents the day (day zero is December 30, 1899), and the frac-
tional part of the number stores the time as a fraction of a day, accurate to seconds.
Fortunately, you don’t have to worry about converting internal numbers to specify a
test for a particular date value because Access 2007 handles date and time entries in
several formats.

SIDE OUT Be Careful When Your Criterion Is Also a Keyword

You should be careful when entering criteria that might also be an Access 2007 keyword.

In the examples shown here, we could have chosen to use criteria for the two-character

abbreviation for the state of Oregon (OR)—but or, as you can see in the examples, is alsorr
a keyword. In many cases, Access is smart enough to fi gure out what you mean from the

context. You can enter

Or Or Ca

in the Criteria row under State, and Access assumes that the fi rst Or is criteria (by placing r
quotation marks around the word for you) and the second Or is the Boolean operatorr
keyword. If you want to be sure that Access interprets your criteria correctly, always place

double quotation marks around criteria text. If you fi nd that Access guessed wrong, you

can always correct the entry before saving the query.

In the section “AND vs. OR,” you’ll see that you can also include a comparison operator in

the Criteria row so that, for example, you can look for values less than (<), greater than or

equal to (>=), or not equal to (<>) the value that you specify.

 Selecting Data from a Single Table 357

Ch
ap

te
r 7
You must always surround date and time values with pound signs (#) to tell Access that
you’re entering a date or a time. To test for a specifi c date, use the date notation that is
most comfortable for you. For example, #April 15, 1962#, #4/15/62#, and #15-Apr-1962#
are all the same date if you chose English (United States) in the Regional And Language
Options in Windows Control Panel. Similarly, #5:30 PM# and #17:30# both specify 5:30
in the evening.

You must be careful when building criteria to test a range in a date/time fi eld. Let’s say

you want to look at all records between two dates in the ContactEvents table, which has

a date/time fi eld—ContactDateTime—that holds the date and time of the contact. For all

contact events in the month of January 2007, you might be tempted to put the following

on the Criteria line under ContactDateTime.

>=#1/1/2007# AND <=#1/31/2007#

When you look at the results, you might wonder why no rows show up from January

31, 2007 even when you know that you made and recorded several calls on that day.

The reason is simple. Remember, a date/time fi eld contains an integer offset value for

the date and a fraction for the time. Let’s say you called someone at 9:55 A.M. on Janu-

ary 31, 2007. The internal value is actually 39,113.4132—January 31, 2007 is 39,113 days

later than December 30, 1899 (the zero point), and .4132 is the fraction of a day that

represents 9:55 A.M. When you say you want rows where ContactDateTime is less than

or equal to January 31, 2007, you’re comparing to the internal value 39,113—just the day

value, which is midnight on that day. You won’t fi nd the 9:55 A.M. record because the

value is greater than 39,113, or later in the day than midnight. To search successfully, you

must enter

>=#1/1/2007# AND <#2/1/2007#

AND vs. OR
When you enter criteria for several fi elds, all the tests in a single Criteria row or Or row
must be true for Access 2007 to include a record in the recordset. That is, Access 2007
performs a logical AND operation between multiple criteria in the same row. So if you
enter CA in the Criteria row for StateOrProvince and <#1 JAN 1972# in the Criteria row
for BirthDate, the record must be for the state of California and must be for someone
born before 1972 to be selected. If you enter CA Or NC in the Criteria row for StateOr-
Province and >=#01/01/1946# AND <#1 JAN 1972# in the Criteria row for BirthDate,
the record must be for the state of California or North Carolina, and the person must
have been born between 1946 and 1971.

Figure 7-9 shows the result of applying a logical AND operator between any two tests.
As you can see, both tests must be true for the result of the AND to be true and for the
record to be selected.

SIDE OUT Understanding Date/Time Criteria

You must be careful when building criteria to test a range in a date/time fi eld. Let’s say

you want to look at all records between two dates in the ContactEvents table, which has

a date/time fi eld—ContactDateTime—that holds the date and time of the contact. For alld
contact events in the month of January 2007, you might be tempted to put the following

on the Criteria line under ContactDateTime.

>=#1/1/2007# AND <=#1/31/2007#

When you look at the results, you might wonder why no rows show up from January

31, 2007 even when you know that you made and recorded several calls on that day.

The reason is simple. Remember, a date/time fi eld contains an integer offset value for

the date and a fraction for the time. Let’s say you called someone at 9:55 A.M. on Janu-

ary 31, 2007. The internal value is actually 39,113.4132—January 31, 2007 is 39,113 days

later than December 30, 1899 (the zero point), and .4132 is the fraction of a day that

represents 9:55 A.M. When you say you want rows where ContactDateTime is less than

or equal to January 31, 2007, you’re comparing to the internal value 39,113—just the day

value, which is midnight on that day. You won’t fi nd the 9:55 A.M. record because the

value is greater than 39,113, or later in the day than midnight. To search successfully, you

must enter

>=#1/1/2007# AND <#2/1/2007#

Chapter 7

358 Chapter 7 Creating and Working with Simple Queries
AND True

True

False

True
(Selected)

False
(Rejected)

False
False

(Rejected)
False

(Rejected)

Figure 7-9 When you specify the logical AND operator between two tests, the result is true only if
both tests are true.

When you specify multiple criteria for a fi eld and separate the criteria by a logical OR
operator, only one of the criteria must be true for Access 2007 to select the record. You
can specify several OR criteria for a fi eld, either by entering them all in a single Criteria
cell separated by the logical OR operator, as shown earlier, or by entering each sub-
sequent criterion in a separate Or row. When you use multiple Or rows, if the criteria
in any one of the Or rows is true, Access 2007 selects the record. Figure 7-10 shows the
result of applying a logical OR operation between any two tests. As you can see, only
one of the tests must be true for the result of the OR to be true and for Access 2007 to
select the record.

OR True

True

False

True
(Selected)

True
(Selected)

False
True

(Selected)
False

(Rejected)

Figure 7-10 When you specify the logical OR operator between two tests, the result is true if either
or both of the tests is true.

Let’s look at a specifi c example. In Figure 7-11, you specify CA in the fi rst Criteria row of
the WorkStateOrProvince fi eld and >=#01/01/1946# AND <#1 JAN 1972# in that same
Criteria row for the BirthDate fi eld. (By the way, when you type #1 JAN 1972# and press
Enter, Access changes your entry to #1/1/1972#.) In the next row (the fi rst Or row), you
specify NC in the WorkStateOrProvince fi eld. When you run this query, you get all the
contacts from the state of California who were born between 1946 and 1971. You also
get any records for the state of North Carolina regardless of the birth date.

 Selecting Data from a Single Table 359

Ch
ap

te
r 7
Figure 7-11 You can specify multiple AND and OR selection criteria in the design grid with addi-
tional OR lines.

In Figure 7-12, you can see the recordset (in Datasheet view) that results from running
this query:

Figure 7-12 The recordset of the query shown in Figure 7-11 shows only the records that match
your criteria.

It’s a common mistake to get Or and And mixed up when typing compound criteria for

a single fi eld. You might think to yourself, “I want all the work contacts in the states of

Washington and California,” and then type WA And CA in the Criteria row for the Work-

StateOrProvince fi eld. When you do this, you’re asking Access to fi nd rows where (Work-
StateOrProvince = “WA”) And (WorkStateOrProvince = “CA”). Because a fi eld in a record

can’t have more than one value at a time (can’t contain both the values WA and CA in

the same record), there won’t be any records in the output. To look for all the rows for

these two states, you need to ask Access to search for (WorkStateOrProvince = “WA”) Or
(WorkStateOrProvince = “CA”). In other words, type WA Or CA in the Criteria row under

the WorkStateOrProvince fi eld.

SIDE OUT Don’t Get Confused by And and Or

It’s a common mistake to get Or and r And mixed up when typing compound criteria for d
a single fi eld. You might think to yourself, “I want all the work contacts in the states of

Washington and California,” and then typed WA And CA in the Criteria row for the Work-

StateOrProvince fi eld. When you do this, you’re asking Access to fi nd rows where (Work-
StateOrProvince = “WA”) And (WorkStateOrProvince = “CA”). Because a fi eld in a record

can’t have more than one value at a time (can’t contain both the values WA and CA in

the same record), there won’t be any records in the output. To look for all the rows for

these two states, you need to ask Access to search for (WorkStateOrProvince = “WA”) Or
(WorkStateOrProvince = “CA”). In other words, type WA Or CA in the Criteria row under

the WorkStateOrProvince fi eld.

Chapter 7

360 Chapter 7 Creating and Working with Simple Queries
If you also want to limit rows from contacts in North Carolina to those who were born
between 1946 and 1971, you must specify >=#01/01/1946# AND <#1/1/1972# again
under BirthDate in the second Or row—that is, on the same row that fi lters for NC under
WorkStateOrProvince. Although this seems like extra work, this gives you complete
fl exibility to fi lter the data as you want. You could, for example, include people who
were born before 1969 in California and people who were born after 1970 in North
Carolina by placing a different criterion under BirthDate in the two rows that fi lter
WorkStateOrProvince.

Between, In, and Like
In addition to comparison operators, Access provides three special operators that
are useful for specifying the data you want in the recordset. Table 7-1 describes these
 operators.

Table 7-1 Criteria Operators for Queries

Predicate Description

Between Useful for specifying a range of values. The clause Between 10 And 20 is
the same as specifying >=10 And <=20.

In Useful for specifying a list of values separated by commas, any one of
which can match the fi eld being searched. The clause In ("CA", "NC", "TN")
is the same as "CA" Or "NC" Or "TN".

Like1 Useful for searching for patterns in text fi elds. You can include special
characters and ranges of values in the Like comparison string to defi ne
the character pattern you want. Use a question mark (?) to indicate any
single character in that position. Use an asterisk (*) to indicate zero or
more characters in that position. The pound-sign character (#) specifi es a
single numeric digit in that position. Include a range in brackets ([]) to test
for a particular range of characters in a position, and use an exclamation
point (!) to indicate exceptions. The range [0-9] tests for numbers, [a-z]
tests for letters, and [!0-9] tests for any characters except 0 through 9. For
example, the clause Like"?[a-k]d[0-9]*" tests for any single character in the
fi rst position, any character from a through k in the second position, the
letter d in the third position, any character from 0 through 9 in the fourth
position, and any number of characters after that.

1 As you’ll learn in Chapter 27, “Building Queries in an Access Project,” and Article 2, “Understanding
SQL,” the pattern characters supported by SQL Server when you are working in an Access project fi le
are different. The pattern characters discussed here work in desktop applications (.accdb and .accde
fi les) only.

Suppose you want to fi nd all contacts in the state of California or Pennsylvania who
were born between 1955 and 1972 and whose fi rst name begins with the letter J. Fig-
ure 7-13 shows how you would enter these criteria. Figure 7-14 shows the recordset of
this query.

 Selecting Data from a Single Table 361

Ch
ap

te
r 7

If you’re really sharp, you’re probably looking at Figure 7-13 and wondering why we

chose Between #1/1/1955# And #12/31/1972# instead of >= #1/1/1955# And
< #1/1/1973# to cover the case where the BirthDate fi eld might also include a time. In

this case we know that the BirthDate fi eld has an input mask that doesn’t allow us to

enter time values. So we know that using Between and the simple date values will work

for this search.

Figure 7-13 You can also restrict records by using Between, In, and Like all in the same design grid.

Figure 7-14 The recordset of the query shown in Figure 7-13 shows only the records that match
your criteria.

For additional examples that use the Between, In, and Like comparison operators, see
 “Defi ning Simple Field Validation Rules” on page 168 and the “Predicate” sections in Article 2,
“Understanding SQL,” on the companion CD.

SIDE OUT Choosing the Correct Date/Time Criteria

If you’re really sharp, you’re probably looking at Figure 7-13 and wondering why we

chose Between #1/1/1955# And #12/31/1972# instead of # >= #1/1/1955# And
< #1/1/1973# to cover the case where the BirthDate fi eld might also include a time. In #
this case we know that the BirthDate fi eld has an input mask that doesn’t allow us to

enter time values. So we know that using Between and the simple date values will work

for this search.

Chapter 7

362 Chapter 7 Creating and Working with Simple Queries
Using Expressions
You can use an expression to combine fi elds or to calculate a new value from fi elds in
your table and make that expression a new fi eld in the recordset. You can use any of
the many built-in functions that Access 2007 provides as part of your expression. You
concatenate, or combine, text fi elds by stringing them end-to-end, or you use arithme-
tic operators on fi elds in the underlying table to calculate a value. Let’s switch to the
 HousingDataCopy.accdb database to build some examples.

Creating Text Expressions
One common use of expressions is to create a new text (string) fi eld by concatenating
fi elds containing text, string constants, or numeric data. You create a string constant
by enclosing the text in double or single quotation marks. Use the ampersand char-
acter (&) between fi elds or strings to indicate that you want to concatenate them. For
example, you might want to create an output fi eld that concatenates the LastName fi eld,
a comma, a blank space, and then the FirstName fi eld.

Try creating a query on the tblEmployees table in the HousingDataCopy.accdb data-
base that shows a fi eld containing the employee last name, a comma and a blank, fi rst
name, a blank, and middle name. You can also create a single fi eld containing the city,
a comma and a blank space, the state or province followed by one blank space, and the
postal code. Your expressions should look like this:

LastName & ", " & FirstName & " " & MiddleName
City & ", " & StateOrProvince & " " & PostalCode

You can see the Query window in Design view for this example in Figure 7-15. We
clicked in the Field row of the second column and then pressed Shift+F2 to open the
Zoom window, where it is easier to enter the expression. Note that you can click the
Font button to select a larger font that’s easier to read. After you choose a font, Access
2007 uses it whenever you open the Zoom window again.

Note
Access 2007 requires that all fi elds on the Field row in a query have a name. For single

fi elds, Access uses the name of the fi eld. When you enter an expression, Access generates

a fi eld name in the form ExprN:. See “Specifying Field Names” on page 377 for details

about changing the names of fi elds or expressions. Notice also that Access automatically

adds brackets around fi eld names in expressions. It does this so that the fi eld names in

the SQL for the query are completely unambiguous. If this table had been designed with

blanks in the fi eld names, you would have to type the brackets yourself to ensure that

the query designer interprets the names correctly.

Note
Access 2007 requires that all fi elds on the Field row in a query have a name. For single

fi elds, Access uses the name of the fi eld. When you enter an expression, Access generates

a fi eld name in the form ExprN:. See “Specifying Field Names” on page 377 for details

about changing the names of fi elds or expressions. Notice also that Access automatically

adds brackets around fi eld names in expressions. It does this so that the fi eld names in

the SQL for the query are completely unambiguous. If this table had been designed with

blanks in the fi eld names, you would have to type the brackets yourself to ensure that

the query designer interprets the names correctly.

 Selecting Data from a Single Table 363

Ch
ap

te
r 7
Figure 7-15 If you use the Zoom window to enter an expression, you can see more of the expres-
sion and select a different font.

When you look at the query result in Datasheet view, you should see something like
that shown in Figure 7-16.

Figure 7-16 Here is a query result with concatenated text fi elds.

Chapter 7

364 Chapter 7 Creating and Working with Simple Queries
Try typing within the Expr1 fi eld in Datasheet view. Because this display is a result of
an expression (concatenation of strings), Access 2007 won’t let you update the data in
this column.

If you look very closely at Figure 7-16, you can see that we captured the image with the

insertion point displayed at the end of the Expr1 fi eld on the fi rst row. Do you notice that

there’s an extra space after the fi rst name? This happened because that person has no

middle name, so what we’re seeing is the extra blank we inserted after fi rst name that is

supposed to provide spacing between fi rst name and middle name.

This isn’t too much of a problem in this particular expression because you’re not going to

notice the extra blank displayed at the end of the name. But if you create the expression

First (blank) Middle (blank) Last and if a record has no middle name, the extra blank will

be noticeable.

When you use an ampersand, any Null fi eld in the expression doesn’t cause the entire

expression to be Null. A little secret: You can also use the arithmetic plus sign (+) to con-

catenate strings. As you’ll learn when you create arithmetic expressions, if a fi eld in the

expression is Null, the expression evaluates to Null. So, to solve the extra blank problem,

you can create an expression to concatenate the parts of a name as follows:

FirstName & (" " + MiddleName) & " " & LastName

If MiddleName is a Null, the arithmetic expression inside the parentheses evaluates to

Null, and the extra blank disappears!

Defi ning Arithmetic Expressions
In a reservations record (tblReservations in the Housing Reservations database), code
in the form that confi rms a reservation automatically calculates the correct TotalCharge
value for the reservation before Access 2007 saves a changed row. If you strictly follow
the rules for good relational table design (see Article 1, “Designing Your Database Appli-
cation,” on the companion CD), this isn’t normally a good idea, but we designed it this
way to demonstrate what you have to code to maintain the calculated value in your
table. (Access 2007 won’t automatically calculate the new value for you.) You can see
how this code works in Chapter 20, “Automating Your Application with Visual Basic.”
This technique also saves time later when calculating a total by month or total by facil-
ity in a report.

Table 7-2 shows the operators you can use in arithmetic expressions.

SIDE OUT Eliminating Extra Spaces When Concatenating Null Values

If you look very closely at Figure 7-16, you can see that we captured the image with the

insertion point displayed at the end of the Expr1 fi eld on the fi rst row. Do you notice that

there’s an extra space after the fi rst name? This happened because that person has no

middle name, so what we’re seeing is the extra blank we inserted after fi rst name that is

supposed to provide spacing between fi rst name and middle name.

This isn’t too much of a problem in this particular expression because you’re not going to

notice the extra blank displayed at the end of the name. But if you create the expression

First (blank) Middle (blank) Last and if a record has no middle name, the extra blank will t
be noticeable.

When you use an ampersand, any Null fi eld in the expression doesn’t cause the entire

expression to be Null. A little secret: You can also use the arithmetic plus sign (+) to con-

catenate strings. As you’ll learn when you create arithmetic expressions, if a fi eld in the

expression is Null, the expression evaluates to Null. So, to solve the extra blank problem,

you can create an expression to concatenate the parts of a name as follows:

FirstName & (" " + MiddleName) & " " & LastName

If MiddleName is a Null, the arithmetic expression inside the parentheses evaluates to

Null, and the extra blank disappears!

 Selecting Data from a Single Table 365

Ch
ap

te
r 7
Table 7-2 Operators Used in Arithmetic Expressions

Operator Description

+ Adds two numeric expressions.

– Subtracts the second numeric expression from the fi rst numeric
 expression.

* Multiplies two numeric expressions.

/ Divides the fi rst numeric expression by the second numeric
 expression.

\ Rounds both numeric expressions to integers and then divides the fi rst
integer by the second integer. The result is truncated to an integer.

^ Raises the fi rst numeric expression to the power indicated by the
second numeric expression.

Mod Rounds both numeric expressions to integers, divides the fi rst integer
by the second integer, and returns only the remainder.

The expression to calculate the TotalCharge fi eld is complex because it charges the
lower weekly rate for portions of the stay that are full weeks and then adds the daily
charge for extra days. Let’s say you want to compare the straight daily rate with the
discounted rate for longer stays. To begin, you need an expression that calculates the
number of days. You can do this in a couple of different ways. First, you can use a handy
built-in function called DateDiff to calculate the difference between two Date/Time
values in seconds, minutes, hours, days, weeks, months, quarters, or years. In this case,
you want the difference between the check-in date and the check-out date in days.

The syntax for calling DateDiff is as follows:

DateDiff(<interval>, <date1>, <date2>[, <fi rstdayofweek>])

The function calculates the difference between <date1> and <date2> using the interval
you specify and returns a negative value if <date1> is greater than <date2>. You can sup-
ply a <fi rstdayofweek> value (the default is 1, Sunday) to affect how the function calcu-
lates the "ww" interval. Table 7-3 explains the values you can supply for interval.

Note
You can also use the settings you fi nd in Table 7-3 for the interval argument in the

 DatePart function (which extracts part of a Date/Time value) and DateAdd function

(which adds or subtracts a constant to a Date/Time value).

Note
You can also use the settings you fi nd in Table 7-3 for the interval argument in the

DatePart function (which extracts part of a Date/Time value) and DateAdd function

(which adds or subtracts a constant to a Date/Time value).

Chapter 7

366 Chapter 7 Creating and Working with Simple Queries
 Table 7-3 Interval Settings for DateDiff Function

Setting Description

"yyyy" Calculates the difference in years. DateDiff subtracts the year portion
of the fi rst date from the year portion of the second date, so
DateDiff("yyyy", #31 DEC 2006#, #01 JAN 2007#) returns 1.

"q" Calculates the difference in quarters. If the two dates are in the same
calendar quarter, the result is 0.

"m" Calculates the difference in months. DateDiff subtracts the month
portion of the fi rst date from the month portion of the second date, so
DateDiff("m", #31 DEC 2006#, #01 JAN 2007#) returns 1.

"y" Calculates the difference in days. DateDiff handles this option the same as
"d" below. (For other functions, this extracts the day of the year.)

"d" Calculates the difference in days.

"w" Calculates the difference in weeks based on the day of the week of
<date1>. If, for example, the day of the week of the fi rst date is a Tuesday,
DateDiff counts the number of Tuesdays between the fi rst date and the
second date. For example, March 28, 2007 is a Wednesday, and April
2, 2007 is a Monday, so DateDiff("w", #28 MAR 2007#, #02 APR 2007#)
returns 0.

"ww" Calculates the difference in weeks. When the fi rst day of the week is
Sunday (the default), DateDiff counts the number of Sundays greater than
the fi rst date and less than or equal to the second date. For example,
March 28, 2007 is a Wednesday, and April 7, 2007 is a Monday, so
DateDiff("ww", #28 MAR 2007#, #02 APR 2007#) returns 1.

"h" Calculates the difference in hours.

"n" Calculates the difference in minutes.

"s" Calculates the difference in seconds.

The second way to calculate the number of days is to simply subtract one date from the
other. Remember that the integer portion of a Date/Time data type is number of days. If
you’re sure that the fi elds do not contain any time value, subtract the check-in date from
the check-out date to fi nd the number of days. Let’s see how this works in the sample
database.

Open the HousingDataCopy.accdb database if you have closed it and start a new query
on tblReservations. Add EmployeeNumber, FacilityID, RoomNumber, CheckInDate,
CheckOutDate, and TotalCharge to the query design grid. You need to enter your
expression in a blank column on the Field row. You’ll build your fi nal expression in two
parts so you can understand the logic involved. Using DateDiff, start the expression by
entering

DateDiff("d", [CheckInDate], [CheckOutDate])

 Selecting Data from a Single Table 367

Ch
ap

te
r 7
To calculate the number of days by subtracting, the expression is

[CheckOutDate] – [CheckInDate]

To calculate the amount owed at the daily rate, multiply either of the previous expres-
sions by the DailyRate fi eld. With DateDiff, the fi nal expression is

DateDiff("d", [CheckInDate], [CheckOutDate]) * [DailyRate]

If you want to use subtraction, you must enter

([CheckOutDate] – [CheckInDate]) * [DailyRate]

You might be wondering why the second expression includes parentheses. When
evaluating an arithmetic expression, Access evaluates certain operations before others,
known as operator precedence. Table 7-4 shows you operator precedence for arithmetic
operations. In an expression with no parentheses, Access performs the operations in
the order listed in the table. When operations have the same precedence (for example,
multiply and divide), Access performs the operations left to right.

Table 7-4 Arithmetic Operator Precedence

Access Evaluates Operators in the Following Order:

1 Exponentiation (^)

2 Negation—a leading minus sign (–)

3 Multiplication and division (*, /)

4 Integer division (\)

5 Modulus (Mod)

6 Addition and subtraction (+, –)

Access evaluates expressions enclosed in parentheses fi rst, starting with the innermost
expressions. (You can enclose an expression in parentheses inside another expression
in parentheses.) If you do not include the parentheses in the previous example, Access
would fi rst multiply CheckInDate times DailyRate (because multiplication and division
occur before addition and subtraction) and then subtract that result from CheckOut-
Date. That not only gives you the wrong answer but also results in an error because you
cannot subtract a Double value (the result of multiplying a date/time times a currency)
from a date/time value.

After you select the fi elds from the table and enter the expression to calculate the total
based on the daily rate, your query design grid should look something like Figure 7-17.

Chapter 7

368 Chapter 7 Creating and Working with Simple Queries
Figure 7-17 Use an expression to calculate the amount owed based on the daily rate.

When you switch to Datasheet view, you can see the calculated amount from your
expression as shown in Figure 7-18.

Figure 7-18 Access displays the results of your calculated expression in Datasheet view.

 Selecting Data from a Single Table 369

Ch
ap

te
r 7
Note that not all the calculated amounts are larger than the amount already stored
in the record. When the reservation is for six days or fewer, the daily rate applies, so
your calculation should match the existing charge. You might want to display only the
records where the new calculated amount is different than the amount already stored.
For that, you can add another expression to calculate the difference and then select the
row if the difference is not zero.

Switch back to Design view and enter a new expression to calculate the difference in an
empty column. Your expression should look like this:

TotalCharge – (([CheckOutDate] – [CheckInDate]) * [DailyRate])

In the Criteria line under this new fi eld, enter <> 0. Your query design should look like
Figure 7-19, and the datasheet for the query now displays only the rows where the cal-
culation result is different, as shown in Figure 7-20.

Figure 7-19 This expression and criterion fi nds the rows that are different.

Finding the rows that differ in this way has the added benefi t of displaying the calcu-
lated difference. If you’re only interested in fi nding the rows that differ but don’t care
about the amount of the difference, you don’t need the second expression at all. You
can fi nd the rows you want by placing the expression <>[TotalCharge] in the Criteria
line under the fi rst expression you entered. This asks Access to compare the amount
calculated at the straight daily rate with the value in the TotalCharge fi eld stored in the
record and display the row only when the two values are not equal.

Chapter 7

370 Chapter 7 Creating and Working with Simple Queries
Figure 7-20 The datasheet now shows only the rows where the calculation is different than the
stored value.

You might have inferred from the earlier discussion about entering criteria that you can
use only constant values in the Criteria or Or lines. As you can see, you can also com-
pare the value of one fi eld or expression with another fi eld or expression containing a
reference to a fi eld.

You might have noticed that we placed an extra set of parentheses around the original

expression we built to calculate the amount at the daily rate before subtracting that

amount from the stored value. If you study Table 7-4 carefully, you’ll see that we really

didn’t have to do this because Access would perform the multiplication before doing

the fi nal subtract. However, we fi nd it’s a good practice to add parentheses to make the

sequence of operations crystal clear—we don’t always remember the order of prece-

dence rules, and we don’t want to have to go looking up the information in Help every

time we build an expression. Adding the parentheses makes sure we get the results

we want.

So far, you have built fairly simple expressions. When you want to create a more com-
plex expression, sometimes the Expression Builder can be useful, as discussed in the
next section.

SIDE OUT Adding Parentheses to Expressions for Clarity

You might have noticed that we placed an extra set of parentheses around the original

expression we built to calculate the amount at the daily rate before subtracting that

amount from the stored value. If you study Table 7-4 carefully, you’ll see that we really

didn’t have to do this because Access would perform the multiplication before doing

the fi nal subtract. However, we fi nd it’s a good practice to add parentheses to make the

sequence of operations crystal clear—we don’t always remember the order of prece-

dence rules, and we don’t want to have to go looking up the information in Help every

time we build an expression. Adding the parentheses makes sure we get the results

we want.

 Selecting Data from a Single Table 371

Ch
ap

te
r 7
 Using the Expression Builder
For more complex expressions, Access 2007 provides a utility called the Expression
Builder. Let’s say you want to double-check the total amount owed for a reservation
in the sample database. You have to work with several fi elds to do this—CheckInDate,
CheckOutDate, DailyRate, and WeeklyRate. You need to calculate the number of weeks
to charge at the WeeklyRate and then charge the remaining days at the DailyRate. To
see how the Expression Builder works, start a new query on the tblReservations table.
Click in an empty fi eld in the design grid, and then click the Builder button in the
Query Setup group of the Design contextual tab. Access opens the Expression Builder
dialog box shown in Figure 7-21.

Figure 7-21 The Expression Builder dialog box helps you build simple and complex expressions.

In the upper part of the dialog box is a blank text box in which you can build an expres-
sion. You can type the expression yourself, but it’s sometimes more accurate to fi nd
fi eld names, operators, and function names in the three panes in the lower part of the
dialog box and to use the various expression operator buttons just below the text box.

The expression you need to build, which we’ll walk you through in detail in the next
few pages, will ultimately look like this:

((DateDiff("d", [tblReservations]![CheckInDate], [tblReservations]![CheckOutDate])
\ 7) * [WeeklyRate]) + ((DateDiff("d", [tblReservations]![CheckInDate],
[tblReservations]![CheckOutDate]) Mod 7) * [DailyRate])

You can use the Expression Builder to help you correctly construct this expression.
Start by double-clicking the Functions category in the left pane, then select Built-In
Functions to see the list of function categories in the center pane, and the list of func-
tions within the selected category in the right pane. Select the Date/Time category in
the center pane to narrow down the choices. Here you can see the DateDiff function
(that you used earlier) as well as several other built-in functions you can use. (You can
fi nd a list of the most useful functions and their descriptions in Article 4, “Visual Basic
Function Reference,” on the companion CD.)

Chapter 7

372 Chapter 7 Creating and Working with Simple Queries
Double-click the DateDiff function in the right pane to add it to the expression text box
at the top of the Expression Builder. When you add a function to your expression in
this way, the Expression Builder shows you the parameters required by the function.
You can click any parameter to highlight it and type a value or select a value from one
of the lists in the bottom panes. Click <<interval>> and overtype it with "d". (See Table
7-3 for a list of all the possible interval settings.) You need to insert the CheckInDate
fi eld from tblReservations for <<date1>> and the CheckOutDate fi eld for <<date2>>.
Click <<date1>> to highlight it and double-click Tables in the left pane to open up the
list of table names. Scroll down until you fi nd tblReservations and select it to see the
list of fi eld names in the second pane. Double-click CheckInDate. Then click <<date2>>,
and double-click CheckOutDate. You don’t need the <<fi rstweekday>> or <<fi rstweek>>
parameters, so click them and press the Delete key to remove them. (You can also
remove the extra commas if you like.) The Expression Builder should now look like Fig-
ure 7-22.

Figure 7-22 Create a calculation using table fi eld names in the Expression Builder dialog box.

You’ll notice that the Expression Builder pastes [tblReservations]![CheckInDate] into
the expression area, not just CheckInDate. There are two good reasons for this. First,
the Expression Builder doesn’t know whether you might include other tables in this
query and whether some of those tables might have fi eld names that are identical to the
ones you’re selecting now. The way to avoid confl icts is to fully qualify the fi eld names
by preceding them with the table name. When working in queries, separate the table
name from the fi eld name with a period or an exclamation point. Second, you should
enclose all names of objects in Access in brackets ([]). If you designed the name with-
out any blank spaces, you can leave out the brackets, but it’s always good practice to
include them.

 Selecting Data from a Single Table 373

Ch
ap

te
r 7

As you’ll learn in Chapter 20, in most cases you should separate the name of an object

from the name of an object within that object (for example, a fi eld within a table) with an

exclamation point. When you build an expression in the Expression Builder, you’ll fi nd

that the Expression Builder separates names using exclamation points. However, as you’ll

learn in Article 2, “Understanding SQL,” on the companion CD, the standard for the SQL

database query language uses a period between the name of a table and the name of a

fi eld within the table. To be most compatible with the SQL standard when constructing a

query expression, use a period between a table name and a fi eld name. Access accepts

either an exclamation point or a period in query design.

Next, you need to divide by 7 to calculate the number of weeks. You’re not interested
in any fractional part of a week, so you need to use the integer divide operator (\). Note
that there is no operator button for integer divide. The operator buttons are arranged
horizontally below the expression text box. So, you can either type the operator or
scroll down in the leftmost pane, select Operators to open that list, select Arithmetic in
the second pane, and then double-click the integer divide operator (\) in the rightmost
list to add it to your expression. Make sure the insertion point in the expression box is
positioned after the integer divide operator and type the number 7.

The next operation you need is to multiply the expression you have thus far by the
WeeklyRate fi eld from tblReservations. If you like, you can add left and right parenthe-
ses around the expression before adding the multiply operator and the fi eld. Remem-
ber from Table 7-4 that multiplication and division are of equal precedence, so Access
evaluates the division before the multiplication (left to right) even if you don’t add the
parentheses. But, as we noted earlier, we like to make the precedence of operations crys-
tal clear, so we recommend that you add the parentheses. Press the Home key to go to
the beginning of the expression, click the left parenthesis button, press the End key to
go to the end, click the right parenthesis button, click the multiply operator (*) button,
and fi nally select the WeeklyRate fi eld from the tblReservations fi eld list.

Note
WeekyRate and DailyRate are currency fi elds. DateDiff returns an integer, and the result

of an integer divide (\) or a modulus (Mod) operation is an integer. Whenever you ask

Access to evaluate an arithmetic expression, it returns a result that has a data type suffi -

ciently complex to contain the result. As you might expect, multiplying an integer (a sim-

ple data type) with a currency fi eld (a more complex data type) returns a currency fi eld.

SIDE OUT Understanding Name Separators in SQL

As you’ll learn in Chapter 20, in most cases you should separate the name of an object

from the name of an object within that object (for example, a fi eld within a table) with an

exclamation point. When you build an expression in the Expression Builder, you’ll fi nd

that the Expression Builder separates names using exclamation points. However, as you’ll

learn in Article 2, “Understanding SQL,” on the companion CD, the standard for the SQL

database query language uses a period between the name of a table and the name of a

fi eld within the table. To be most compatible with the SQL standard when constructing a

query expression, use a period between a table name and a fi eld name. Access accepts

either an exclamation point or a period in query design.

Note
WeekyRate and DailyRate are currency fi elds. DateDiff returns an integer, and the result

of an integer divide (\) or a modulus (Mod) operation is an integer. Whenever you ask

Access to evaluate an arithmetic expression, it returns a result that has a data type suffi -

ciently complex to contain the result. As you might expect, multiplying an integer (a sim-

ple data type) with a currency fi eld (a more complex data type) returns a currency fi eld.

Chapter 7

374 Chapter 7 Creating and Working with Simple Queries
You need to add this entire expression to the calculation for remaining days at the daily
rate, so press Ctrl+Home again and add one more left parenthesis, press the Ctrl+End
key, and click the right parenthesis button to complete this fi rst part of the expres-
sion. Click the addition operator to add it to your expression. Rather than scan back
and forth to add parentheses as we build the second part of the expression, click the
left parenthesis button twice to start building the calculation for extra days. Add the
DateDiff function again, click <<interval>>, and type "d". Click <<date1>>, fi nd Check-
InDate in tblReservations again, and double-click it to add it to your expression. Click
<<date2>> and double-click the CheckOutDate fi eld. Remove <<fi rstweekday>> and
<<fi rstweek>> from the function.

Now, you need to know how many days beyond full weeks are in the reservation. You
might be tempted to divide by 7 again and try to extract the remainder, but there’s a
handy operator that returns only the remainder of a division for you—Mod. Scroll down
in the left pane and select Operators. In the middle pane, select Arithmetic to see only
the arithmetic operators in the right pane. Double-click Mod to add it to your expres-
sion after the parentheses.

We’re almost done. Type the number 7 and click the right parenthesis button to close
the Mod calculation. Click the multiply operator button, and then go back to tblReser-
vations and double-click the DailyRate fi eld. Click the right parenthesis button one last
time to fi nish the expression. Verify that your completed expression exactly matches
the one in Figure 7-23.

Figure 7-23 Your completed expression in the Expression Builder dialog box should match
this fi gure.

Click OK to paste your result into the design grid. Go ahead and add ReservationID,
FacilityID, RoomNumber, CheckInDate, CheckOutDate, and TotalCharge to your query
grid. When you switch to Datasheet view, your result should look like Figure 7-24.

 Selecting Data from a Single Table 375

Ch
ap

te
r 7
Figure 7-24 Switch to Datasheet view to see the result of your complex calculation expression.

Do you notice any stored values that don’t match what you just calculated? (Hint: Look
at the highlighted row.) If you haven’t changed the sample data, you’ll fi nd several rows
that we purposefully updated with invalid TotalCharge values. Here’s a challenge: Go
back to Design view and enter the criteria you need to display only the rows where your
calculated charge doesn’t match the TotalCharge stored in the table. You can fi nd the
solution saved as qxmplUnmatchedCharges in the HousingDataCopy.accdb sample
database.

We personally never use the Expression Builder when we’re creating applications in

Access 2007. We fi nd it more cumbersome than directly typing the expression we think

we need and then trying it out. We included this discussion because some beginning

developers might fi nd that the Expression Builder helps them learn how to build correct

expression and function call syntax.

We used the DateDiff function to solve this problem, but Access 2007 has several other
useful functions to help you deal with date and time values. For example, you might
want to see only a part of the date or time value in your query. You might also want to
use these functions to help you fi lter the results in your query. Table 7-5 explains each
date and time function and includes fi lter examples that use the ContactDateTime fi eld
in the tblContactEvents table in the Conrad Systems Contacts sample database.

SIDE OUT Is the Builder Useful? You Decide

We personally never use the Expression Builder when we’re creating applications in

Access 2007. We fi nd it more cumbersome than directly typing the expression we think

we need and then trying it out. We included this discussion because some beginning

developers might fi nd that the Expression Builder helps them learn how to build correct

expression and function call syntax.

Chapter 7

376 Chapter 7 Creating and Working with Simple Queries
 Table 7-5 Date and Time Functions

Function Description Example

Day(date) Returns a value from 1
through 31 for the day of
the month.

To select records with contact
events that occurred after
the 10th of any month, enter
Day([ContactDateTime]) in an empty
column on the Field line and enter
>10 as the criterion for that fi eld.

Month(date) Returns a value from 1
through 12 for the month of
the year.

To fi nd all contact events that
occurred in March (of any year), enter
Month([ContactDateTime]) in an
empty column on the Field line and
enter 3 as the criterion for that fi eld.

Year(date) Returns a value from 100
through 9999 for the year.

To fi nd contact events that
happened in 2007, enter
Year([ContactDateTime]) in an empty
column on the Field line and enter
2007 as the criterion for that fi eld.

Weekday(date) As a default, returns a value
from 1 (Sunday) through 7
(Saturday) for the day of the
week.

To fi nd contact events that occurred
between Monday and Friday, enter
Weekday([ContactDateTime]) in
an empty column on the Field line
and enter Between 2 And 6 as the
criterion for that fi eld.

Hour(date) Returns a value from 0
through 23 for the hour of
the day.

To fi nd contact events that
happened before noon, enter
Hour([ContactDateTime]) in an
empty column on the Field line
and enter <12 as the criterion for
that fi eld.

DateAdd
(interval,
amount, date)

Adds an amount in the
interval you specify to a
date/time value.

To fi nd contact events that occurred
more than six months ago, enter
<DateAdd("m", –6, Date()) as the
criterion under ContactDateTime.
(See also the Date function below.)

DatePart
(interval, date)

Returns a portion of the
date or time, depending
on the interval code you
supply. Useful interval codes
are "q" for quarter of the
year (1 through 4) and "ww"
for week of the year (1
through 53).

To fi nd contact events in the
second quarter, enter DatePart("q",
[ContactDateTime]) in an empty
column on the Field line, and enter 2
as the criterion for that fi eld.

Date() Returns the current system
date.

To select contact events that
happened more than 30 days ago,
enter <(Date() – 30) as the criterion
under ContactDateTime.

 Selecting Data from a Single Table 377

Ch
ap

te
r 7
For additional useful functions, see Article 4, “Visual Basic Function Reference,” on the com-
panion CD.

Specifying Field Names
Every fi eld must have a name. By default, the name of a simple fi eld in a query is the
name of the fi eld from the source table. However, when you create a new fi eld using
an expression, the expression doesn’t have a name unless you or Access assigns one.
You have seen that when you create an expression in the Field row of the design grid,
Access adds a prefi x such as Expr1 followed by a colon—that is the name that Access is
assigning to your expression. Remember, the column heading for the fi eld is, by default,
the fi eld name unless you specify a different caption property setting. As you know, you
can assign or change a caption for a fi eld in a query by using the fi eld’s property sheet.

Understanding Field Names and Captions
In the world of tables and queries, every fi eld—even calculated ones—must have a name.

When you create a fi eld in a table, you give it a name. When you use a table in a query

and include a fi eld from the table in the query output, the name of the fi eld output by

the query is the same as the fi eld name in the table. If you create a calculated fi eld in a

query, you must assign a name to that fi eld. If you don’t, Access assigns an ugly ExprN

name for you. But you can override this and assign your own fi eld name to expressions.

You can also override the default fi eld name for a simple fi eld with another name. When

you use a query in another query or a form or report, or you open a query as a record-

set in Visual Basic, you use the fi eld name to indicate which fi eld you want to fetch from

the query.

You can also defi ne a Caption property for a fi eld. When you do that, what you put in the

caption becomes the external label for the fi eld. You’ll see the caption in column head-

ings in Datasheet view. Later, when you begin to work with forms and reports, you’ll fi nd

that the caption becomes the default label for the fi eld. If you don’t defi ne a caption,

Access shows you the fi eld name instead.

You can change or assign fi eld names that will appear in the recordset of a query. This
feature is particularly useful when you’ve calculated a value in the query that you’ll
use in a form, a report, or another query. In the queries shown in Figures 7-15, 7-17,
and 7-19, you calculated a value and Access assigned a temporary fi eld name. You can
replace this name with something more meaningful. For example, in the fi rst query
you might want to use something like FullName and CityStateZip. In the second query,
RecalculatedCharge might be appropriate. To change a name generated by Access,
replace ExprN with the name you want in the Field row in the query design grid. To
assign a new name to a fi eld, place the insertion point at the beginning of the fi eld spec-
ifi cation and insert the new name followed by a colon. Figure 7-25 shows the fi rst query
with the fi eld names changed.

Understanding Field Names and Captions
In the world of tables and queries, every fi eld—even calculated ones—must have a name.

When you create a fi eld in a table, you give it a name. When you use a table in a query

and include a fi eld from the table in the query output, the name of the fi eld output by

the query is the same as the fi eld name in the table. If you create a calculated fi eld in a

query, you must assign a name to that fi eld. If you don’t, Access assigns an ugly ExprN
name for you. But you can override this and assign your own fi eld name to expressions.

You can also override the default fi eld name for a simple fi eld with another name. When

you use a query in another query or a form or report, or you open a query as a record-

set in Visual Basic, you use the fi eld name to indicate which fi eld you want to fetch from

the query.

You can also defi ne a Caption property for a fi eld. When you do that, what you put in the

caption becomes the external label for the fi eld. You’ll see the caption in column head-

ings in Datasheet view. Later, when you begin to work with forms and reports, you’ll fi nd

that the caption becomes the default label for the fi eld. If you don’t defi ne a caption,

Access shows you the fi eld name instead.

Chapter 7

378 Chapter 7 Creating and Working with Simple Queries
Figure 7-25 You can change the Expr1 and Expr2 fi eld names shown in Figure 7-16 to display more
meaningful fi eld names.

Note that we could have made the column headings you see even more readable by also
assigning a caption to these fi elds via the fi eld’s property sheet. We might have chosen
something like Person Name for the fi rst fi eld and City-State-Zip for the second fi eld.
Keep in mind that setting the caption does not change the actual name of the fi eld when
you use the query in a form, a report, or Visual Basic code.

Sorting Data
Normally, Access 2007 displays the rows in your recordset in the order in which
they’re retrieved from the database. You can add sorting information to determine the
sequence of the data in a query. Click in the Sort row for the fi eld you want to sort on,
click the arrow in this row, and then select Ascending or Descending from the list. In
the example shown in Figure 7-26, the query results are to be sorted in descending
order based on the calculated NewTotalCharge fi eld. (Note that we have given the cal-
culated fi eld a fi eld name.) The recordset will list the most expensive reservations fi rst.
The resulting Datasheet view is shown in Figure 7-27. You can fi nd this query saved as
qryXmplChargeCalcSorted in the HousingDataCopy.accdb sample database.

 Selecting Data from a Single Table 379

Ch
ap

te
r 7
Figure 7-26 Access sorts the query results on the NewTotalCharge fi eld in descending order.

Figure 7-27 Datasheet view shows the recordset of the query shown in Figure 7-25 sorted on the
NewTotalCharge fi eld.

Chapter 7

380 Chapter 7 Creating and Working with Simple Queries

When Access 2007 solves a query, it tries to do it in the most effi cient way. When you

fi rst construct and run a query, Access might return the records in the sequence you

expect (for example, in primary key sequence of the table). However, if you want to be

sure Access always returns rows in this order, you must specify sort criteria. As you later

add and remove rows in your table, Access might decide that fetching rows in a different

sequence might be faster, which, in the absence of sorting criteria, might result in a dif-

ferent row sequence than you intended.

You can also sort on multiple fi elds. Access honors your sorting criteria from left to
right in the design grid. If, for example, you want to sort by FacilityID ascending and
then by NewTotalCharge descending, you should include the FacilityID fi eld to the
left of the NewTotalCharge fi eld. If the additional fi eld you want to sort is already in
the design grid but in the wrong location, click the column selector box (the tinted
box above the fi eld row) to select the entire column and then click the selector box
again and drag the fi eld to its new location. If you want the fi eld that is out of posi-
tion to still appear where you originally placed it, add the fi eld to the design grid
again in the correct sorting sequence, clear the Show check box (you don’t want two
copies of the fi eld displayed), and set the Sort specifi cation. Figure 7-28 shows the
query shown in Figure 7-26 modifi ed to sort fi rst by FacilityID and then by NewTotal-
Charge, but leave FacilityID displayed after ReservationID. We saved this query in the
HousingDataCopy.accdb sample database as qxmplChargeCalcSortedTwo.

Figure 7-28 This example sorts on two fi elds while maintaining the original fi eld sequence in the
query output.

SIDE OUT Why Specifying Sort Criteria Is Important

When Access 2007 solves a query, it tries to do it in the most effi cient way. When you

fi rst construct and run a query, Access might return the records in the sequence you

expect (for example, in primary key sequence of the table). However, if you want to be

sure Access always returns rows in this order, you must specify sort criteria. As you later

add and remove rows in your table, Access might decide that fetching rows in a different

sequence might be faster, which, in the absence of sorting criteria, might result in a dif-

ferent row sequence than you intended.

 Testing Validation Rule Changes 381

Ch
ap

te
r 7

If you open the datasheet of qxmplChargeCalcSortedTwo and scroll down in the record-

set, you’ll fi nd the Facility column sorted Main Campus Housing A, Main Campus Hous-

ing B, South Campus Housing C, and North Satellite Housing D. Why does South appear

before North if the values are supposed to be sorted in ascending order? Remember

that in Chapter 5 we warned you about Lookup properties confusing the display you see.

The information you’re seeing in the datasheet comes from the Lookup defi ned on the

FacilityID column in tblReservations—you’re seeing the related facility name from tblFa-

cilities. However, the actual value of FacilityID is a number. You can click on the FacilityID

column, open the fi eld’s property sheet, click the Lookup tab, and set the Display Control

property to Text Box to see the actual number value. When you do this and look at the

datasheet again, you’ll see that the values are sorted correctly.

Testing Validation Rule Changes
You learned in Chapter 4 how to defi ne both fi eld and table validation rules. You also
learned in Chapter 5 that you can change these rules even after you have data in your
table. Access 2007 warns you if some of the data in your table doesn’t satisfy the new
rule, but it doesn’t tell you which rows have problems.

Checking a New Field Validation Rule
The best way to fi nd out if any rows will fail a new fi eld validation rule is to write a
query to test your data before you make the change. The trick is you must specify cri-
teria that are the converse of your proposed rule change to fi nd the rows that don’t
match. For example, if you are planning to set the Required property to Yes or specify a
Validation Rule property of Is Not Null on a fi eld (both tests mean the same thing), you
want to look for rows containing a fi eld that Is Null. If you want to limit the daily price
of a room to <= 90, then you must look for values that are > 90 to fi nd the rows that will
fail. Another way to think about asking for the converse of a validation rule is to put the
word Not in front of the rule. If the new rule is going to be <= 90, then Not <= 90 will
fi nd the bad rows.

Let’s see what we need to do to test a proposed validation rule change to tblFacility-
Rooms in the sample database. The daily room rate should not exceed $90.00, so the
new rule in the DailyRate fi eld will be <=90. To test for rooms that exceed this new
limit, start a new query on tblFacilityRooms. Include the fi elds FacilityID, RoomNum-
ber, RoomType, DailyRate, and WeeklyRate in the query’s design grid. (You need at
least FacilityID and RoomNumber—the primary key fi elds—to be able to identify which
rows fail.) Under DailyRate, enter the converse of the new rule: either >90 or Not <=90.
Your query should look like Figure 7-29.

SIDE OUT A Reminder: Why Lookup Properties Can Be Confusing

If you open the datasheet of qxmplChargeCalcSortedTwo and scroll down in the record-

set, you’ll fi nd the Facility column sorted Main Campus Housing A, Main Campus Hous-

ing B, South Campus Housing C, and North Satellite Housing D. Why does South appear

before North if the values are supposed to be sorted in ascending order? Remember

that in Chapter 5 we warned you about Lookup properties confusing the display you see.

The information you’re seeing in the datasheet comes from the Lookup defi ned on the

FacilityID column in tblReservations—you’re seeing the related facility name from tblFa-

cilities. However, the actual value of FacilityID is a number. You can click on the FacilityID

column, open the fi eld’s property sheet, click the Lookup tab, and set the Display Control

property to Text Box to see the actual number value. When you do this and look at the

datasheet again, you’ll see that the values are sorted correctly.

Chapter 7

382 Chapter 7 Creating and Working with Simple Queries
Figure 7-29 Create a new query to test a proposed new fi eld validation rule.

If you run this query against the original data in the sample database, you’ll fi nd 26
rooms that are priced higher than the new proposed rule. As you’ll learn in “Working in
Query Datasheet View” on page 384, you can update these rows by typing a new value
directly in the query datasheet.

Let’s try something. Select one of the invalid values you found in the query datasheet
and try to type the new maximum value of $90.00. If you try to save the row, you’ll get
an error message because there’s a table validation rule that prevents you from setting a
DailyRate value that when multiplied by 7 is more than the WeeklyRate value. It looks
like you’ll have to fi x both values if you want to change your fi eld validation rule.

Checking a New Table Validation Rule
Checking a proposed new fi eld validation rule is simple. But what about making a
change to a table validation rule? Typically, a table validation rule compares one fi eld
with another, so to check a new rule, you’ll need more complex criteria in your query.

There’s already a table validation rule in the tblFacilityRooms table in the HousingData-
Copy.accdb sample database. The rule makes sure that the weekly rate is not more than
7 times the daily rate—it wouldn’t be much of a discount if it were! Suppose you now
want to be sure that the weekly rate refl ects a true discount from the daily rate. Your
proposed new rule might make sure that the weekly rate is no more than 6 times the
daily rate—if an employee stays a full week, the last night is essentially free. Your new
rule might look like the following:

([DailyRate]*6)>=[WeeklyRate]

 Testing Validation Rule Changes 383

Ch
ap

te
r 7
So, you need to write a query that checks the current values in the WeeklyRate fi eld to
see if any will fail the new rule. Note that you could also create an expression to calcu-
late DailyRate times 6 and compare that value with WeeklyRate. When the expression
you want to test involves a calculation on one side of the comparison with a simple fi eld
value on the other side of the comparison, it’s easier to compare the simple fi eld with
the expression. Remember, you need to create the converse of the expression to fi nd
rows that won’t pass the new rule.

You can start with the query you built in the previous section or create a new query.
You need at least the primary key fi elds from the table as well as the fi elds you need to
perform the comparison. In this case, you need to compare the current value of Week-
lyRate with the expression on DailyRate. Let’s turn the expression around so that it’s
easier to see what you need to enter in the query grid. The expression looks like this:

[WeeklyRate]<=([DailyRate]*6)

To test the converse on the WeeklyRate fi eld’s Criteria row of your query, you need
either

>([DailyRate]*6)

or

Not <=([DailyRate]*6)

Your test query should look like Figure 7-30.

Figure 7-30 You can create a query to test a new table validation rule.

If you run this query, you’ll fi nd that nearly all the rows in the table fail the new
test. When we loaded sample data into the table, we created weekly rates that are

Chapter 7

384 Chapter 7 Creating and Working with Simple Queries
 approximately 6.4 times the daily rate—so none of the rates pass the new test. In Chap-
ter 9, you’ll learn how to create an update query to fi x both the daily and weekly rates to
match the new rules discussed in this section.

 Working in Query Datasheet View
When you’re developing an application, you might need to work in table or query Data-
sheet view to help you load sample data or to solve problems in the queries, forms, and
reports you’re creating. You might also decide to create certain forms in your applica-
tion that display information in Datasheet view. Also, the techniques for updating and
manipulating data in forms are very similar to doing so in datasheets—so you need to
understand how datasheets work to be able to explain to your users how to use your
application. If you’re using Access 2007 as a personal database to analyze informa-
tion, you might frequently work with information in Datasheet view. In either case, you
should understand how to work with data editing, and the best way to learn how is to
understand viewing and editing data in Datasheet view.

Before you get started with the remaining examples in this chapter, open Contacts-
DataCopy.accdb from your sample fi les folder. In that database, you’ll fi nd a query
named qryContactsDatasheet that we’ll use in the remainder of this chapter. We
defi ned this query to select key fi elds from tblContacts and display a subdatasheet from
tblContactEvents.

Moving Around and Using Keyboard Shortcuts
Open the qryContactsDatasheet query in the ContactsDataCopy.accdb database.
You should see a result similar to Figure 7-31. Displaying different records or fi elds is
simple. You can use the horizontal scroll bar to scroll through a table’s fi elds, or you can
use the vertical scroll bar to scroll through a table’s records.

In the lower-left corner of the table in Datasheet view, you can see a set of navigation
buttons and the Record Number box, as shown in Figure 7-32. The Record Number
box shows the relative record number of the current record (meaning the number of
the selected record in relation to the current set of records, also called a recordset).
You might not see the current record in the window if you’ve scrolled the display. The
number to the right of the new record button shows the total number of records in the
current recordset. If you’ve applied a fi lter against the table (see “Searching for and Fil-
tering Data” on page 405), this number might be less than the total number of records
in the table or query.

 Working in Query Datasheet View 385

Ch
ap

te
r 7
 Record Number box Columns Rows
New row indicator

Row selector
 Subdatasheet selector

Filter button
Sort Ascending button

Sort Descending button

Field name or caption
Advanced Filter
Options
Filter Selection
button Find button

Figure 7-31 Open the Datasheet view of the qryContactsDatasheet query to begin learning about
moving around and editing in a datasheet.

You can quickly move to the record you want by typing a value in the Record Number
box and pressing Enter or by using the navigation buttons. You can also click the Go To
command in the Find group on the Home tab on the Ribbon to move to the fi rst, last,
next, or previous record, or to move to a new, empty record. You can make any record
current by clicking anywhere in its row; the number in the Record Number box will
change to indicate the row you’ve selected.

You might fi nd it easier to use the keyboard rather than the mouse to move around in
a datasheet, especially if you’re typing new data. Table 7-6 lists the keyboard shortcuts
for scrolling in a datasheet. Table 7-7 lists the keyboard shortcuts for selecting data in
a datasheet.

Chapter 7

386 Chapter 7 Creating and Working with Simple Queries
Go to first record
 Go to previous record
 Record Number box
 Go to next record
 Go to last record

Go to new record
 Filter box
 Search box

Figure 7-32 You can navigate through the datasheet records using the navigation buttons and
Record Number box.

Table 7-6 Keyboard Shortcuts for Scrolling in a Datasheet

Keys Scrolling Action

Page Up Up one page

Page Down Down one page

Ctrl+Page Up Left one page

Ctrl+Page Down Right one page

Table 7-7 Keyboard Shortcuts for Selecting Data in a Datasheet

Keys Selecting Action

Tab Next fi eld

Shift+Tab Previous fi eld

Home First fi eld, current record

End Last fi eld, current record

Up Arrow Current fi eld, previous record

Down Arrow Current fi eld, next record

Ctrl+Up Arrow Current fi eld, fi rst record

Ctrl+Down Arrow Current fi eld, last record

Ctrl+Home First fi eld, fi rst record

Ctrl+End Last fi eld, last record

Alt+F5 Record Number box

Ctrl+Spacebar The current column

Shift+Spacebar The current record

F2 When in a fi eld, toggles between selecting all data
in the fi eld and single-character edit mode

 Working in Query Datasheet View 387

Ch
ap

te
r 7
Working with Subdatasheets
Microsoft Access 2000 introduced a new feature that lets you display information from
multiple related tables in a single datasheet. In the design we developed for the Conrad
Systems Contacts sample database, contacts can have multiple contact events and con-
tact products. In some cases, it might be useful to open a query on contacts and be able
to see either related events or products in the same datasheet window.

You might have noticed the little plus-sign indicators in the datasheet for qryContacts-
Datasheet in Figure 7-31. Click the plus sign next to the second row to open the Contact
Events subdatasheet as shown in Figure 7-33.

Figure 7-33 Click the plus sign to view the contact event details for the second contact in a
 subdatasheet.

A subdatasheet doesn’t appear automatically in a query, even if you’ve defi ned subdata-
sheet properties for your table as described in Chapter 4. We had to open the property
sheet for the query in Design view and specify the subdatasheet you see. Figure 7-34
shows the properties we set. You can fi nd more details about setting these properties in
Chapter 4 and in Chapter 8.

Chapter 7

388 Chapter 7 Creating and Working with Simple Queries
Figure 7-34 The property sheet for the qryContactsDatasheet query displays the subdatasheet
properties.

You can click the plus sign next to each order row to see the contact event detail infor-
mation for that contact. If you want to expand or collapse all the subdatasheets, click
More in the Records group on the Home tab, click Subdatasheet, and then click the
option you want as shown in Figure 7-35.

Figure 7-35 The Subdatasheet menu allows you to easily expand all subdatasheets, collapse all
subdatasheets, or remove the currently displayed subdatasheet.

 Working in Query Datasheet View 389

Ch
ap

te
r 7
The information from the related tblContactEvents table is interesting, but what if you
want to see the products the contact has purchased instead? To do this, while in Data-
sheet view, click More on the Home tab, click Subdatasheet, and then click Subdata-
sheet to see the dialog box shown in Figure 7-36.

Figure 7-36 You can choose a different table to display other related information in a subdatasheet
from the Insert Subdatasheet dialog box.

We built a query in the sample database that displays the related company and product
information for a contact. Click the Queries or Both tab and select qxmplCompanyCon-
tactProduct to defi ne the new subdatasheet. Click OK to close the Insert Subdatasheet
dialog box.

When you return to the qryContactsDatasheet window, click More on the Home tab,
click Subdatasheet, and then click Expand All. You will now see information about each
product ordered as shown in Figure 7-37. Note that you can also entirely remove a sub-
datasheet by clicking Remove on the menu shown in Figure 7-35. Close the query when
you are fi nished.

In the next section, you’ll learn more about editing data in Datasheet view. You can
use these editing techniques with the main datasheet as well as with any expanded
subdatasheet.

CAUTION!
When you close qryContactsDatasheet after modifying the subdatasheet as explained in

this section, Access will prompt you to ask if you want to save your changes. You should

click No to retain the original subdatasheet on tblContactEvents that we defi ned so that

the remaining examples in this chapter make sense.

C U O !

Chapter 7

390 Chapter 7 Creating and Working with Simple Queries
Figure 7-37 You can review all product information for a contact from the subdatasheet by
expanding it.

Changing Data
Not only can you view and format data in a datasheet, you can also insert new records,
change data, and delete records.

Understanding Record Indicators
You might have noticed as you moved around in the datasheet that icons occasion-
ally appeared on the row selector at the far left of each row. (See Figure 7-31.) These
record indicators and their meanings follow. Note also that Access 2007 highlights the
current row.

The pencil icon indicates that you are making or have made a change to one or more
entries in this row. Access 2007 saves the changes when you move to another row.
Before moving to a new row, you can press Esc once to undo the change to the current
value, or press Esc twice to undo all changes in the row. If you’re updating a database
that is shared with other users through a network, Access locks this record when you
save the change so that no one else can update it until you’re fi nished. If someone else
has the record locked, Access shows you a warning dialog box when you try to save the
row. You can wait a few seconds and try to save again.

The asterisk icon indicates a blank row at the end of the table that you can use to create
a new record.

 Working in Query Datasheet View 391

Ch
ap

te
r 7
Adding a New Record
As you build your application, you might fi nd it useful to place some data in your tables
so that you can test the forms and reports that you design. You might also fi nd it faster
sometimes to add data directly to your tables by using Datasheet view rather than by
opening a form. If your table is empty when you open the table or a query on the table
in Datasheet view, Access 2007 shows a single blank highlighted row with dimmed
rows beneath. If you have data in your table, Access shows a blank row beneath the last
record as well as dimmed rows below the blank row. You can jump to the blank row
to begin adding a new record either by clicking the Go To command on the Home tab
and then clicking New Record, by clicking the New button in the Records group on the
Home tab, or by pressing Ctrl+Plus Sign. Access places the insertion point in the fi rst
column when you start a new record. As soon as you begin typing, Access changes the
record indicator to the pencil icon to show that updates are in progress. Press the Tab
key to move to the next column.

If the data you enter in a column violates a fi eld validation rule, Access 2007 notifi es
you as soon as you attempt to leave the column. You must provide a correct value before
you can move to another column. Press Esc or click the Undo button on the Quick
Access Toolbar to remove your changes in the current fi eld.

Press Shift+Enter at any place in the record or press Tab in the last column in the record
to commit your new record to the database. You can also click the Save command in the
Records group on the Home tab. If the changes in your record violate the validation rule
for the table, Access warns you when you try to save the record. You must correct the
problem before you can save your changes. If you want to cancel the record, press Esc
twice or click the Undo button on the Quick Access Toolbar until the button appears
dimmed. (The fi rst Undo removes the edit from the current fi eld, and clicking Undo
again removes any previous edit in other fi elds until you have removed them all.)

Access 2007 provides several keyboard shortcuts to assist you as you enter new data, as
shown in Table 7-8.

Table 7-8 Keyboard Shortcuts for Entering Data in a Datasheet

Keys Data Action

Ctrl+semicolon (;) Enters the current date

Ctrl+colon (:) Enters the current time

Ctrl+Alt+Spacebar Enters the default value for the fi eld

Ctrl+single quotation mark (') or
Ctrl+double quotation mark (")

Enters the value from the same fi eld in the
 previous record

Ctrl+Enter Inserts a carriage return in a memo or text fi eld

Ctrl+Plus Sign (+) Moves to the new record row

Ctrl+Minus Sign (–) Deletes the current record

Chapter 7

392 Chapter 7 Creating and Working with Simple Queries

You can set options that affect how you move around in datasheets and forms. Click the

Microsoft Offi ce Button, click Access Options, and click the Advanced category to see the

options shown here.

You can change the way the Enter key works by selecting an option under Move After

Enter. Select Don’t Move to stay in the current fi eld when you press Enter. When you

select Next Field (the default), pressing Enter moves you to the next fi eld or the next row

if you’re on the last fi eld. Select Next Record to save your changes and move to the next

row when you press Enter.

You can change which part of the data of the fi eld is selected when you move into a fi eld

by selecting an option under Behavior Entering Field. Choose Select Entire Field (the

default), to highlight all data in the fi eld. Select Go To Start Of Field to place an insertion

point before the fi rst character, and select Go To End Of Field to place the insertion point

after the last character.

Under Arrow Key Behavior select Next Field (the default) if you want to move from fi eld

to fi eld when you press the Right Arrow or Left Arrow key. Select Next Character to

change to the insertion point and move one character at a time when you press the Right

Arrow or Left Arrow key. You can select the Cursor Stops At First/Last Field check box if

you don’t want pressing the arrow keys to move you off the current row.

SIDE OUT Setting Keyboard Options

You can set options that affect how you move around in datasheets and forms. Click the

Microsoft Offi ce Button, click Access Options, and click the Advanced category to see the

options shown here.

You can change the way the Enter key works by selecting an option under Move After

Enter. Select Don’t Move to stay in the current fi eld when you press Enter. When you

select Next Field (the default), pressing Enter moves you to the next fi eld or the next row

if you’re on the last fi eld. Select Next Record to save your changes and move to the next

row when you press Enter.

You can change which part of the data of the fi eld is selected when you move into a fi eld

by selecting an option under Behavior Entering Field. Choose Select Entire Field (the

default), to highlight all data in the fi eld. Select Go To Start Of Field to place an insertion

point before the fi rst character, and select Go To End Of Field to place the insertion point

after the last character.

Under Arrow Key Behavior select Next Field (the default) if you want to move from fi eld

to fi eld when you press the Right Arrow or Left Arrow key. Select Next Character to

change to the insertion point and move one character at a time when you press the Right

Arrow or Left Arrow key. You can select the Cursor Stops At First/Last Field check box if

you don’t want pressing the arrow keys to move you off the current row

 Working in Query Datasheet View 393

Ch
ap

te
r 7
We personally prefer to set the Move After Enter option to Don’t Move and the Arrow

Key Behavior option to Next Character. We use the Tab key to move from fi eld to fi eld,

and we don’t want to accidentally save the record when we press Enter. We leave Behav-

ior Entering Field at the default setting of Select Entire Field so that the entire text is

selected, but setting Arrow Key Behavior to Next Character allows us to press the arrow

keys to shift to single-character edit mode and move in the fi eld.

Selecting and Changing Data
When you have data in a table, you can easily change the data by editing it in Datasheet
view. You must select data before you can change it, and you can do this in several ways.

O In the cell containing the data you want to change, click just to the left of the fi rst
character you want to change (or to the right of the last character), and then drag
the insertion point to select all the characters you want to change.

O Double-click any word in a cell to select the entire word.

O Click at the left edge of a cell in the grid (that is, where the mouse pointer turns
into a large white cross). Access selects the entire contents of the cell.

Any data you type replaces the old, selected data. In Figure 7-38, we have moved to the
left edge of the First Name fi eld, and Access has shown us the white cross mentioned in
the last bullet. We can click to select the entire contents of the fi eld. In Figure 7-39, we
have changed the value to Mike, but haven’t yet saved the row. (You can see the pencil
icon indicating that a change is pending.) Access also selects the entire entry if you
tab to the cell in the datasheet grid (unless you have changed the keyboard options as
noted earlier). If you want to change only part of the data (for example, to correct the
spelling of a street name in an address fi eld), you can shift to single-character mode by
pressing F2 or by clicking the location at which you want to start your change. Use the
Backspace key to erase characters to the left of the insertion point and use the Delete
key to remove characters to the right of the insertion point. Hold down the Shift key
and press the Right Arrow or Left Arrow key to select multiple characters to replace.
You can press F2 again to select the entire cell. A useful keyboard shortcut for changing
data is to press Ctrl+Alt+Spacebar to restore the data in the current fi eld to the default
value specifi ed in the table defi nition.

Figure 7-38 You can select the old data by clicking the left side of the column.

Figure 7-39 You can then replace the old data with new data by typing the new information.

We personally prefer to set the Move After Enter option to Don’t Move and the Arrow

Key Behavior option to Next Character. We use the Tab key to move from fi eld to fi eld,

and we don’t want to accidentally save the record when we press Enter. We leave Behav-

ior Entering Field at the default setting of Select Entire Field so that the entire text is

selected, but setting Arrow Key Behavior to Next Character allows us to press the arrow

keys to shift to single-character edit mode and move in the fi eld.

Chapter 7

394 Chapter 7 Creating and Working with Simple Queries
Replacing Data
What if you need to make the same change in more than one record? Access 2007 pro-
vides a way to do this quickly and easily. Select any cell in the column whose values you
want to change (the fi rst row if you want to start at the beginning of the table), and then
click the Replace command in the Find group on the Home tab or press Ctrl+F to see
the dialog box shown in Figure 7-40. Suppose, for example, that you suspect that the
city name Easton is misspelled as Eaton in multiple rows. (All the city names are spelled
correctly in the sample table.) To fi x this using Replace, select the Work City fi eld in
any row of qryContactsDatasheet, click the Replace command, type Eaton in the Find
What text box, and then type Easton in the Replace With text box, as shown in Figure
7-40. Click the Find Next button to search for the next occurrence of the text you’ve
typed in the Find What text box. Click the Replace button to change data selectively,
or click the Replace All button to change all the entries that match the Find What text.
Note that you can select options to look in all fi elds or only the current fi eld; to select an
entry only if the Find What text matches the entire entry in the fi eld; to search All, Up,
or Down; to exactly match the case for text searches (because searches in Access are
normally case-insensitive); and to search based on the formatted contents (most useful
when updating date/time fi elds).

Figure 7-40 The Find And Replace dialog box allows you to quickly replace data in more than
one record.

Copying and Pasting Data
You can copy or cut any selected data to the Clipboard and paste this data into another
fi eld or record. To copy data in a fi eld, tab to the cell or click at the left edge of the cell
in the datasheet grid to select the data within it. Click the Copy command in the Clip-
board group on the Home tab or press Ctrl+C. To delete (cut) the data you have selected
and place a copy on the Clipboard, click the Cut command in the Clipboard group on
the Home tab or press Ctrl+X. To paste the data in another location, move the insertion
point to the new location, optionally select the data you want to replace, and click the
Paste command in the Clipboard group on the Home tab or press Ctrl+V. If the inser-
tion point is at the paste location (you haven’t selected any data in the fi eld), Access
inserts the Clipboard data.

 Working in Query Datasheet View 395

Ch
ap

te
r 7

If you select and copy to the Clipboard several items of text data, Access 2007 shows

you the Offi ce Clipboard task pane. Unlike the Windows Clipboard, this facility allows

you to copy several separate items, and then select any one of them later to paste into

other fi elds or documents. You might fi nd this feature useful when you want to copy the

contents of several fi elds from one record to another. You can, for example, copy a City

fi eld and then copy a State fi eld while in one record and then later individually paste the

values into another row. If you don’t see the Offi ce Clipboard, you can open it by click-

ing the Dialog Box Launcher button to the right of the word Clipboard in the Clipboard

group of the Home tab. The Offi ce Clipboard task pane will appear just to the left of the

Navigation Pane.

To select an entire record to be copied or cut, click the row selector at the far left of the
row. You can drag through the row selectors or press Shift+Up Arrow or Shift+Down
Arrow to extend the selection to multiple rows. Click the Copy command or press
Ctrl+C to copy the contents of multiple rows to the Clipboard. You can also click the
Cut command or press Ctrl+X to delete the rows and copy them to the Clipboard.

You can open another table or query and paste the copied rows into that datasheet,
or you can click Paste, then Paste Append in the Clipboard group on the Home tab to
paste the rows at the end of the same datasheet. When you paste rows into another
table, the rows you’re adding must satisfy the validation rules of the receiving table, and
the primary key values (if any) must be unique. If any validation fails, Access shows
you an error message and cancels the paste. You cannot paste copies of entire records
into the same table if the table has a primary key other than the AutoNumber data type.
(You’ll get a duplicate primary key value error if you try to do this.) When the primary
key is AutoNumber, Access generates new primary key values for you.

The Cut command is handy for moving those records that you don’t want in an active
table to a backup table. You can have both tables open (or queries on both tables open)
in Datasheet view at the same time. Simply cut the rows you want to move, switch to the
backup table window, and paste the cut rows by using the Paste Append command.

When you paste one row, Access inserts the data and leaves your insertion point on the
new record but doesn’t save it. You can always click Undo on the Quick Access Toolbar
to avoid saving the single pasted record. When you paste multiple rows, Access must
save them all as a group before allowing you to edit further. Access asks you to confi rm
the paste operation. (See Figure 7-41.) Click Yes to proceed, or click No if you decide to
cancel the operation.

SIDE OUT Using the Offi ce Clipboard

If you select and copy to the Clipboard several items of text data, Access 2007 shows

you the Offi ce Clipboard task pane. Unlike the Windows Clipboard, this facility allows

you to copy several separate items, and then select any one of them later to paste into

other fi elds or documents. You might fi nd this feature useful when you want to copy the

contents of several fi elds from one record to another. You can, for example, copy a City

fi eld and then copy a State fi eld while in one record and then later individually paste the

values into another row. If you don’t see the Offi ce Clipboard, you can open it by click-

ing the Dialog Box Launcher button to the right of the word Clipboard in the Clipboard

group of the Home tab. The Offi ce Clipboard task pane will appear just to the left of the

Navigation Pane.

Chapter 7

396 Chapter 7 Creating and Working with Simple Queries
Figure 7-41 This message box asks whether you want to proceed with a paste operation.

Note
You can’t change the physical sequence of rows in a relational database by cutting rows

from one location and pasting them in another location. Access always pastes new rows

at the end of the current display. If you close the datasheet after pasting in new rows and

then open it again, Access displays the rows in sequence by the primary key you defi ned.

If you want to see rows in some other sequence, see “Sorting and Searching for Data” on

page 401.

Deleting Rows
To delete one or more rows, select the rows using the row selectors and then press the
Delete key. For details about selecting multiple rows, see the previous discussion on
copying and pasting data. You can also use Ctrl+Minus Sign to delete the current or
selected row. When you delete rows, Access 2007 gives you a chance to change your
mind if you made a mistake. (See Figure 7-42.) Click Yes in the message box to delete
the rows, or click No to cancel the deletion. Because this database has referential integ-
rity rules defi ned between tblContacts and several other tables, you won’t be able to
delete contact records using qryContactsDatasheet. (Access shows you an error message
telling you that related rows exist in other tables.) You would have to remove all related
records from tblContactEvents, tblContactProducts, and tblCompanyContacts fi rst.

CAUTION!
After you click Yes in the confi rmation message box, you cannot restore the deleted

rows. You have to reenter them or copy them from a backup.

Figure 7-42 This message box appears when you delete rows.

Note
You can’t change the physical sequence of rows in a relational database by cutting rows

from one location and pasting them in another location. Access always pastes new rows

at the end of the current display. If you close the datasheet after pasting in new rows and

then open it again, Access displays the rows in sequence by the primary key you defi ned.

If you want to see rows in some other sequence, see “Sorting and Searching for Data” on

page 401.

CAUTION!

 Working in Query Datasheet View 397

Ch
ap

te
r 7
 Working with Hyperlinks
Microsoft Access 97 (also known as version 8.0) introduced the Hyperlink data type.
The Hyperlink data type lets you store a simple or complex link to a fi le or document
outside your database. This link pointer can contain a Uniform Resource Locator
(URL) that points to a location on the World Wide Web or on a local intranet. It can
also use a Universal Naming Convention (UNC) fi le name to point to a fi le on a server
on your local area network (LAN) or on your local computer drives. The link might
point to a fi le that is a Web page or in a format that is supported by an ActiveX applica-
tion on your computer.

A Hyperlink data type is actually a memo fi eld that can contain a virtually unlimited
number of characters. The link itself can have up to four parts.

O An optional descriptor that Access displays in the fi eld when you’re not editing
the link. The descriptor can start with any character other than a pound sign
(#) and must have a pound sign as its ending delimiter. If you do not include the
descriptor, you must start the link address with a pound sign.

O The link address expressed as either a URL (beginning with a recognized
Internet protocol name such as http: or ftp:) or in UNC format (a fi le location
expressed as \\server\share\path\fi le name). If you do not specify the optional
descriptor fi eld, Access displays the link address in the fi eld. Terminate the link
address with a pound sign (#).

O An optional subaddress that specifi es a named location (such as a cell range in
a Microsoft Excel spreadsheet or a bookmark in a Microsoft Word document)
within the fi le. Separate the subaddress from the ScreenTip with a pound sign (#).
If you entered no subaddress, you still must enter the pound sign delimiter if you
want to defi ne a ScreenTip.

O An optional ScreenTip that appears when you move your mouse pointer over the
hyperlink.

For example, a hyperlink containing all four items might look like the following:

Viescas Download Page#http://www.viescas.com/Info/links.htm#Downloads
#Click to see the fi les you can download from Viescas.com

A hyperlink that contains a ScreenTip but no bookmark might look like this:

Viescas.com Books#http://www.viescas.com/Info/books.htm
##Click to see recommended books on Viescas.com

When you have a fi eld defi ned using the Hyperlink data type, you work with it differ-
ently than with a standard text fi eld. We included the Website fi eld from tblContacts in
the qryContactsDatasheet sample query (in ContactsDataCopy.accdb). Open the query
and scroll to the right, if necessary, so that you can see the Website fi eld, and place your
mouse pointer over one of the fi elds that contains data, as shown in Figure 7-43.

Chapter 7

398 Chapter 7 Creating and Working with Simple Queries
Figure 7-43 Place your mouse pointer over a hyperlink fi eld in Datasheet view to show the hyper-
link or the ScreenTip.

Activating a Hyperlink
Notice that the text in a hyperlink fi eld is underlined and that the mouse pointer
becomes a hand with a pointing fi nger when you move the pointer over the fi eld. If you
leave the pointer fl oating over the fi eld for a moment, Access displays the ScreenTip. In
the tblContacts table, the entries in the Website hyperlink fi eld for some of the contacts
contain pointers to Microsoft Web sites. When you click a link fi eld, Access starts the
application that supports the link and passes the link address and subaddress to the
application. If the link starts with an Internet protocol, Access starts your Web browser.
In the case of the links in the tblContacts table, all are links to pages on the Microsoft
Web site. If you click one of them, your browser should start and display the related
Web page, as shown in Figure 7-44.

Inserting a New Hyperlink
To insert a hyperlink in an empty hyperlink fi eld, tab to the fi eld or click in it with your
mouse. If you’re confi dent about the format of your link, you can type it, following the
rules for the four parts noted earlier. If you’re not sure, right-click inside the hyperlink
fi eld, select Hyperlink from the shortcut menu that appears, and then select Edit Hyper-
link from the submenu to see the dialog box shown in Figure 7-45. This dialog box
helps you correctly construct the four parts of the hyperlink.

The dialog box opens with Existing File Or Web Page selected in the Link To pane and
Current Folder selected in the center pane, as shown in Figure 7-45. What you see in
the list in the center pane depends on your current folder, the Web pages you’ve visited
recently, and the fi les you’ve opened recently. You’ll see a Look In list where you can

 Working in Query Datasheet View 399

Ch
ap

te
r 7
navigate to any drive or folder on your system. You can also click the Browse The Web
button (the button with a globe and a spyglass) to open your Web browser to fi nd a Web
site you want, or the Browse For File button (an open folder icon) to open the Link To
File dialog box to fi nd the fi le you want. Click Existing File Or Web Page and click the
Recent Files option to see a list of fi les that you recently opened.

Figure 7-44 Here is the result of clicking a Web site link in the tblContacts table.

Figure 7-45 The dialog box used to insert a hyperlink shows you a list of fi les in the current folder.

Chapter 7

400 Chapter 7 Creating and Working with Simple Queries
We clicked the Browsed Pages option because we knew the hyperlink we wanted was a
Web page that we had recently visited. You can enter the descriptor in the Text To Dis-
play box at the top. We clicked the ScreenTip button to open the Set Hyperlink Screen-
Tip dialog box you see in Figure 7-46. You can type the document or Web site address
directly into the Address box. (Yes, that’s Jeff’s real Web site address!)

Figure 7-46 You can choose a Web site address from a list of recently visited Web sites.

The E-Mail Address button in the left pane lets you enter an e-mail address or choose
from a list of recently used addresses. This generates a mailto: hyperlink that will
invoke your e-mail program and start a new e-mail to the address you enter. You can
also optionally specify a subject for the new e-mail by adding a question mark after the
e-mail address and entering what you want to appear on the subject line.

Click OK to save your link in the fi eld in the datasheet.

Editing an Existing Hyperlink
Getting into a hyperlink fi eld to change the value of the link is a bit tricky. You can’t
simply click in a hyperlink fi eld because that activates the link. What you can do is
click in the fi eld before the hyperlink and use the Tab key to move to the link fi eld.
Then press F2 to shift to character edit mode to edit the text string that defi nes the link.
Figure 7-47 shows you a hyperlink fi eld after following this procedure. You can use
the arrow keys to move around in the text string to change one or more parts. In many
cases, you might want to add an optional descriptor at the beginning of the link text, as
shown in the fi gure.

The most comprehensive way to work with a hyperlink fi eld is to right-click a link fi eld
to open a shortcut menu. Clicking Hyperlink on this menu displays a submenu with a
number of options. You can edit the hyperlink (which opens the dialog box shown in
Figure 7-45), open the link document, copy the link to the Clipboard, add the link to
your list of favorites, change the text displayed in the fi eld, or remove the hyperlink.

 Working in Query Datasheet View 401

Ch
ap

te
r 7
Figure 7-47 You can edit the text that defi nes a hyperlink directly in a datasheet.

 Sorting and Searching for Data
When you open a table in Datasheet view, Access 2007 displays the rows sorted in
sequence by the primary key you defi ned for the table. If you didn’t defi ne a primary
key, you’ll see the rows in the sequence in which you entered them in the table. If you
want to see the rows in a different sequence or search for specifi c data, Access pro-
vides you with tools to do that. When you open a query in Datasheet view (such as the
 qryContactsDatasheet sample query we’re using in this chapter), you’ll see the rows in
the order determined by sort specifi cations in the query. If you haven’t specifi ed sorting
information, you’ll see the data in the same sequence as you would if you opened the
table or query in Datasheet view.

Sorting Data
Access 2007 provides several ways to sort data in Datasheet view. As you might have
noticed, two handy Ribbon commands allow you to quickly sort the rows in a query
or table datasheet in ascending or descending order. To see how this works, open
the qryContactsDatasheet query, click anywhere in the Birth Date column, and click
the Descending command in the Sort & Filter group on the Home tab. Access sorts
the display to show you the rows ordered alphabetically by Birth Date, as shown in
Figure 7-48.

Chapter 7

402 Chapter 7 Creating and Working with Simple Queries
Advanced Filter Options
Filter button

Ascending
Descending

Clear All Sorts

Selection menu

Toggle Filter

Figure 7-48 You can sort contacts by birth date by using the sort buttons on the Ribbon.

You can click the Ascending button to sort the rows in ascending order or click the
Clear All Sorts button to return to the original data sequence. But before you change
the sort or clear the sort, suppose you want to see contacts sorted by state or province
ascending and then by birth date descending. You already have the data sorted by birth
date, so click anywhere in the State/Province column and click the Ascending button to
see the result you want as shown in Figure 7-49.

 Working in Query Datasheet View 403

Ch
ap

te
r 7
Figure 7-49 After applying the second sort, the records are now sorted by state or province
ascending and then by birth date descending within state or province.

Notice that to sort by state or province and then birth date within state or province, you

must fi rst sort birth date and then sort state or province. We think that’s backwards, but

that’s the way it works. If you had applied a sort on state or province fi rst and then sorted

birth date, you would have seen all the records in date order with any records having

the same date subsequently sorted by state or province. If you want to sort on multiple

fi elds, remember to apply the innermost sort fi rst and then work your way outward.

Another way to sort more than one fi eld is to use the Advanced Filter/Sort feature. Let’s
assume that you want to sort by State/Province, then by City within State/Province,
and then by Last Name. Here’s how to do it:

 1. Click the Advanced button in the Sort & Filter group on the Home tab, and then
click Advanced Filter/Sort. You’ll see the Advanced Filter Design window (shown

SIDE OUT Applying Multiple Sorts in Reverse Order

Notice that to sort by state or province and then birth date within state or province, you

must fi rst sort birth date and then sort state or province. We think that’s backwards, but

that’s the way it works. If you had applied a sort on state or province fi rst and then sorted

birth date, you would have seen all the records in date order with any records having

the same date subsequently sorted by state or province. If you want to sort on multiple

fi elds, remember to apply the innermost sort fi rst and then work your way outward.t

Chapter 7

404 Chapter 7 Creating and Working with Simple Queries
in Figure 7-50) with a list of fi elds in the qryContactsDatasheet query shown in
the top part of the window.

Figure 7-50 Select the fi elds you want to sort in the Advanced Filter Design window.

2. If you didn’t click the Clear All Sorts button before opening this window, you
should see the sorts you previously defi ned directly in Datasheet view on the
WorkStateOrProvince and BirthDate fi elds. If so, click the bar above the BirthDate
fi eld to select it and then press the Delete key to remove the fi eld.

3. Because you recently sorted by State/Province, the Advanced Filter Design
window will show this fi eld already added to the fi lter grid. If you skipped the
sort step in Figure 7-48 or closed and reopened the datasheet without saving the
sort, open the fi eld list in the fi rst column by clicking the arrow or by pressing
Alt+Down Arrow on the keyboard. Select the WorkStateOrProvince fi eld in the
list. You can also place the WorkStateOrProvince fi eld in the fi rst column by
fi nding WorkStateOrProvince in the list of fi elds in the top part of the window
and dragging it into the Field row in the fi rst column of the fi lter grid.

4. Click in the Sort row, immediately below the WorkStateOrProvince fi eld, and
select Ascending from the drop-down list.

5. Add the WorkCity and LastName fi elds to the next two columns, and select
Ascending in the Sort row for both.

6. Click the Toggle Filter button in the Sort & Filter group of the Home tab on the
Ribbon to see the result shown in Figure 7-51.

 Working in Query Datasheet View 405

Ch
ap

te
r 7
Figure 7-51 After defi ning your sorts and clicking the Toggle Filter button, you can see the results
of your sorting contact records by state or province, city, and then last name.

Note
If you compare Figure 7-49 with Figure 7-51, it looks like the records in Figure 7-49 were

already sorted by city name within state. You might be tempted to leave out the sort on

city in this exercise, but if you do that, you will not see the city names maintained in the

same order. Remember, if you want data presented in a certain sequence, you must ask

for it that way!

Close the qryContactsDatasheet window and click No when asked if you want to save
design changes. We’ll explore using the other options in the Sort & Filter group in the
next sections.

Searching For and Filtering Data
If you want to look for data anywhere in your table, Access 2007 provides several pow-
erful searching and fi ltering capabilities.

Using Find To begin this exercise, open the qryContactsDatasheet query in Datasheet
view again. To perform a simple search on a single fi eld, select that fi eld, and then open
the Find And Replace dialog box (shown in Figure 7-52) by clicking the Find command
in the Find group on the Home tab or by pressing Ctrl+F.

Note
If you compare Figure 7-49 with Figure 7-51, it looks like the records in Figure 7-49 were

already sorted by city name within state. You might be tempted to leave out the sort on

city in this exercise, but if you do that, you will not see the city names maintained in the

same order. Remember, if you want data presented in a certain sequence, you must ask

for it that way!

Chapter 7

406 Chapter 7 Creating and Working with Simple Queries
Figure 7-52 You can use the Find And Replace dialog box to search for data.

In the Find What text box, type the data that you want Access to fi nd. You can include
wildcard characters similar to those of the LIKE comparison operator. See “Defi ning
Simple Field Validation Rules” on page 168 to perform a generic search. Use an asterisk
(*) to indicate a string of unknown characters of any length (zero or more characters),
and use a question mark (?) to indicate exactly one unknown character or a space. For
example, *AB??DE* matches Aberdeen and Tab idea but not Lab department.

By default, Access searches the fi eld that your insertion point was in before you opened
the Find And Replace dialog box. To search the entire table, select the table or query
name from the Look In list. By default, Access searches all records from the top of the
recordset unless you change the Search list to search down or up from the current
record position. Select the Match Case check box if you want to fi nd text that exactly
matches the uppercase and lowercase letters you typed. By default, Access is case-
 insensitive unless you select this check box.

The Search Fields As Formatted check box appears dimmed unless you select a fi eld
that has a format or input mask applied. You can select this check box if you need to
search the data as it is displayed rather than as it is stored by Access. Although search-
ing this way is slower, you probably should select this check box if you are searching a
date/time fi eld. For example, if you’re searching a date fi eld for dates in January, you can
specify *-Jan-* if the fi eld is formatted as Medium Date and you select the Search Fields
As Formatted check box. You might also want to select this check box when searching a
Yes/No fi eld for Yes because any value except 0 is a valid indicator of Yes.

Click Find Next to start searching from the current record. Each time you click Find
Next again, Access moves to the next value it fi nds, and loops to the top of the recordset
to continue the search if you started in the middle. After you establish search criteria
and you close the Find And Replace dialog box, you can press Shift+F4 to execute the
search from the current record without having to open the dialog box again.

 Working in Query Datasheet View 407

Ch
ap

te
r 7
Filtering by Selection If you want to see all the rows in your table that contain a value
that matches one in a row in the datasheet grid, you can use the Selection command in
the Sort & Filter group on the Home tab. Select a complete value in a fi eld to see only
rows that have data in that column that completely matches. Figure 7-53 shows the
value PA selected in the State/Province column and the result after clicking the Selec-
tion button in the Sort & Filter group of the Home tab and clicking Equals "PA". If the
fi ltering data you need is in several contiguous columns, click the fi rst column, hold
down the Shift key, and click the last column to select all the data; click the Selection
button; and then click a fi lter option to see only rows that match the data in all the col-
umns you selected.

Figure 7-53 Here is the list of contacts in Pennsylvania, compiled using the Selection fi lter option.

Alternatively, if you want to see all the rows in your table that contain a part of a value
that matches one in a row in the datasheet grid, you can select the characters that you
want to match and use Selection. For example, to see all contacts that have the charac-
ters ing in their work city name, fi nd a contact that has ing in the Work City fi eld and
select those characters. Click the Selection button in the Sort & Filter group of the
Home tab, and then click Contains "ing". When the search is completed you should
see only the three contacts who work in the cities named Pingree Grove and Flushing.
To remove a fi lter, click the Toggle Filter button in the Sort & Filter group, or click
Advanced in the Sort & Filter group and then click Clear All Filters.

Note
You can open any subdatasheet defi ned for the query and apply a fi lter there. If you

apply a fi lter to a subdatasheet, you will fi lter all the subdatasheets that are open.

You can also add a fi lter to a fi lter. For example, if you want to see all contacts who
live in Youngsville in Pennsylvania, fi nd the value PA in the State/Province column,
select it, click the Selection button in the Sort & Filter group of the Home tab, and then

Note
You can open any subdatasheet defi ned for the query and apply a fi lter there. If you

apply a fi lter to a subdatasheet, you will fi lter all the subdatasheets that are open.

Chapter 7

408 Chapter 7 Creating and Working with Simple Queries
click Equals "PA". In the fi ltered list, fi nd a row containing the word Youngsville in
the Work City fi eld, select the word, click the Selection button again, and click Equals
"Youngsville". Access displays a small fi lter icon that looks like a funnel in the upper-
right corner of each column that has a fi lter applied, as shown in Figure 7-54. If you rest
your mouse on one of these column fi lter icons, Access displays a ScreenTip telling you
what fi lter has been applied to that particular column. To remove all your fi lters, click
the Toggle Filter button or click Advanced in the Sort & Filter group of the Home tab
and click Clear All Filters.

Figure 7-54 Access displays a ScreenTip on the fi lter icon in the column header to show you what
fi lter is applied.

Using the Filter Window To further assist you with fi ltering rows, Access 2007 pro-
vides a Filter window with predefi ned fi lter selections for various data types. Suppose
you want to quickly fi lter the rows for contacts who have birthdays in the month of
December. Click inside the Birth Date column in any row and then click the Filter but-
ton in the Sort & Filter group of the Home tab, and Access opens the Filter window for
this fi eld shown in Figure 7-55.

Figure 7-55 The Filter window for date/time fi elds displays fi lter criteria based on the dates entered
in the fi eld.

 Working in Query Datasheet View 409

Ch
ap

te
r 7
The Ascending and Descending buttons, discussed previously, are the fi rst two options
in the Filter window. (For a date/time fi eld, Access shows you Sort Oldest To Newest
and Sort Newest To Oldest. For a text fi eld, Access shows you Sort A To Z and Sort Z To
A, and for a numeric fi eld, Access shows you Sort Smallest To Largest and Sort Largest
to Smallest.) The third option, Clear Filter From Birth Date, removes all fi lters applied
to the Birth Date fi eld. The fourth option is Date Filters, which displays several sub-
menus to the right that allow you to fi lter for specifi c date criteria. (For text fi elds, this
option presents a list of text fi lters. For number fi elds, Access displays a list of the avail-
able numeric values.)

Beneath the Date Filters option is a list. The fi rst two options in this list are the same
for all data types. Select All selects all the options presented in the list. Blanks causes
Access to search the fi eld for any rows with no value entered—a Null value or an empty
string. Beneath Select All and Blanks are every unique value entered into the Birth Date
fi eld for the current datasheet. If you select only one of these options, Access fi lters the
rows that exactly match the value you choose.

In our example, to fi nd all contacts who have a birthday in the month of December, click
Date Filters, click All Dates In Period, and then you can fi lter the rows by an individual
quarter or by a specifi c month. Click December and Access fi lters the rows to display
only contacts who have birthdays in December, as shown in Figure 7-56.

Figure 7-56 Date Filters presents built-in date fi lters for periods and months.

Chapter 7

410 Chapter 7 Creating and Working with Simple Queries
The result of this fi lter should return the four contacts who have birthdays in December
as shown in Figure 7-57. Click the Toggle Filter button in the Sort & Filter group of the
Home tab to remove the fi lter.

Figure 7-57 Four contacts in the table have birthdays in the month of December.

Using Filter By Form Applying a fi lter using Selection is great for searching for rows
that match all of several criteria (Last Name like "*son*" and State/Province equals
"OR"), but what if you want to see rows that meet any of several criteria (Last Name like
"*son" and State/Province equals "OR" or State/Province equals "PA")? You can use Filter
By Form to easily build the criteria for this type of search.

When you click the Advanced button in the Sort & Filter group of the Home tab and
click Filter By Form, Access 2007 shows you a Filter By Form example that looks like
your datasheet but contains no data. If you have no fi ltering criteria previously defi ned,
Access shows you the Look For tab and one Or tab at the bottom of the window. Move
to each column in which you want to defi ne criteria and either select a value from the
drop-down list or type search criteria, as shown in Figure 7-58. Notice that each drop-
down list shows you all the unique values available for each fi eld, so it’s easy to pick val-
ues to perform an exact comparison. You can also enter criteria, much the way that you
did to create validation rules in Chapter 4. For example, you can enter Like "*son*" in the
Last Name fi eld to search for the letters son anywhere in the name. You can use criteria
such as >#01 JAN 1963# in the Birth Date date/time fi eld to fi nd rows for contacts born
after that date. You can enter multiple criteria on one line, but all the criteria you enter
on a single line must be true for a particular row to be selected.

When your table or query returns tens of thousands of rows, fetching the values for each

list in Filter By Form can take a long time. You can specify a limit by clicking the Microsoft

Offi ce Button and clicking Access Options. Select the Current Database category in the

Access Options dialog box, and then scroll down to Filter Lookup Options For <name of

your database>. In the Don’t Display Lists Where More Than This Number Of Records

Read option, you can specify a value for display lists to limit the number of discrete val-

ues returned. The default value is 1,000.

SIDE OUT Limiting the Returned Records

When your table or query returns tens of thousands of rows, fetching the values for each

list in Filter By Form can take a long time. You can specify a limit by clicking the Microsoft

Offi ce Button and clicking Access Options. Select the Current Database category in the

Access Options dialog box, and then scroll down to Filter Lookup Options For <name of

your database>. In the Don’t Display Lists Where More Than This Number Of Records

Read option, you can specify a value for display lists to limit the number of discrete val-

ues returned. The default value is 1,000.

 Working in Query Datasheet View 411

Ch
ap

te
r 7
Figure 7-58 Use Filter By Form to search for one of several states.

If you want to see rows that contain any of several values in a particular column (for
example, rows from several states), enter the fi rst value in the appropriate column, and
then click the Or tab at the bottom of the window to enter an additional criterion. In
this example, "OR" was entered in the State/Province column on the Look For tab and
"PA" on the fi rst Or tab; you can see "PA" being selected for the fi rst Or tab in Figure 7-58.

Each tab also specifi es Like "*son*" for the last name. (As you defi ne additional criteria,
Access makes additional Or tabs available at the bottom of the window.) Figure 7-59
shows the result of applying these criteria when you click the Toggle Filter button in the
Sort & Filter group of the Home tab.

Figure 7-59 The contacts with names containing son in the states of OR and PA.

You can actually defi ne very complex fi ltering criteria using expressions and the Or
tabs in the Filter By Form window. If you look at the Filter By Form window, you can
see that Access builds all your criteria in a design grid that looks similar to a Query
window in Design view. In fact, fi lters and sorts use the query capabilities of Access to
accomplish the result you want, so in Datasheet view you can use all the same fi ltering
capabilities you’ll fi nd for queries.

Chapter 7

412 Chapter 7 Creating and Working with Simple Queries

Access 2007 always remembers the last fi ltering and sorting criteria you defi ned for a

datasheet. The next time you open the datasheet, click the Advanced button in the Sort

& Filter group on the Home tab and click Filter By Form or Advanced to apply the last

fi lter you created (as long as you replied Yes to the prompt to save formatting changes

when you last closed the datasheet). If you want to save a particular fi lter/sort defi ni-

tion, click the Advanced button in the Sort & Filter group on the Home tab, click Save

As Query, and give your fi lter a name. The next time you open the table, return to the

Advanced button, and then click Load From Query to fi nd the fi lter you previously saved.

In the next chapter, we’ll explore creating more complex queries—including creating
queries from multiple tables or queries, calculating totals, and designing PivotTable and
PivotChart views.

SIDE OUT Saving and Reusing Your Filters

Access 2007 always remembers the last fi ltering and sorting criteria you defi ned for a

datasheet. The next time you open the datasheet, click the Advanced button in the Sort

& Filter group on the Home tab and click Filter By Form or Advanced to apply the last

fi lter you created (as long as you replied Yes to the prompt to save formatting changes

when you last closed the datasheet). If you want to save a particular fi lter/sort defi ni-

tion, click the Advanced button in the Sort & Filter group on the Home tab, click Save

As Query, and give your fi lter a name. The next time you open the table, return to the

Advanced button, and then click Load From Query to fi nd the fi lter you previously saved.

CHAPTER 8

Building Complex Queries
Creating queries on a single table as you did in the previous chapter is a good way
to get acquainted with the basic mechanics of the query designer. It’s also useful to

work with simple queries to understand how datasheets work.

However, for many tasks you’ll need to build a query on multiple tables or queries (yes,
you can build a query on a query!), calculate totals, add parameters, customize query
properties, or work in SQL view. In fact, there are some types of queries that you can
build only in SQL view. This chapter shows you how.

CAUTION!
When you build an application, you should never allow users to view or edit data directly

from table or query datasheets. Although you can protect the integrity of your data

somewhat with input masks, validation rules, and relationships, you cannot enforce com-

plex business rules.

For example, in the Housing Reservations application, you need to ensure that a particu-

lar room isn’t booked more than once for a given time period. In the Conrad Systems

Contacts application, your application shouldn’t allow a support contract to be sold for

a product that the contact hasn’t purchased. You can’t run such integrity checks from

tables or queries. However, you can enforce such complex business rules by writing

Visual Basic code in the forms you design so that your users can edit data while maintain-

ing data integrity.

The purpose of this chapter is to teach you the concepts you must learn to build the

queries you’ll need for your forms and reports. In Chapter 20, “Automating Your Appli-

cation with Visual Basic,” you’ll learn how to build complex business rule validation into

your forms.

CAUTION!

Selecting Data from Multiple Tables 414

Using a Query Wizard . 431

Summarizing Information with Totals Queries 435

Using Query Parameters . 449

Customizing Query Properties . 452

Editing and Creating Queries in SQL View 463

Limitations on Using Select Queries to Update Data . . 468

Creating PivotTables and PivotCharts from Queries . . 469
 413

Chapter 8

414 Chapter 8 Building Complex Queries
Selecting Data from Multiple Tables
At this point, you’ve been through all the variations on a single theme—queries on a sin-
gle table. It’s easy to build on this knowledge to retrieve related information from many
tables and to place that information in a single view. You’ll fi nd this ability to select data
from multiple tables very useful in designing forms and reports.

Note
The examples in this chapter are based on the tables and data in HousingDataCopy.accdb

and ContactsDataCopy.accdb on the companion CD included with this book. These

databases are copies of the data from the Housing Reservations and Conrad Systems

Contacts sample applications, respectively, and they contain the sample queries used in

this chapter. The query results you see from the sample queries you build in this chapter

might not exactly match what you see in this book if you have changed the sample data

in the fi les. Also, all the screen images in this chapter were taken on a Windows Vista sys-

tem with the display theme set to Blue. Your results might look different if you are using

a different operating system or a different theme.

Creating Inner Joins
A join is the link you need to defi ne between two related tables in a query so that the
data you see makes sense. If you don’t defi ne the link, you’ll see all rows from the fi rst
table combined with all rows from the second table (also called the Cartesian product).
When you use an inner join (the default for joins in queries), you won’t see rows from
either table that don’t have a matching row in the other table. This type of query is also
called an equi-join query, meaning that you’ll see rows only where there are equal values
in both tables. For example, in a query that joins departments and employees, you won’t
see any departments that have no employees or any employees that aren’t assigned to
a department. To see how to build a query that returns all rows from one of the tables,
including rows that have no match in the related table, see “Using Outer Joins” on
page 425.

Correctly designing your tables requires you to split out (normalize) your data into sep-
arate tables to avoid redundant data and problems updating the data. (For details about
designing your tables, see Article 1, “Designing Your Database Application,” on the com-
panion CD.) For many tasks, however, you need to work with the data from multiple
tables. For example, in the Housing Reservations application, to work with employees
and the departments to which they are assigned, you can’t get all the information you
need from just tblEmployees. Sure, you can see the employee’s DepartmentID, but what
about the department name and location? If you want to sort or fi lter employees by
department name, you need both tblDepartments and tblEmployees.

Note
The examples in this chapter are based on the tables and data in HousingDataCopy.accdb

and ContactsDataCopy.accdb on the companion CD included with this book. These

databases are copies of the data from the Housing Reservations and Conrad Systems

Contacts sample applications, respectively, and they contain the sample queries used in

this chapter. The query results you see from the sample queries you build in this chapter

might not exactly match what you see in this book if you have changed the sample data

in the fi les. Also, all the screen images in this chapter were taken on a Windows Vista sys-

tem with the display theme set to Blue. Your results might look different if you are using

a different operating system or a different theme.

 Selecting Data from Multiple Tables 415

Ch
ap

te
r 8
In the previous chapter, we built several queries on tblReservations. Because we defi ned
Lookup properties in that table, you can see the facility name in the reservation record,
but as you discovered, that’s really a numeric fi eld. If you want to sort on the real name
value or see other information about the facility, you must create a query that uses both
tblFacilities and tblReservations.

Try the following example, in which you combine information about a reservation and
about the facility in which the reservation was confi rmed. Start by opening the Hous-
ingDataCopy.accdb database. Click the Query Design button in the Other group on the
Create tab. Microsoft Offi ce Access 2007 immediately opens the Show Table dialog box.
In this dialog box, you select the tables and queries that you want in your new query.
Select the tblFacilities and tblReservations tables (hold down the Ctrl key as you click
each table name), click the Add button, and then close the dialog box.

TROUBLESHOOTING
How can I be sure I’m using the correct table in the query designer?
Whenever your query is based on more than one table, it’s a good idea to select the

Show Table Names option in the Query Design section of the Object Designers category

of the Access Options dialog box. (Click the Microsoft Offi ce Button, click Access Options,

and then click the Object Designers category in the left column. Below Query Design,

make sure that the Show Table Names check box is selected.) Because you might have

the same fi eld name in more than one of the tables, showing table names in the design

grid helps to ensure that your query refers to the fi eld you intend it to.

Whenever you have relationships defi ned, the query designer automatically links (joins)

multiple tables on the defi ned relationships. You might also want to select the Enable

AutoJoin check box in the Object Designers category of the Access Options dialog box.

When you enable this option and build a query on two tables that aren’t directly related,

the query designer attempts to link the two tables for you. The query designer looks at

the primary key of each table. If it can fi nd a fi eld with the same name and data type in

one of the other tables you added to the query designer, the query designer builds the

link for you. Some advanced users might prefer to always create these links themselves.

The two tables, tblFacilities and tblReservations, aren’t directly related to each other.
If you look in the Relationships window (click Relationships on the Database Tools
tab), you’ll see a relationship defi ned between tblFacilities and tblFacilityRooms
on the FacilityID fi eld. There’s also a relationship between tblFacilityRooms and
 tbl Reservations on the combination of the FacilityID and the RoomNumber fi elds. So,
tblFacilities is related to tblReservations via the FacilityID fi eld, but indirectly. In other
words, the FacilityID fi eld in tblReservations is a foreign key that points to the related
row in tblFacilities. So, it’s perfectly legitimate to build a query that links these two
tables on the FacilityID fi eld.

OU S OO G

Chapter 8

416 Chapter 8 Building Complex Queries

It’s a good idea to defi ne relationships between related tables to help ensure the integ-

rity of your data. However, you don’t need to defi ne a relationship between the foreign

key in a table and the matching primary key in every other related table. For example, if

table A is related to table B, and table B is related to table C, you don’t necessarily need

a relationship defi ned between table A and table C even though table C might contain

a foreign key fi eld that relates it to table A. Even when you haven’t explicitly defi ned a

relationship between table A and table C, it is perfectly valid to join table A to table C in

a query as long as there’s a legitimate matching fi eld in both tables.

The upper part of the Query window in Design view should look like that shown in Fig-
ure 8-1. Offi ce Access 2007 fi rst links multiple tables in a query based on the relation-
ships you have defi ned. If no defi ned relationship exists, and you have Enable AutoJoin
selected in the Object Designers category in the Access Options dialog box (this option
is enabled by default), then Access attempts to match the primary key from one table
with a fi eld that has the same name and data type in the other table.

Access 2007 shows the links between tables as a line drawn from the primary key in
one table to its matching fi eld in the other table. As already noted, no direct relationship
exists between these two tables in this example. With Enable AutoJoin selected, how-
ever, Access sees that the FacilityID fi eld is the primary key in tblFacilities and fi nds a
matching FacilityID fi eld in tblReservations. So, it should create a join line between the
two tables on the FacilityID fi elds. If you don’t see this line, you can click FacilityID in
tblFacilities and drag and drop it on FacilityID in tblReservations, just like you learned
to do in “Defi ning Relationships” on page 181.

Note
If you haven’t defi ned relationships, when you create a query that uses two tables that

are related by more than one fi eld (for example, tblFacilityRooms and tblReservations in

this database), the Join Properties dialog box lets you defi ne only one of the links at a

time. You must click the New button again to defi ne the second part of the join. If you’re

using drag and drop, you can do this with only one fi eld at a time even though you can

select multiple fi elds in either table window. We’ll discuss the Join Properties dialog box

in “Building a Simple Outer Join” on page 425.

In this example, you want to add to the query the FacilityID and FacilityName fi elds
from the tblFacilities table and the ReservationID, EmployeeNumber, FacilityID, Room-
Number, CheckInDate, and CheckOutDate fi elds from the tblReservations table. (We
resized the columns on the query grid in Figure 8-1 so that you can see all the fi elds.)

SIDE OUT Query Joins Don’t Always Need to Match Relationships

It’s a good idea to defi ne relationships between related tables to help ensure the integ-

rity of your data. However, you don’t need to defi ne a relationship between the foreign

key in a table and the matching primary key in every other related table. For example, if

table A is related to table B, and table B is related to table C, you don’t necessarily need

a relationship defi ned between table A and table C even though table C might contain

a foreign key fi eld that relates it to table A. Even when you haven’t explicitly defi ned a

relationship between table A and table C, it is perfectly valid to join table A to table C in

a query as long as there’s a legitimate matching fi eld in both tables.

Note
If you haven’t defi ned relationships, when you create a query that uses two tables that

are related by more than one fi eld (for example, tblFacilityRooms and tblReservations in

this database), the Join Properties dialog box lets you defi ne only one of the links at a

time. You must click the New button again to defi ne the second part of the join. If you’re

using drag and drop, you can do this with only one fi eld at a time even though you can

select multiple fi elds in either table window. We’ll discuss the Join Properties dialog box

in “Building a Simple Outer Join” on page 425.

 Selecting Data from Multiple Tables 417

Ch
ap

te
r 8
Join line

Figure 8-1 This query selects information from the tblFacilities and tblReservations tables.

When you run the query, you see the recordset shown in Figure 8-2. The fi elds from the
tblFacilities table appear fi rst, left to right. We resized the columns displayed in Fig-
ure 8-2 so that you can see all the fi elds. You might need to scroll right in the datasheet
to see them on your computer.

The query designer converts everything you build in a query grid into SQL—the lingua

franca of database queries. Access 2007 actually stores only the SQL and rebuilds the

query grid each time you open a query in Design view. Later in this chapter, we’ll exam-

ine some of the actual syntax behind your queries, and you can study the full details of

SQL in Article 2, “Understanding SQL,” on the companion CD.

Notice the facility name in the column for the FacilityID fi eld from the tblReservations
table. (The caption for the fi eld is Facility.) If you check the defi nition of the FacilityID
fi eld in the tblReservations table, you’ll see a Lookup combo box defi ned—the query has
inherited those properties. Click in a fi eld in the Facility column in this datasheet, and
the combo box appears. If you choose a different Facility name from the list, you will
change the FacilityID fi eld for that reservation. But the room number already in the row
might not exist in the new Facility, so you might get an error if you try to save the row.

SIDE OUT A Query Is Really Defi ned by Its SQL

The query designer converts everything you build in a query grid into SQL—the lingua

franca of database queries. Access 2007 actually stores only the SQL and rebuilds the

query grid each time you open a query in Design view. Later in this chapter, we’ll exam-

ine some of the actual syntax behind your queries, and you can study the full details of

SQL in Article 2, “Understanding SQL,” on the companion CD.

Chapter 8

418 Chapter 8 Building Complex Queries
This is yet another example of a business rule that you will have to ensure is verifi ed in
a form you create for users to edit this data.

Join line Fields from tblReservations

Figure 8-2 Here you can see the recordset of the query shown in Figure 8-1. The facility informa-
tion in the drop-down list comes from the Lookup properties defi ned in the tblReservations table.

If you choose a different Facility (the FacilityID fi eld in tblReservations), you can see the
ID and Name change on the left side of the datasheet. When you change the value in a
foreign key fi eld (in this case, the FacilityID fi eld in tblReservations) in a table on the
many side of a one-to-many query (there are many reservations for each facility), Access
performs an AutoLookup to retrieve the related row from the one side (tblFacilities) to
keep the data synchronized. You’ll fi nd this feature handy later when you build a form
to display and edit information from a query like this.

Try changing the entry in the Facility column (remember, this is the FacilityID fi eld
from tblReservations; you see the name of the facility because we defi ned Lookup prop-
erties on this fi eld.) in the fi rst row from Main Campus Housing A to South Campus
Housing C. When you select the new value for the FacilityID fi eld in tblReservations,
you should see the ID fi eld from tblFacilities change to 3 and the Name entry (the
Facility Name fi eld from tblFacilities) change from Main Campus Housing A to South
Campus Housing C. Note that in this case you’re changing only the linking FacilityID
fi eld in tblReservations, not the name of the facility in tblFacilities. Access is retrieving
the row from tblFacilities that matches the changed FacilityID value in tblReservations
to show you the correct name.

 Selecting Data from Multiple Tables 419

Ch
ap

te
r 8
Note
If you change the facility in one of the rows in this query, Access won’t let you save the

row if the room number in the reservation doesn’t exist in the new facility you chose.

One interesting aspect of queries on multiple tables is that in many cases you can
update the fi elds from either table in the query. See “Limitations on Using Select
Queries to Update Data” on page 468 for a discussion of when joined queries are not
updatable. For example, you can change the facility name in the tblFacilities table by
changing the data in the Name column in this query’s datasheet.

CAUTION!
In most cases, Access lets you edit fi elds from the table on the one side of the join (in this

case, tblFacilities). Because the facility name comes from a table on the one side of a one-

to-many relationship (one facility has many reservations, but each reservation is for only

one facility), if you change the name of the facility in any row in this query, you change

the name for all reservations for the same facility.

Although the dangers to doing this are apparent, this is actually one of the benefi ts of

designing your tables properly. If the facility is renamed (perhaps it gets renamed in

honor of a beloved ex-president of the company), you need to change the name in only

one place. You don’t have to fi nd all existing reservations for the facility and update

them all.

You might use a query like the one in Figure 8-1 as the basis for a report on reserva-
tions by facility. However, such a report would probably also need to include the
employee name and department to be truly useful. Switch back to Design view, click
the Show Table button in the Query Setup group of the Design contextual tab and add
tbl Employees and tblDepartments to the query. You can also drag and drop any table or
query from the Navigation Pane to your query.

You’ll run into a small problem when you add tblDepartments to your query: There
are two relationships defi ned between tblDepartments and tblEmployees. First, each
employee must have a valid department assigned, so there’s a relationship on Depart-
mentID. Also, any manager for a department must be an employee of the department,
and an employee can manage only one department, so there’s a second relation-
ship defi ned between EmployeeNumber in tblEmployees and ManagerNumber in
 tblDepartments.

The query designer doesn’t know which relationship you want to use as a join in
this query, so it includes them both in the query grid. If you leave both join lines in
your query, you’ll see only reservations for managers of departments because the
join between EmployeeNumber in tblEmployees and ManagerNumber in tblDepart-
ments forces the query to include only employees who are also managers. Click on

Note
If you change the facility in one of the rows in this query, Access won’t let you save the

row if the room number in the reservation doesn’t exist in the new facility you chose.

CAUTION!

Chapter 8

420 Chapter 8 Building Complex Queries
the join line between EmployeeNumber in tblEmployees and ManagerNumber in
 tblDepartments and press the Delete key to remove the join.

If you’re going to use this query in a report, you probably don’t need EmployeeNumber
and FacilityID from tblReservations, so you can delete them. Next click on Room-
Number in the design grid and click Insert Columns in the Query Setup group on the
Design tab to give you a blank column to work with. You need the employee name for
your report, but you most likely don’t need the separate FirstName, MiddleName, and
LastName fi elds. Use the blank column to create an expression as follows:

EmpName: tblEmployees.FirstName & " " & (tblEmployees.MiddleName + " ") & LastName

Note that you’re using the little trick you learned in the previous chapter: using an
arithmetic operation to eliminate the potential extra blank when an employee has
no middle name. Drag and drop the Department fi eld from tblDepartments on top of
RoomNumber in the design grid—this should place it between the EmpName fi eld you
just defi ned and RoomNumber. Your query grid should now look like Figure 8-3.

Figure 8-3 In this example we are creating a complex query using four tables.

You can switch to Datasheet view to see the results of your work as shown in Figure 8-4.

Do you notice anything strange about the sequence of rows? Why aren’t the rows sorted
by facility name and then perhaps employee name? If you were to put the Employee-
Number fi eld back into the query grid and take a look at the data again, you would
discover that Access sorted the rows by EmployeeNumber and then by ReservationID.
Access looked at all the information you requested and then fi gured out the quickest
way to give you the answer—probably by fetching rows from tblEmployee fi rst (which
are sorted on the primary key, EmployeeID) and then fetching the matching rows from
tblReservations.

 Selecting Data from Multiple Tables 421

Ch
ap

te
r 8
Figure 8-4 In Datasheet view you can see the recordset of the query shown in Figure 8-3.

Remember from the previous chapter that the only way you can guarantee the sequence
of rows is to specify a sort on the fi elds you want. In this case, you might want to sort
by facility name, employee last name, employee fi rst name, and check-in date. You
buried fi rst name and last name in the EmpName expression, so you can’t use that
fi eld to sort the data by last name. You can fi nd the correct answer saved as qxmplSort-
Reservations in the sample database. (Hint: You need to add tblEmployees.LastName
and tblEmployees.FirstName to the grid to be able to specify the sort.)

Building a Query on a Query
When you’re building a very complex query, sometimes it’s easier to visualize the solu-
tion to the problem at hand by breaking it down into smaller pieces. In some cases,
building a query on a query might be the only way to correctly solve the problem.

For this set of examples, let’s switch to the data in the Conrad Systems Contacts data-
base. Start Access 2007 and open ContactsDataCopy.accdb. Customers who purchase a
Single User copy of the BO$$ software marketed by Conrad Systems can later decide to
upgrade to the Multi-User edition for a reduced price. Assume you’re a consultant hired
by Conrad Systems, and the company has asked you to produce a list of all custom-
ers and their companies who purchased a Single User copy and then later purchased
the upgrade.

To solve this, you might be tempted to start a new query on tblContacts and add the
tblCompanies, tblContactProducts, and tblProducts tables. You would include the
CompanyID and CompanyName fi elds from tblCompanies; the ContactID, FirstName,
and LastName fi elds from tblContacts; and the ProductID and ProductName fi elds
from tblProducts. Then you would place a criterion like "BO$$ Single User" And "Upgrade

Chapter 8

422 Chapter 8 Building Complex Queries
to BO$$ Multi-User" on the Criteria line under ProductName. However, any one row in
your query will show information from only one contact and product, so one row can’t
contain both “BO$$ Single User” and “Upgrade to BO$$ Multi-User.” (See the discus-
sion in “AND vs. OR” on page 357.) Your query will return no rows.

Your next attempt might be to correct the criterion to "BO$$ Single User" Or "Upgrade to
BO$$ Multi-User". That will at least return some data, but you’ll get an answer similar to
Figure 8-5. (You can fi nd this query saved as qxmplTwoProductsWrong in the sample
database.)

Figure 8-5 This query is an attempt to fi nd out which contacts have purchased both BO$$ Single
User and the BO$$ Multi-User upgrade.

Because there aren’t very many rows in this table, you can scan this 19-row result and
see that the correct answer is four contacts—Joseph Matthews, John Smith, Daniel
Koczka, and Mark Hanson. But if there were thousands of rows in the database, you
wouldn’t be able to easily fi nd the contacts who purchased both products. And if you
need to display the output in a report, you really need a single row for each contact that
meets your criteria.

One way to solve this sort of problem is to build a query that fi nds everyone who owns
BO$$ Single User and save it. Then build another query that fi nds everyone who pur-
chased the BO$$ Multi-User upgrade and save that. Finally, build a third query that
joins the fi rst two results to get your fi nal answer. Remember that a simple join returns
only the rows that match in both tables—or queries. So, someone who appears in both
queries clearly owns both products! Here’s how to build the solution.

 Selecting Data from Multiple Tables 423

Ch
ap

te
r 8
1. Build the fi rst query to fi nd customers who own BO$$ Single User.

a. Start a new query on tblContactProducts and add tblProducts to the query.
You should see a join line between tblProducts and tblContactProducts on
the ProductID fi eld because there’s a relationship defi ned.

b. From tblContactProducts, include the CompanyID and the ContactID
fi elds.

c. Add ProductName from tblProducts, and enter "BO$$ Single User" on the
Criteria line under this fi eld. Save this query and name it qrySingle.

2. Build the second query to fi nd customers who bought the upgrade.

a. Start another query on tblContactProducts and add tblProducts to the
query.

b. From tblContactProducts, include the CompanyID and the ContactID
fi elds.

c. Add ProductName from tblProducts, and enter "Upgrade to BO$$ Multi-
User" on the Criteria line under this fi eld. Save this query and name it
qryMultiUpgrade.

3. Build the fi nal solution query.

a. Start a new query on tblCompanies. Add your new qrySingle and
qryMultiUpgrade queries.

b. The query designer will link tblCompanies to both queries on CompanyID,
but you don’t need a link to both. Click on the join line between
tblCompanies and qryMultiUpgrade and delete it.

c. You do need to link qrySingle and qryMultiUpgrade. Drag and drop
CompanyID from qrySingle to qryMultiUpgrade. Then, drag and drop
ContactID from qrySingle to qryMultiUpgrade. Because you are defi ning an
inner join between the two queries, the query fetches rows only from the
two queries where the CompanyID and ContactID match.

d. Add tblContacts to your query. Because there’s a relationship defi ned
between ContactID in tblContacts and ReferredBy in tblCompanies, the
query designer adds this join line. You don’t need this join (the query
would return only contacts who have made referrals), so click on the line
and delete it. The query designer does correctly create a join line between
tblContacts and qrySingle.

e. On the query design grid, include CompanyName from tblCompanies, and
FirstName and LastName from tblContacts. Your result should look like
Figure 8-6.

Chapter 8

424 Chapter 8 Building Complex Queries
Figure 8-6 Here you are solving the “contacts who own two products” problem the right way by
building a query on queries.

Switch to Datasheet view, and, sure enough, the query gives you the right answer as
shown in Figure 8-7.

Figure 8-7 You can now correctly see the four contacts who purchased a BO$$ Single User edition
and later upgraded.

This works because you’re using the two queries to fi lter each other via the join. The
qrySingle query fi nds contacts who own BO$$ Single User. The qryMultiUpgrade
query fi nds contacts who bought the BO$$ Multi-User upgrade. The join lines between
these two queries ask the fi nal query to return rows only where the CompanyID and
 ContactID in the fi rst two queries match, so you won’t see rows from qrySingle that
don’t have a matching combination of CompanyID and ContactID in qryMultiUpgrade,
and vice versa.

For more examples of building queries on queries, see Article 2, “Understanding SQL,” on the
companion CD.

 Selecting Data from Multiple Tables 425

Ch
ap

te
r 8
 Using Outer Joins
Most queries that you create to request information from multiple tables will show
results on the basis of matching data in one or more tables. For example, the Query
window in Datasheet view shown in Figure 8-4 contains the names of facilities that
have reservations in the tblReservations table—and it does not contain the names of
facilities that don’t have any reservations booked. As explained earlier, this type of
query is called an equi-join query, meaning that you’ll see rows only where there are
equal values in both tables. But, what if you want to display facilities that do not have
any reservations in the database? Or, how do you fi nd employees who have no reserva-
tions? You can get the information you need by creating a query that uses an outer join.
An outer join lets you see all rows from one of the tables even if there’s no matching row
in the related table. When no matching row exists, Access returns the special Null value
in the columns from the related table.

 Building a Simple Outer Join
To create an outer join, you must modify the join properties. Let’s see if we can fi nd any
employees who don’t have any reservations booked. Start a new query on tblEmployees
in the HousingDataCopy database. Add tblReservations to the query. Double-click the
join line between the two tables in the upper part of the Query window in Design view
to see the Join Properties dialog box, shown in Figure 8-8.

Figure 8-8 The Join Properties dialog box allows you to change the join properties for the query.

The default setting in the Join Properties dialog box is the fi rst option—where the joined
fi elds from both tables are equal. You can see that you have two additional options for
this query: to see all employees and any reservations that match, or to see all reserva-
tions and any employees that match. If you entered your underlying data correctly, you
shouldn’t have reservations for employees who aren’t defi ned in the database. If you
asked Access to enforce referential integrity (discussed in Chapter 4, “Creating Your
Database and Tables”) when you defi ned the relationship between the tblEmployees
table and the tblReservations table, Access won’t let you create any reservations for non-
existent employees.

Select the second option in the dialog box. (When the link between two tables involves
more than one fi eld in each table, you can click the New button to defi ne the additional
links.) Click OK. You should now see an arrow on the join line pointing from the

Chapter 8

426 Chapter 8 Building Complex Queries
 tblEmployees fi eld list to the tblReservations fi eld list, indicating that you have asked
for an outer join with all records from tblEmployees regardless of match, as shown in
Figure 8-9. For employees who have no reservations, Access returns the special Null
value in all the columns for tblReservations. So, you can fi nd the employees that aren’t
planning to stay in any facility by including the Is Null test for any of the columns
from tblReservations. When you run this query, you should fi nd exactly two employ-
ees who have no reservations, as shown in Figure 8-10. The fi nished query is saved as
qxmpl EmployeesNoReservations in the HousingDataCopy.accdb database.

Figure 8-9 This query design fi nds employees who have no reservations.

Figure 8-10 This recordset shows the two employees who have no reservations.

Solving a Complex “Unmatched” Problem
As discussed earlier in this chapter, you know that to solve certain types of problems
you must fi rst build one query to defi ne a subset of data from your tables and then use
that query as input to another query to get the fi nal answer. For example, suppose
you want to fi nd out which employees have no reservations in a certain time period.
You might guess that an outer join from the tblEmployees table to the tblReservations

 Selecting Data from Multiple Tables 427

Ch
ap

te
r 8
table will do the trick. That would work fi ne if the tblReservations table contained
reservations for only the time period in question. Remember, to fi nd employees who
haven’t booked a room, you have to look for a special Null value in the columns from
 tblReservations. But to limit the data in tblReservations to a specifi c time period—let’s
say June and July 2007—you have to be able to test real values. In other words, you have
a problem because a column from tblReservations can’t be both Null and have a date
value at the same time. (You can fi nd an example of the wrong way to solve this prob-
lem saved as qxmplEmpNotBookedJunJulWRONG in the sample database.)

To solve this problem, you must fi rst create a query that contains only the reserva-
tions for the months you want. As you’ll see in a bit, you can then use that query with
an outer join in another query to fi nd out which employees haven’t booked a room
in June and July 2007. Figure 8-11 shows the query you need to start with, using
 tblReservations. This example includes the EmployeeNumber fi eld as well as the
 FacilityID and RoomNumber fi elds, so you can use it to search for either employees or
facilities or rooms that aren’t booked in the target months.

Figure 8-11 You can add a fi lter to your query to list reservation data for particular months.

Notice that if you truly want to see all reservations in these two months, you need to
specify a criterion on both CheckInDate and CheckOutDate. Anyone who checked in
on or before July 31, 2007—provided they didn’t check out before June 1, 2007—is some-
one who stayed in a room between the dates of interest. You don’t want anyone who
checked out on June 1 (who stayed the night of May 31, but didn’t stay over into June),
which explains why the second criterion is >#6/1/2007# and not >=#6/1/2007#. This
query is saved as qxmplBookingsJunJul in the HousingDataCopy.accdb database.

Chapter 8

428 Chapter 8 Building Complex Queries
Finding Records Across Date Spans
You might be looking at the problem of fi nding any reservation that crosses into or is

contained within a certain date span and scratching your head. You want any reservation

that meets one of these criteria:

O The reservation begins before the start of the date span but extends into the date

span.

O The reservation is contained wholly within the date span.

O The reservation begins before the end of the date span but extends beyond the

date span.

O The reservation starts before the beginning of the date span and ends after the

end of the date span.

You can see these four conditions in the following illustration.

Time frame of interest

July 31June 1

Potential reservations in the time frame

August 6May 20 June 8 June 22 July 1 July 18

August 7May 25

You might be tempted to include four separate criteria in your query, but that’s not

necessary. As long as a reservation begins before the end of the span and ends after the

beginning of the span, you’ve got them all! Try out the criteria shown in Figure 8-11 to

see if that simple test doesn’t fi nd all the previous cases.

After you save the fi rst query, click the Query Design button in the Other group on the
Create tab to start a new query. In the Show Table dialog box add tblEmployees to the
design grid by double-clicking on tblEmployees. Click the Queries tab in the Show
Table dialog box and then double-click on qxmplBookingsJunJul to add it to the query
grid. Click Close to close the Show Table dialog box. Access should automatically link
tblEmployees to the query on matching EmployeeNumber fi elds. Double-click the join
line to open the Join Properties dialog box, and select option 2 to see all rows from
tblEmployees and any matching rows from the query. The join line’s arrow should point
from tblEmployees to the query, as shown in Figure 8-12.

Finding Records Across Date Spans
You might be looking at the problem of fi nding any reservation that crosses into or is

contained within a certain date span and scratching your head. You want any reservation

that meets one of these criteria:

O The reservation begins before the start of the date span but extends into the date

span.

O The reservation is contained wholly within the date span.

O The reservation begins before the end of the date span but extends beyond the

date span.

O The reservation starts before the beginning of the date span and ends after the

end of the date span.

You can see these four conditions in the following illustration.

Time frame of interestf

July 31June 1

Potential reservations in the time frame

August 6May 20 June 8 June 22 July 1 July 18

August 7May 25

You might be tempted to include four separate criteria in your query, but that’s not

necessary. As long as a reservation begins before the end of the span and ends after the d
beginning of the span, you’ve got them all! Try out the criteria shown in Figure 8-11 to

see if that simple test doesn’t fi nd all the previous cases.

 Selecting Data from Multiple Tables 429

Ch
ap

te
r 8
Figure 8-12 An outer join query searches for employees not booked in June and July 2007.

As you did in the previous outer join example, include some fi elds from the
 tblEmployees table and at least one fi eld from the query that contains reservations only
from June and July 2007. In the fi eld from the query, add the special Is Null criterion.
When you run this query (the results of which are shown in Figure 8-13), you should
fi nd six employees who haven’t booked a room in June and July 2007—including the
two employees that you found earlier who haven’t booked any room at all. This query is
saved as qxmplEmpNotBookedJunJul in the HousingDataCopy.accdb database.

Figure 8-13 These employees have no bookings in June and July 2007.

Let’s study another example. When you’re looking at reservation requests, and each
request indicates the particular type of room desired, it might be useful to know either
which facilities have this type of room or which facilities do not. (Not all facilities have
all the different types of rooms.) You can fi nd a complete list of the room types in the
tlkpRoomTypes table in the Housing Reservations application.

Chapter 8

430 Chapter 8 Building Complex Queries
To fi nd out which room types aren’t in a facility, you might try an outer join from
 tlkpRoomTypes to tblFacilityRooms and look for Null again, but all you’d fi nd is that all
room types exist somewhere—you wouldn’t know which room type was missing in what
facility. In truth, you need to build a query fi rst that limits room types to one facility.
Your query should look something like Figure 8-14.

Figure 8-14 This query lists all the rooms and their room types in Facility 1.

Now you can build your outer join query to fi nd out which room types aren’t in the
fi rst housing facility. Start a new query by clicking the Query Design button in the
Other group on the Create tab. In the Show Table dialog box add tlkpRoomTypes to
the design grid by double-clicking tlkpRoomTypes. Click the Queries tab in the Show
Table dialog box and then double-click the qxmplRoomsFacility1 query to add it to the
query grid. Close the Show Table dialog box. Double-click the join line and ask for all
rows from tlkpRoomTypes and any matching rows from the query. Add the RoomType
fi eld from tlkpRoomTypes and the FacilityID fi eld from the query to the grid. Under
 FacilityID, place a criterion of Is Null. Your query should look like Figure 8-15.

If you run this query, you’ll fi nd that Facility 1 has no one-bedroom suites with king
bed, no one-bedroom suites with two queen beds, and no two-bedroom suites with a
king bed, queen bed, and kitchenette. In the sample database, you’ll fi nd sample que-
ries that return the room types for the other three facilities, so you can build queries
like the one in Figure 8-15 to fi nd out what room types are missing in those facilities.

 Using a Query Wizard 431

Ch
ap

te
r 8
Figure 8-15 This query determines which room types are not in Facility 1.

Using a Query Wizard
Every time you have clicked the Query Wizard button in the Other group on the Cre-
ate tab, you have seen the interesting query wizard entries. You can use query wizards
to help you build certain types of “tricky” queries such as crosstab queries (discussed
later in this chapter) and queries to fi nd duplicate or unmatched rows. For example,
you could have used a query wizard to build the query shown in Figure 8-9 to locate
employees who have no room reservations. Let’s use a query wizard to build a query
to perform a similar search in the ContactsDataCopy.accdb sample fi le to fi nd contacts
who don’t own any products.

To try this, click the Query Wizard button in the Other group on the Create tab. Select
the Find Unmatched Query Wizard option in the New Query dialog box, as shown in
Figure 8-16, and then click OK.

Chapter 8

432 Chapter 8 Building Complex Queries
Figure 8-16 Select a query wizard in the New Query dialog box.

The wizard opens a page with a list of tables from which you can select the initial
records, as shown in Figure 8-17. If you want to use an existing query instead of a table,
select the Queries option. If you want to look at all queries and tables, select the Both
option. In this case, you’re looking for contacts who haven’t purchased any products, so
select the tblContacts table and then click the Next button.

Figure 8-17 You can select tables or queries on the fi rst page of the Find Unmatched
Query Wizard.

On the next page, select the table that contains the related information you expect to be
unmatched. You’re looking for contacts who have purchased no products, so select the
tblContactProducts table and then click the Next button to go to the next page, shown
in Figure 8-18.

 Using a Query Wizard 433

Ch
ap

te
r 8
Figure 8-18 This page is where you defi ne the unmatched link.

Next, the wizard needs to know the linking fi elds between the two tables. Because no
direct relationship is defi ned between tblContacts and tblContactProducts, the wizard
won’t automatically choose the matching fi elds for you. Click on the ContactID fi eld in
tblContacts and the ContactID fi eld in tblContactProducts to select those two fi elds.
Click the <=> button between the fi eld lists to add those fi elds to the Matching Fields
box. Click Next to go to the page shown in Figure 8-19.

Note
The Find Unmatched Query Wizard can work with only the tables that have no more than

one fi eld that links the two tables. If you need to “fi nd unmatched” records between two

tables that require a join on more than one fi eld, you’ll have to build the query yourself.

Choose the fi elds you want to display (see Figure 8-19) by selecting a fi eld in the Avail-
able Fields list and then clicking the > button to move the fi eld to the Selected Fields
list. The query will display the fi elds in the order you select them. If you choose a fi eld
in error, select it in the list on the right and click the < button to move it back. You can
click the >> button to select all fi elds or the << button to remove all fi elds. When you’re
fi nished selecting fi elds, click Next. On the fi nal page, you can specify a different name
for your query. (The wizard generates a long and ugly name.) You can select an option
to either view the results or modify the design. So that you can see the design fi rst,
select Modify The Design and then click Finish to open the Query window in Design
view. Figure 8-20 shows the fi nished query to fi nd contacts who have purchased no
products.

Note
The Find Unmatched Query Wizard can work with only the tables that have no more than

one fi eld that links the two tables. If you need to “fi nd unmatched” records between two

tables that require a join on more than one fi eld, you’ll have to build the query yourself.

Chapter 8

434 Chapter 8 Building Complex Queries
Figure 8-19 On this page you select the fi elds to be displayed in a query.

Figure 8-20 The query wizard has helped you build a query that fi nds contacts who have pur-
chased no products.

If you run this query, you’ll fi nd three contacts who haven’t bought anything. Perhaps
you should schedule a call to these people to fi nd out why!

 Summarizing Information with Totals Queries 435

Ch
ap

te
r 8
Summarizing Information with Totals Queries
Sometimes you aren’t interested in each and every row in your table—you’d rather see
calculations across groups of data. For example, you might want the total product pur-
chase amount for all companies in a particular state. Or you might want to know the
average of all sales for each month in the last year. To get these answers, you need a
totals query.

Totals Within Groups
If you’re the housing facilities manager, you might be interested in producing sales and
usage numbers by facility or by date range. For this series of exercises, open Housing-
DataCopy.accdb and start a new query with tblFacilities and tblReservations in the
query design grid. Include in the Field row the FacilityName fi eld from tblFacilities and
the CheckInDate and TotalCharge fi elds from tblReservations.

We might occasionally build totals queries to display high-level summaries in a report.

More often, we create a regular query that fetches all the detail we need and then use

the powerful summarization facilities in reports to calculate totals. You’ll learn more

about summarizing data in a report in Chapter 16, “Advanced Report Design.”

A totals query groups the fi elds you specify, and every output fi eld must either be one

of the grouping fi elds or the result of a calculation using one of the available aggregate

functions. (See Table 8-1.) Because all fi elds are calculated, you cannot update any fi elds

returned by a totals query. So, you’re not likely to fi nd totals queries useful in forms.

This does not mean that learning about how to build totals queries is not useful. You

need to understand the concepts of grouping and totaling to build reports. You will also

fi nd that constructing and opening a totals query in Visual Basic code is useful to per-

form complex validations.

To turn this into a totals query, click the Totals button in the Show/Hide group of the
Design contextual tab under Query Tools to open the Total row in the design grid, as
shown in Figure 8-21. When you fi rst click the Totals button in the Show/Hide group,
Access displays Group By in the Total row for any fi elds you already have in the design
grid. At this point the records in each fi eld are grouped but not totaled. If you were to
run the query now, you’d get one row in the recordset for each set of unique values—but
no totals. You must replace Group By with an aggregate function in the Total row.

SIDE OUT When Totals Queries Are Useful

We might occasionally build totals queries to display high-level summaries in a report.

More often, we create a regular query that fetches all the detail we need and then use

the powerful summarization facilities in reports to calculate totals. You’ll learn more

about summarizing data in a report in Chapter 16, “Advanced Report Design.”

A totals query groups the fi elds you specify, and every output fi eld must either be one

of the grouping fi elds or the result of a calculation using one of the available aggregate

functions. (See Table 8-1.) Because all fi elds are calculated, you cannot update any fi elds

returned by a totals query. So, you’re not likely to fi nd totals queries useful in forms.

This does not mean that learning about how to build totals queries is not useful. You

need to understand the concepts of grouping and totaling to build reports. You will also

fi nd that constructing and opening a totals query in Visual Basic code is useful to per-

form complex validations.

Chapter 8

436 Chapter 8 Building Complex Queries
Figure 8-21 The Total row in the design grid allows you to defi ne aggregate functions.

Access provides nine aggregate functions for your use. You can choose the one you want
by typing its name in the Total row in the design grid or by clicking the small arrow
and selecting it from the list. You can learn about the available functions in Table 8-1.

Let’s experiment with the query you started earlier in this section to understand some
of the available functions. First, you probably don’t want to see information grouped by
individual date. Data summarized over each month would be more informative, so cre-
ate an expression to replace the CheckInDate fi eld as follows:

CheckInMonth: Format([CheckInDate], "yyyy mm")

The Format function works similarly to the table fi eld Format property you learned
about in Chapter 4. The fi rst parameter is the name of the fi eld or the expression that
you want to format, and the second parameter specifi es how you want the data format-
ted. In this case, we’re asking Format to return the four-digit year and two-digit month
number.

For more information about Format settings, see “Setting Control Properties” on page 651.

Change the Total row under TotalCharge to Sum. Add the TotalCharge fi eld from
 tblReservations three more times, and choose Avg, Min, and Max, respectively, under
each. Finally, add the ReservationID fi eld from tblReservations and choose Count in the
Total row under that fi eld. Your query design should now look like Figure 8-22.

 Summarizing Information with Totals Queries 437

Ch
ap

te
r 8
 Table 8-1 Total Functions

Function Description

Sum Calculates the sum of all the values for this fi eld in each group. You can
specify this function only with number or currency fi elds.

Avg Calculates the arithmetic average of all the values for this fi eld in each
group. You can specify this function only with number or currency fi elds.
Access does not include any Null values in the calculation.

Min Returns the lowest value found in this fi eld within each group. For
numbers, Min returns the smallest value. For text, Min returns the lowest
value in collating sequence (“dictionary”1 order), without regard to case.
Access ignores Null values.

Max Returns the highest value found in this fi eld within each group. For
numbers, Max returns the largest value. For text, Max returns the highest
value in collating sequence (“dictionary”1 order), without regard to case.
Access ignores Null values.

Count Returns the count of the rows in which the specifi ed fi eld is not a Null
value. You can also enter the special expression COUNT(*) in the Field row
to count all rows in each group, regardless of the presence of Null values.

StDev Calculates the statistical standard deviation of all the values for this fi eld
in each group. You can specify this function only with number or currency
fi elds. If the group does not contain at least two rows, Access returns a
Null value.

Var Calculates the statistical variance of all the values for this fi eld in each
group. You can specify this function only with number or currency fi elds. If
the group does not contain at least two rows, Access returns a Null value.

First Returns the value for the fi eld from the fi rst row encountered in the group.
Note that the fi rst row might not be the one with the lowest value. It also
might not be the row you think is “fi rst” within the group. Because First
depends on the actual physical sequence of stored data, it essentially
returns an unpredictable value from within the group.

Last Returns the value for the fi eld from the last row encountered in the group.
Note that the last row might not be the one with the highest value. It
also might not be the row you think is “last” within the group. Because
Last depends on the actual physical sequence of stored data, it essentially
returns an unpredictable value from within the group.

1 You can change the sort order for new databases you create by clicking the Microsoft Offi ce Button,
clicking Access Options, and then using the New Database Sort Order list in the Popular category.
The default value is General, which sorts your data according to the language specifi ed for your
operating system.

Switch to Datasheet view to see the results as shown in Figure 8-23. The sample data
fi le has 306 available rooms in four different facilities. From the results of this query,
you could conclude that this company has far more housing than it needs! Perhaps the
most interesting row is the second row (the row that is highlighted in Figure 8-23). The
fi ve reservations for Housing A in April 2007 show how the various functions might
help you analyze the data further.

Chapter 8

438 Chapter 8 Building Complex Queries
Figure 8-22 This query design explores many different aggregate functions.

Figure 8-23 Running the query in Figure 8-22 returns total revenue, average revenue, small-
est revenue per reservation, largest revenue per reservation, and count of reservations by facility
and month.

 Summarizing Information with Totals Queries 439

Ch
ap

te
r 8
TROUBLESHOOTING
I didn’t specify sorting criteria, so why is my data sorted?
A totals query has to sort your data to be able to group it, so it returns the groups sorted

left to right based on the sequence of your Group By fi elds. If you need to sort the

grouping columns in some other way, change the sequence of the Group By fi elds. Note

that you can additionally sort any of the totals fi elds.

In the list for the Total row in the design grid, you’ll also fi nd an Expression setting.
Select this when you want to create an expression in the Total row that uses one or
more of the aggregate functions listed earlier. For example, you might want to calculate
a value that refl ects the range of reservation charges in the group, as in the following:

Max([TotalCharge]) – Min([TotalCharge])

As you can with any fi eld, you can give your expression a custom name. Notice
in Figure 8-23 that Access has generated names such as SumOfTotalCharge or
 AvgOfTotalCharge. You can fi x these by clicking in the fi eld in the design grid and pre-
fi xing the fi eld or expression with your own name followed by a colon. In Figure 8-24,
we removed the separate Min and Max fi elds, added the expression to calculate the
range between the smallest and largest charge, and inserted custom fi eld names. You
can see the result in Datasheet view in Figure 8-25.

Figure 8-24 In this fi gure we are adding an expression and defi ning custom fi eld names in a
totals query.

TROUBLESHOOTING

Chapter 8

440 Chapter 8 Building Complex Queries
Figure 8-25 This is the result in Datasheet view of the query shown in Figure 8-24.

Selecting Records to Form Groups
You might fi lter out some records before your totals query gathers the records into
groups. To fi lter out certain records from the tables in your query, you can add to the
design grid the fi eld or fi elds you want to fi lter. Then, create the fi lter by selecting the
Where setting in the Total row (which will clear the fi eld’s Show check box), and enter-
ing criteria that tell Access which records to exclude.

For example, the manager of the Sales department might be interested in the statis-
tics you’ve produced thus far in the query in Figure 8-24, but only for the employees
in the Sales department. To fi nd this information, you need to add tblEmployees and
 tblDepartments to your query (and remove the extra join line between the Employee-
Number fi eld in tblEmployees and the ManagerNumber fi eld in tblDepartments). Add
the Department fi eld from tblDepartments to your design, change the Total line to
Where, and add the criterion "Sales" on the Criteria line under this fi eld. Your query
should now look like Figure 8-26.

Now, when you run the query, you get totals only for the employees in the Sales depart-
ment. The result is shown in Figure 8-27.

 Summarizing Information with Totals Queries 441

Ch
ap

te
r 8
Figure 8-26 Use the Department fi eld to select the rows that will be included in groups.

Figure 8-27 This fi gure displays the recordset of the query shown in Figure 8-26.

Selecting Specifi c Groups
You can also fi lter groups of totals after the query has calculated the groups. To do this,
enter criteria for any fi eld that has a Group By setting, one of the aggregate functions,
or an expression using the aggregate functions in its Total row. For example, you might
want to know which facilities and months have more than $1,000 in total charges. To
fi nd that out, use the settings shown in Figure 8-26 and enter a Criteria setting of >1000
for the TotalCharge fi eld, as shown in Figure 8-28. This query should return fi ve rows
in the sample database. You can fi nd this query saved as qxmplSalesHousingGT1000 in
the sample database.

Chapter 8

442 Chapter 8 Building Complex Queries
Figure 8-28 Enter a Criteria setting for the TotCharge fi eld to limit the records to months with more
than $1,000 in total charges.

Building Crosstab Queries
Access 2007 supports a special type of totals query called a crosstab query that allows
you to see calculated values in a spreadsheet-like format. For example, you can use this
type of query to see total revenue by month for each facility in the Housing Reserva-
tions application. If you were entering the data in a spreadsheet, the layout of the result
you want might look like Figure 8-29.

We have pointed out the key components in the mockup that you’ll design into
your query.

Creating a Simple Crosstab Query
Open the HousingDataCopy.accdb database. To see revenue by facility, you’ll need
tblFacilities and tblReservations. Start a new query on tblFacilities and tblReserva-
tions. Add the FacilityName fi eld from tblFacilties to the design grid. Revenue gets col-
lected when the employee checks out, and you want to summarize by month. So, enter
 RevMonth: Format(CheckOutDate, "yyyy mmm") in the next empty fi eld in the design
grid. This expression returns the year as four digits and the month as a three-character
abbreviation. Finally, add the TotalCharge fi eld from tblReservations.

Click the Design contextual tab below Query Tools on the Ribbon. Then, click the
Crosstab command in the Query Type group. Access changes your query to a totals
query and adds a Crosstab row to the design grid, as shown in Figure 8-30. Each fi eld
in a crosstab query can have one of four crosstab settings: Row Heading, Column Head-
ing, Value (displayed in the crosstab grid), or Not Shown.

 Summarizing Information with Totals Queries 443

Ch
ap

te
r 8
Row heading Column heading

Value

Figure 8-29 A spreadsheet mockup shows the result you want in your crosstab query.

Figure 8-30 This is a crosstab query in Design view.

You must have at least one row heading in a crosstab query, and you can specify more
than one fi eld as a row heading. Each row heading must be a grouped value or expres-
sion, and the expression can include one or more of the aggregate functions—Count,

Chapter 8

444 Chapter 8 Building Complex Queries
Min, Max, Sum, and so on. The row heading fi elds form the columns on the left side of
the crosstab. Think of the grouped values of the row heading fi elds as forming the hori-
zontal “labels” of the rows. In this example, we’ll be grouping by FacilityName. We’ll
later modify the basic query we’re building here to add a second row heading using
Sum—the total value of each facility’s reservations.

You must also have one (and only one) fi eld defi ned as a column heading, and this
must also be a grouped or totaled value. These values form the headings of the columns
across the crosstab datasheet. Think of a regular totals query where one of the columns
“pivots,” and the values in the rows become labels for additional columns in the output.
These columns appear sorted in value sequence immediately following the columns
you defi ne as row headings. Because the values in the data you’re selecting determine
the column names when you run the query, you cannot always predict in advance the
fi eld names that the query will output.

Finally, you need one (and only one) fi eld designated as the value. This fi eld must be a
totaled value or an expression that contains one of the aggregate functions. The value
appears in the cells that are the intersections of each of the row heading values and
each of the column heading values. In the following example, the facility names will
appear down the left side, the year and month values will appear as column headings
across the top, and the sum of the reservation charge for each group for each month
will appear in the intersection.

TROUBLESHOOTING
How do I display more than one value in a crosstab?
The fact that a crosstab query can display only one value fi eld in the intersection of row

and column headings is a severe limitation. What if you want to display both the total

reservation value as well as the count of reservations? One way is to build two separate

crosstab queries—one that provides the sum of the total charge as the value fi eld, and

one that provides the count of reservations as the value fi eld—and then join the two

queries on the row heading columns. That’s an inelegant way to do it.

Another solution is to create a simple query that includes all the detail you need and

then switch to PivotTable view to build the data display you need. You’ll learn about

 Pivot Table and PivotChart views later in this chapter.

As in other types of totals queries, you can include other fi elds to fi lter values to obtain
the result you want. For these fi elds, you should select the Where setting in the Total
row and the Not Shown setting in the Crosstab row and then enter your criteria. You
can also enter criteria for any column headings, and you can sort on any of the fi elds.

To fi nish the settings for the crosstab query that you started to build in Figure 8-30,
under the FacilityName fi eld in the Crosstab row, click the small arrow and select Row
Heading from the list, select Column Heading under the RevMonth expression, and

TROUBLESHOOTING

 Summarizing Information with Totals Queries 445

Ch
ap

te
r 8
select Value under the TotalCharge fi eld. Also change the Group By setting under the
TotalCharge fi eld to Sum.

Switch to Datasheet view to see the result of your query design, as shown in Figure 8-31.

Figure 8-31 This is the recordset of the crosstab query you’re building.

Notice that although you didn’t specify a sort sequence on the dates, Access sorted
the dates left to right in ascending collating order anyway. Notice also that the month
names appear in alphabetical order, not in the desired chronological order.

Access provides a solution for this: You can specifi cally defi ne the order of column
headings for any crosstab query by using the query’s property sheet. Return to Design
view and click in the upper part of the Query window, and then click the Property
Sheet button in the Show/Hide group of the Design tab to see the property sheet, as
shown in Figure 8-32. (You can verify that you are looking at the property sheet for the
query by examining what you see after Selection Type at the top of the property sheet.
For queries, you should see “Query Properties.”)

Figure 8-32 These entries in the property sheet fi x the order of column headings for the query
shown in Figure 8-31.

To control the order of columns displayed, enter the headings exactly as they are for-
matted and in the order you want them in the Column Headings row, separated by com-
mas. In this case, you are entering text values, so you must also enclose each value in
double quotes. Be sure to include all the column headings that match the result of the
query. (Notice that we specifi ed all the months in 2007 even though the sample data
covers only March to September.) If you omit (or misspell) a column heading, Access
won’t show that column at all. When you run the query with formatted column head-
ings, you see the recordset shown in Figure 8-33.

Chapter 8

446 Chapter 8 Building Complex Queries
Figure 8-33 This crosstab query recordset has custom headings and custom column order, as
defi ned in Figure 8-32.

CAUTION!
Specifying correct column headings can be diffi cult. You must run your query fi rst to

determine what headings you’ll see. You might be able to defi ne criteria in your query

that guarantee the column headings—for example, you could fi lter the query to return

rows only from a specifi c year. If you misspell a column heading in the query property

sheet, the real danger is that Access gives you no warning that your query returns col-

umns that aren’t in your column heading specifi cation. You’ll see blanks in your mis-

spelled columns, and you could mistakenly assume that no data exists for those columns.

Let’s add a grand total for each row (the total per facility regardless of month) and do
something about the blank cells. Wouldn’t it be nice to see a zero in months when there
were no reservations?

Switch back to Design view and add another TotalCharge fi eld to the Field row. Give it a
name of GrandTotal, and choose Sum on the Total row and Row Heading on the Cross-
tab row.

Remember the little trick we used earlier to use a plus sign (+) arithmetic operator in a
concatenation to remove extra blanks? In this case, we want to do exactly the reverse—
wherever there are no values, the Sum returns a Null that we want to convert to a zero.
Also remember that when you concatenate two values with the ampersand (&) opera-
tor, that operator ignores Nulls. You can force a Null to a zero by concatenating a lead-
ing zero character. If the Sum is not Null, adding a zero in front of the value won’t hurt
it at all.

In the TotalCharge fi eld you chose as the value fi eld, change Sum to Expression and
change the Field line to use this expression:

0 & Sum(TotalCharge)

Any concatenation returns a string value, so you’ll need to convert the value back to a
currency number for display. There’s a handy “convert to currency” function (CCur)
that will perform this conversion for you. Further modify the expression to read:

CCur(0 & Sum(TotalCharge))

Switch back to Datasheet view, and your query result should now look like Figure 8-34.

C U O !

 Summarizing Information with Totals Queries 447

Ch
ap

te
r 8
Figure 8-34 Your crosstab query now shows a grand total on each row as an additional row
 heading, and all empty cells are fi lled with zero values.

As with most tasks in Access, there’s usually more than one way to solve a problem. You
can also generate the missing zero values by using the Null-to-zero function (NZ) in
your expression instead of using concatenation. Your expression could look like

CCur(NZ(Sum(TotalCharge),0))

If you’re not quite getting the result you expect, you can check what you have built against
the qxmplRevenueByFacilityByMonthXtab sample query you’ll fi nd in the database.

Partitioning Data in a Crosstab Query
The total sales by month is interesting, but what can you do if you want to break the
data down further? For example, you might want to know the value of sales across a
range of room prices. This sort of information might be invaluable to the operator of
a commercial hotel. What amount of revenue is the hotel receiving from various room
prices?

You’ll learn later in Chapter 16 that you can ask the report writer to group data by data
ranges. Well, you can also do this in a totals or crosstab query. Let’s continue to work in
the HousingDataCopy.accdb database to see how this works.

Start a new query with tblFacilities and tblReservations. Add the FacilityName fi eld
from tblFacilities, and create a CkOutMonth fi eld by using the Format function to
return a four-digit year and month abbreviation as you did earlier. Add the TotalCharge
fi eld from tblReservations to the query grid twice. Click the Crosstab button in the
Query Type group of the Design tab to convert your query to a crosstab query.

In the Crosstab row, select Row Heading under the FacilityName fi eld, your CkOut-
Month expression, and the fi rst TotalCharge fi eld. Change the name of this fi rst
TotalCharge fi eld to GrandTotal, and select Sum in the Group By row. For the second
TotalCharge fi eld, select Sum in the Group By row and Value in the Crosstab row.

You still don’t have a Column Heading fi eld or expression defi ned, but here’s where
the fun begins. In this query, your sales manager has asked you for a breakdown of
amounts spent per month based on ranges of the DailyRate fi eld. In this database, the
lowest daily charge is $40 a day, and the highest is $100 a day. The manager has asked
you to display ranges from $40 to $119 in increments of $20 ($40 to $59, $60 to $79,

Chapter 8

448 Chapter 8 Building Complex Queries
and so on). It turns out there’s a handy function called Partition that will split out num-
bers like this for you. The syntax of the function is as follows:

Partition(<number>, <start>, <stop>, <interval>)

The number argument is the name of a numeric fi eld or expression you want to split up
into ranges. Start specifi es the lowest value you want, stop specifi es the highest value
you want, and interval specifi es the size of the ranges. The function evaluates each num-
ber it sees and returns a string containing the name of the range for that number. You
can group on these named ranges to partition your data into groups for this crosstab
query. So, the expression you need is as follows:

Partition(DailyRate, 40, 119, 20)

The function will return values “40: 59”, “60: 79”, “80: 99”, and “100:119”. Add that
expression to your query grid and select Column Heading in the Crosstab row. Your
query should now look like Figure 8-35.

Figure 8-35 This crosstab query uses partitioned values.

Switch to Datasheet view to see the result that should satisfy your sales manager’s
request, shown in Figure 8-36. Note that we didn’t use the trick discussed earlier to fi ll
blank cells with zeros. In this case, the blank cells seem to visually point out the rate
ranges that had no sales. You can fi nd this query saved as qxmplRevenueByFacilityBy-
RateRangeXtab in the sample database.

 Using Query Parameters 449

Ch
ap

te
r 8
Figure 8-36 Run the crosstab query shown in Figure 8-34 to see the result of partitioning sales
totals on ranges of room rates.

Using Query Parameters
So far you’ve been entering selection criteria directly in the design grid of the Query
window in Design view. However, you don’t have to decide at the time you design
the query exactly what value you want Access to search for. Instead, you can include
a parameter in the query, and Access will prompt you for the criteria each time the
query runs.

To include a parameter, you enter a name or a phrase enclosed in brackets ([]) in the
Criteria row instead of entering a value. What you enclose in brackets becomes the
name by which Access knows your parameter. Access displays this name in a dialog
box when you run the query, so you should enter a phrase that accurately describes
what you want. You can enter several parameters in a single query, so each parameter
name must be unique as well as informative. If you want a parameter value to also
appear as output in the query, you can enter the parameter name in the Field row of an
empty column.

Let’s say you’re the housing manager, and you want to fi nd out who might be staying
in any facility over the next several days or weeks. You don’t want to have to build or
modify a query each time you want to search the database for upcoming reservations.
So, you ask your database developer to provide you with a way to dynamically enter the
beginning and ending dates of interest.

Chapter 8

450 Chapter 8 Building Complex Queries
Let’s build a query to help out the housing manager. Start a new query with tblFacilities
in the HousingDataCopy.accdb database. Add tblReservations and tblEmployees. From
tblReservations, include the ReservationID, RoomNumber, CheckInDate, CheckOut-
Date, and TotalCharge fi elds. Insert the FacilityName fi eld from tblFacilities between
ReservationID and RoomNumber. Add an expression to display the employee name in
a fi eld inserted between ReservationID and FacilityName. Your expression might look
like this:

EmpName: tblEmployees.LastName & ", " & tblEmployees.FirstName

Now comes the tricky part. You want the query to ask the housing manager for the
range of dates of interest. Your query needs to fi nd the reservation rows that show who
is in which rooms between a pair of dates. If you remember from the previous example
in this chapter where we were looking for employees occupying rooms in June or July,
you want any rows where the check-in date is less than or equal to the end date of inter-
est, and the check-out date is greater than the start date of interest. (If they check out
on the beginning date of the range, they’re not staying in the room that night.) So, you
can create two parameters on the Criteria line to accomplish this. Under CheckInDate,
enter: <=[Enter End Date:], and under CheckOutDate, enter: >[Enter Start Date:]. Your
query should look like Figure 8-37.

Figure 8-37 You can use query parameters to accept criteria for a range of reservation dates.

For each parameter in a query, you should tell Access what data type to expect. Access
uses this information to validate the value entered. For example, if you defi ne a param-
eter as a number, Access won’t accept alphabetic characters in the parameter value.
Likewise, if you defi ne a parameter as a Date/Time data type, Access won’t accept
anything but a valid date or time value in the parameter prompt. (See Figure 8-39.) By
default, Access assigns the Text data type to query parameters. In general, you should

 Using Query Parameters 451

Ch
ap

te
r 8
always defi ne the data type of your parameters, so click the Parameters command in the
Show/Hide group of the Design tab. Access then displays the Query Parameters dialog
box, as shown in Figure 8-38.

Figure 8-38 Use the Query Parameters dialog box to assign data types for query parameters.

In the Parameter column, enter each parameter name exactly as you entered it in the
design grid. If your parameter name includes no spaces or special characters, you can
omit the brackets. (In this case, your parameters include both spaces and the colon
character—either of which would require the brackets.) In the Data Type column, select
the appropriate data type from the drop-down list. Click OK when you fi nish defi ning
all your parameters.

When you run the query, Access prompts you for an appropriate value for each param-
eter, one at a time, with a dialog box like the one shown in Figure 8-39. Because Access
displays the “name” of the parameter that you provided in the design grid, you can see
why naming the parameter with a useful phrase can help you enter the correct value
later. If you enter a value that does not match the data type you specifi ed, Access dis-
plays an error message and gives you a chance to try again. You can also click Cancel to
abort running the query. If you click OK without typing a value, Access returns a Null
value for the parameter to the query.

Figure 8-39 The Enter Parameter Value dialog box asks for the query parameter value.

Chapter 8

452 Chapter 8 Building Complex Queries
Notice that Access accepts any value that it can recognize as a date/time, such as a long
date or short date format. If you respond to the query parameter prompts with May 1,
2007, for the Start Date and May 12, 2007, for the End Date, you’ll see a datasheet like
Figure 8-40.

Figure 8-40 This fi gure displays the recordset of the query shown in Figure 8-37 when you reply
with May 1, 2007, and May 12, 2007, to the parameter prompts.

You can fi nd this query saved in the sample database as qxmplReservationLookup-
Parameter.

Customizing Query Properties
Access 2007 provides a number of properties associated with queries that you can use
to control how a query runs. To open the property sheet for queries, click in the upper
part of a Query window in Design view outside of the fi eld lists and then click the Prop-
erty Sheet button in the Show/Hide group of the Design contextual tab. Figure 8-41
shows the property sheet Access provides for select queries.

Use the Description property to document what the query does. This description
appears next to the query name when you view query objects in Details view in the
Navigation Pane. You can also right-click on the query in the Navigation Pane and open
the Properties dialog box to enter this property without having to open the query in
Design view.

The Default View property determines how the query opens when you open it from the
Navigation Pane. Datasheet view is the default, but you might want to change this set-
ting to PivotTable or PivotChart if you have designed either of these views for the query.
See “Creating PivotTables and PivotCharts from Queries,” page 469, for details.

Controlling Query Output
You normally select only specifi c fi elds that you want returned in the recordset when
you run a select query. However, if you’re designing the query to be used in a form and
you want all fi elds from all tables used in the query available to the form, set the Output
All Fields property to Yes. It’s a good idea to keep the default setting of No and change
this option only for specifi c queries.

 Customizing Query Properties 453

Ch
ap

te
r 8
Figure 8-41 The property sheet for select queries lets you customize the way the query works.

You can change the default Output All Fields property for all queries in the Object

Designers category of the Access Options dialog box, but we strongly recommend that

you do not do this. Queries execute most effi ciently when they return only the fi elds that

you need. Also, when your query includes more than one table and a fi eld exists more

than once in different tables, an expression you use to reference the fi eld will fail unless

you qualify the fi eld name with the table name. You might include the fi eld only once in

the design grid, but Output All Fields causes the query to include all copies of the fi eld.

You can use the Top Values property to tell Access that you want to see the fi rst n rows
or the fi rst x% of rows. If you enter an integer value, Access displays the number of
rows specifi ed. If you enter a decimal value between 0 and 1 or an integer less than 100
followed by a percent sign (%), Access displays that percentage of rows. For example,
you might want to fi nd the top 10 best-selling products or the top 20% of highest paid
employees. Note that in most cases you’ll need to specify sorting criteria—perhaps by
count of products sold descending or salary descending—to place the rows you want at
the “top” of the recordset. You can then ask for the top 10 or top 20% to get the answers
you want.

SIDE OUT Don’t Change the Default Setting for the Output All Fields
Property

You can change the default Output All Fields property for all queries in the Object

Designers category of the Access Options dialog box, but we strongly recommend that

you do not do this. Queries execute most effi ciently when they return only the fi elds that

you need. Also, when your query includes more than one table and a fi eld exists more

than once in different tables, an expression you use to reference the fi eld will fail unless

you qualify the fi eld name with the table name. You might include the fi eld only once in

the design grid, but Output All Fields causes the query to include all copies of the fi eld.

Chapter 8

454 Chapter 8 Building Complex Queries
When working in a query datasheet, you can defi ne and apply fi lters and specify sort-
ing just as you can in a table datasheet. Access stores this fi ltering and sorting criteria
in the query’s Filter and Order By properties. When you design a query, you can use
the Filter and Order By properties to predefi ne fi ltering and sorting criteria. When you
open the query and click Toggle Filter in the Sort & Filter group on Home tab, Access
applies the fi lter and/or sorts the data using these saved properties. If you change
the fi lter or sorting criteria while in Datasheet view and then save the change, Access
updates these properties.

You can also affect whether the fi elds returned by the query can be updated by chang-
ing the Recordset Type property. The default setting, Dynaset, allows you to update
any fi elds on the many side of a join. It also lets you change values on the one side of a
join if you have defi ned a relationship between the tables and enabled Cascade Update
Related Fields in the Edit Relationships dialog box. If you choose Dynaset (Inconsistent
Updates), you can update any fi eld that isn’t a result of a calculation, but you might
update data that you didn’t intend to be updatable. If you want the query to be read-
only (no fi elds can be updated), choose the Snapshot setting.

CAUTION!
You should rarely, if at all, choose the Dynaset (Inconsistent Updates) setting for Record-

set Type. This setting makes fi elds updatable in queries that might not otherwise allow

updating. Although Access still enforces referential integrity rules, you can make changes

to tables independently from each other, so you might end up reassigning relationships

unintentionally. You can read about the details of when fi elds are updatable in a query

later in this chapter in “Limitations on Using Select Queries to Update Data” on page 468.

Working with Unique Records and Values
When you run a query, Access often returns what appear to be duplicate rows in the
recordset. The default in Access 2007 is to return all records. You can also ask Access
to return only unique records. (This was the default for all versions of Access prior to
version 8.0, also called Access 97). Unique records mean that the identifi er for each row
(the primary key of the table in a single-table query or the concatenated primary keys
in a multiple-table query) is unique. If you ask for unique records, Access returns only
rows with identifi ers that are different from each other. If you want to see all possible
data (including duplicate rows), set both the Unique Values property and the Unique
Records property to No. (You cannot set both Unique Records and Unique Values to
Yes. You can set them both to No.)

CAUTION!

 Customizing Query Properties 455

Ch
ap

te
r 8
To understand how the Unique Values and Unique Records settings work, open the
ContactsDataCopy.accdb database and create a query that includes both the tblCon-
tacts table and the tblContactEvents table. Let’s say you want to fi nd out from which
cities you’ve received a contact over a particular period of time. Include the WorkCity
and WorkStateOrProvince fi elds from tblContacts. Include the ContactDateTime fi eld
from tblContactEvents, but clear the Show check box. Figure 8-42 shows a sample
query with a date criterion that will show contact cities between December 2006 and
March 2007. (Remember, ContactDateTime includes a time value, so you need to enter
a criterion one day beyond the date range you want.) You can fi nd this query saved as
qxmplNoUnique in the sample database.

Figure 8-42 You can build a query that demonstrates setting both Unique Values and Unique
Records to No when you’re using two tables.

If you switch to Datasheet view, as shown in Figure 8-43, you can see that the query
returns 58 rows—each row from tblContacts appears once for each related contact event
that has a contact date between the specifi ed days. Some of these rows come from the
same person, and some come from different people in the same city. The bottom line is
there are 58 rows in tblContactEvents within the specifi ed date range.

Chapter 8

456 Chapter 8 Building Complex Queries
Figure 8-43 Run your sample query to see the result of retrieving all rows across a join even
though the output columns are from only one of the tables.

If you’re interested only in one row per contact (per person) from tblContacts, regard-
less of the number of contact events, you can set the Unique Records property to Yes.
The result is shown in Figure 8-44 (saved as qxmplUniqueRecords). This tells us that
there were 26 different people who had a contact event within the date range. Again,
some of these rows come from different people in the same city, which is why you see
the same city listed more than once. The recordset now returns unique records from
tblContacts (the only table providing output fi elds in this query).

Note
Setting Unique Records to Yes has no effect unless you include more than one table in

your query and you include fi elds from the table on the one side of a one-to-many rela-

tionship. You might have this situation when you are interested in data from one table

but you want to fi lter it based on data in a related table without displaying the fi elds

from the related table.

Note
Setting Unique Records to Yes has no effect unless you include more than one table in

your query and you include fi elds from the table on the one side of a one-to-many rela-

tionship. You might have this situation when you are interested in data from one table

but you want to fi lter it based on data in a related table without displaying the fi elds

from the related table.

 Customizing Query Properties 457

Ch
ap

te
r 8
Figure 8-44 Even though your query uses two tables, when you set the Unique Records property
to Yes, your query returns records that are unique in the one table that provides output columns.

Finally, if you’re interested in only which distinct cities you received a contact from in
the specifi ed date range, and you want to see each city name only once, then set Unique
Values to Yes. (Access automatically resets Unique Records to No.) The result is 13
records, as shown in Figure 8-45 (saved as qxmplUniqueValues).

When you ask for unique values, you’re asking Access to calculate and remove the
duplicate values. As with any calculated value in a query, fi elds in a unique values query
can’t be updated.

Chapter 8

458 Chapter 8 Building Complex Queries
Figure 8-45 When you set the Unique Values property to Yes, Access removes all the duplicate
records.

Defi ning a Subdatasheet
In the previous chapter, we showed you how to work with and modify subdatasheets
from query Datasheet view. Now, let’s take a closer look at the properties you can set
in a query to predefi ne a subdatasheet within the query. Let’s say you want to create a
query to show company information and make a subdatasheet available that displays
information about the primary contact for the company. You can use the qryContacts-
Datasheet query that you studied in the previous chapter, but fi rst you’ll need to modify
that query for this exercise.

In the ContactsDataCopy.accdb database, open qryContactsDatasheet in Design view.
To link this query to another that displays company information, you’ll need the
 CompanyID fi eld. Click the Show Table button in the Query Setup group of the Design
contextual tab, and add the tblCompanyContacts table to the query. Click Close to
close the Show Table dialog box. You should see a join line linking ContactID in the two
tables. Add the CompanyID and DefaultForContact fi elds from tblCompany Contacts
to the fi rst two columns in the design grid. It makes sense to list only the default com-
pany for each contact, so add a criterion of True on the Criteria line under the Default-
ForContact fi eld. You should clear the Show check box because you don’t really need
to see this fi eld in the output. Your query should now look like Figure 8-46. Click the
 Microsoft Offi ce Button, click Save As, click Save Object As, and then save the query as
qryContactsDatasheetCOID. You can also fi nd this query saved in the sample database
as qryXmplContactsDatasheetCOID.

 Customizing Query Properties 459

Ch
ap

te
r 8
Figure 8-46 To modify a query to use it as a subdatasheet that displays contacts, include the
appropriate linking fi eld.

You need the CompanyID fi eld to provide a link to the outer datasheet that you will
build shortly, but you don’t necessarily need to see it in your datasheet. Switch to Data-
sheet view, click in the Company / Org column (this is the CompanyID fi eld), click the
More command in the Records group on the Home tab, and select Hide Columns from
the list to hide the fi eld. Note that this affects the display only. CompanyID is still a fi eld
in the query. (Alternatively, you could clear the Show check box in the design grid.)
Close the query and click Yes when Access asks you if you want to save your layout
changes.

Now you’re ready to build the query in which you’ll use the query you just modifi ed as
a subdatasheet. Start a new query, add the tblCompanies table to the design grid, and
close the Show Tables dialog box. Include the CompanyID, CompanyName, City, and
StateOrProvince fi elds from tblCompanies. Click in the blank space in the top part of
the Query window, and click the Property Sheet button in the Show/Hide group on the
Design tab to open the property sheet for the query. Click in the Subdatasheet Name
property and then click the small arrow to open a list of all tables and queries saved
in your database. Scroll down and choose the query that you just saved—qryContacts-
DatasheetCOID—and select it as shown in Figure 8-47. (You might have to widen the
property sheet in order to see the complete names of queries.)

Chapter 8

460 Chapter 8 Building Complex Queries
Figure 8-47 Select the qryContactsDatasheetCOID query to provide the subdatasheet for
this query.

You need to tell your query which fi eld links the query you’re creating to the query in
the subdatasheet. In Link Child Fields, type the name of the fi eld in the subdatasheet
query you just selected that matches a fi eld in the query you’re designing—in this case,
CompanyID. Note that when you’re linking to another table or query that requires more
than one fi eld to defi ne the relationship, you enter the fi eld names separated by semi-
colons. In Link Master Fields, enter the name of the fi eld in the query you’re creating
that should match the value in the fi eld in Link Child Fields—CompanyID again. (You’ll
see these same properties again when inserting a subform in a form in Chapter 13,
“Advanced Form Design.”)

Two additional properties apply to subdatasheets—Subdatasheet Height and Sub-
datasheet Expanded. If you leave Subdatasheet Height at its default setting of 0, the
subdatasheet area expands to show all available rows when you open it. You can limit
the maximum height by entering a setting in inches (centimeters on a computer with
regional settings set to the metric system). If the height you specify isn’t large enough
to show all rows, you’ll see a scroll bar to move through the rows in the subdatasheet. If
you set Subdatasheet Expanded to Yes, the subdatasheet for every row opens expanded
when you open the query or switch to Datasheet view. Just for fun, change this setting
to Yes.

 Customizing Query Properties 461

Ch
ap

te
r 8

When a property box has a list of values from which you can select, you can cycle

through the values by double-clicking in the property value box instead of clicking the

small arrow to the right of the property box.

Switch to Datasheet view, and your result should look like Figure 8-48.

Figure 8-48 This query shows company information with its contact subdatasheet information
expanded.

Do you notice that there are little plus signs on the rows in the subdatasheet? Remember
that qryContactsDatasheet, from which you built the new qryContactsDatasheetCOID
query, also has a subdatasheet defi ned. If you click on one of the plus signs in the sub-
datasheet, you’ll see the related contact event subdatasheet information from qryCon-
tactsDatasheet as shown in Figure 8-49. You can actually nest subdatasheets like this
up to seven levels.

You can fi nd this query saved as qxmplCompaniesContactsSub in the sample database.

SIDE OUT Cycling Through Property Box Values

When a property box has a list of values from which you can select, you can cycle

through the values by double-clicking in the property value box instead of clicking the

small arrow to the right of the property box.

Chapter 8

462 Chapter 8 Building Complex Queries
Figure 8-49 You can expand the subdatasheet of the subdatasheet to see contact
event information.

Other Query Properties
Use the Record Locks property to control the level of editing integrity for a query that
is designed to access data shared across a network. The default is No Locks—to not lock
any records when the user opens the query. With this setting, Access applies a lock
temporarily only when it needs to write a row back to the source table. Select the Edited
Record setting to lock a row as soon as a user begins entering changes in that row. The
most restrictive setting, All Records, locks every record retrieved by the query as long
as the user has the query open. Use this setting only when the query must perform mul-
tiple updates to a table and other users should not access any data in the table until the
query is fi nished.

Four of the remaining properties—Source Database, Source Connect Str, ODBC Time-
out, and Max Records—apply to dynamically linked tables. You can, for example, run a
query against tables in another Access database by entering the full path and fi le name
of that database in Source Database. Access dynamically links to the database when
you run the query. Use Source Connect Str when you are dynamically linking to an
ODBC or non-Access database that requires connection information. ODBC Timeout
specifi es how long Access will wait (in seconds) for a response from the ODBC database
before failing with an error. Use Max Records to limit the number of rows returned to
this query from a database server. When you don’t specify a number, Access fetches all
rows. This might not be desirable when you’re fetching data from tables that have hun-
dreds of thousands of rows.

 Editing and Creating Queries in SQL View 463

Ch
ap

te
r 8
The last property, Orientation, specifi es whether you want to see the columns in Left-
to-Right or Right-to-Left order. In some languages where reading proceeds right to left,
this setting is handy. You can try it out on your system. You’ll fi nd that the columns
show up right to left, the caption of the query is right-aligned, the selector bar is down
the right side of the datasheet, and pressing the Tab key moves through fi elds from
right to left.

Editing and Creating Queries in SQL View
There are three types of queries that you must create in SQL view: data defi nition que-
ries, pass-through queries, and union queries.

In a desktop application, Access supports a limited subset of the ANSI-Standard SQL
language for data defi nition. You can execute basic CREATE TABLE and ALTER TABLE
commands in a data defi nition query, but you cannot defi ne any Access-specifi c proper-
ties such as the Input Mask or Validation Rule property. The syntax is so limited that
we don’t cover it in Article 2, “Understanding SQL,” on the companion CD.

When you’re using linked tables to a server database system such as Microsoft SQL
Server or Oracle, you might need to execute a query on the server that takes advantage
of the native SQL supported by the server. You can do most of your work in queries you
build in the Access query designer, but the SQL that the query designer builds is only
a subset of what your server probably supports. When you need to send a command to
your database server in its native syntax, use a pass-through query. If all your data is
stored in SQL Server, you should consider building an Access project that links directly
to the server data. You can learn about projects in Part 7, “Designing an Access Project.”

So, that leaves us with union queries that you might want to build in SQL view. When
you create a query that fetches data from multiple tables, you see the related fi elds side
by side in the resulting datasheet. Sometimes it’s useful to fetch similar data from sev-
eral tables and literally stack the rows from different tables on top of one another. Think
of pulling the pages containing your favorite recipes out of two different cookbooks
and piling them on top of one another to make a new book. For that, you need a union
query, and you must build it in SQL view.

Let’s say you need to build a mailing list in the Conrad Systems Contacts application.
You want to send a brochure to each primary contact for a company at the company’s
main mailing address. You also want to include any other contacts who are not the
primary contact for a company, but send the mailing to their home address. Sounds
easy enough to pull the primary contact mailing address from tblCompanies and the
address for everyone else from tblContacts. But how do you get all this information in
one set of data to make it easy to print your mailing labels in one pass?

Chapter 8

464 Chapter 8 Building Complex Queries
SQL—The Basic Clauses
One way to begin learning SQL (and we strongly recommend that you do) is to take a

look at any query you’ve built in the query designer in SQL view. You can see the SQL

view of any query you’ve built by opening it in Design view and then clicking the small

arrow below the View button in the Views group on the Home tab and selecting SQL

View. You also fi nd the View button in the Results group on the Design contextual tab

below Query Tools. You can learn all the details in Article 2, “Understanding SQL,” but

a quick overview of the main clauses will help you begin to understand what you see in

SQL view.

SQL Clause Usage

SELECT This clause lists the fi elds and expressions that your query
returns. It is equivalent to the Field row in the query designer.
In a totals query, aggregate functions within the SELECT clause,
such as Min or Sum, come from specifi cations in the Total line.

FROM This clause specifi es the tables or queries from which your
query fetches data and includes JOIN clauses to defi ne how
to link your tables or queries. It is equivalent to the graphical
display of table or query fi eld lists and join lines in the top of
the query designer.

WHERE This clause specifi es how to fi lter the rows returned by
evaluating the FROM clause. It is equivalent to the Criteria and
Or lines in the query designer.

GROUP BY This clause lists the grouping fi eld for a totals query. Access
builds this clause from the fi elds indicated with Group By in
the Total line of the query designer.

HAVING This clause specifi es fi ltering in a totals query on calculated
values. This clause comes from the Criteria and Or lines under
fi elds with one of the aggregate functions specifi ed in the
Total line.

First, build a query to get the information you need for each company’s primary con-
tact. In the ContactsDataCopy.accdb database, start a new query with tblCompanies.
Add tblCompanyContacts and tblContacts and remove the extra join line between the
ContactID fi eld in tblContacts and the ReferredBy fi eld in tblCompanies. In the fi rst
column on the Field line, enter:

EmpName: (tblContacts.Title + " ") & tblContacts.FirstName & " " &
(tblContacts.MiddleInit + ". ") & tblContacts.LastName & (" " + tblContacts.Suffi x)

Add the CompanyName and Address fi elds from tblCompanies. In the fourth column
on the Field line, enter:

CSZ: tblCompanies.City & ", " & tblCompanies.StateOrProvince & " " &
tblCompanies.PostalCode

SQL—The Basic Clauses
One way to begin learning SQL (and we strongly recommend that you do) is to take a

look at any query you’ve built in the query designer in SQL view. You can see the SQL

view of any query you’ve built by opening it in Design view and then clicking the small

arrow below the View button in the Views group on the Home tab and selecting SQL

View. You also fi nd the View button in the Results group on the Design contextual tab

below Query Tools. You can learn all the details in Article 2, “Understanding SQL,” but

a quick overview of the main clauses will help you begin to understand what you see in

SQL view.

SQL Clause Usage

SELECT This clause lists the fi elds and expressions that your query
returns. It is equivalent to the Field row in the query designer.
In a totals query, aggregate functions within the SELECT clause,
such as Min or Sum, come from specifi cations in the Total line.

FROM This clause specifi es the tables or queries from which your
query fetches data and includes JOIN clauses to defi ne how
to link your tables or queries. It is equivalent to the graphical
display of table or query fi eld lists and join lines in the top of
the query designer.

WHERE This clause specifi es how to fi lter the rows returned by
evaluating the FROM clause. It is equivalent to the Criteria and
Or lines in the query designer.

GROUP BY This clause lists the grouping fi eld for a totals query. Access
builds this clause from the fi elds indicated with Group By in
the Total line of the query designer.

HAVING This clause specifi es fi ltering in a totals query on calculated
values. This clause comes from the Criteria and Or lines under
fi elds with one of the aggregate functions specifi ed in the
Total line.

 Editing and Creating Queries in SQL View 465

Ch
ap

te
r 8
Add the DefaultForCompany fi eld from tblCompanyContacts, clear its Show check box,
and enter True on the Criteria line. If you switch to Datasheet view, your result should
look like Figure 8-50.

Figure 8-50 You can switch to Datasheet view to verify that you have correctly built the fi rst part of
a union query to display names and addresses.

OK, that’s the fi rst part. You do not have to save this query—leave it open in Design
view. Start another query with tblContacts and add tblCompanyContacts. Create an
EmpName fi eld exactly as you did in the fi rst query. In the second column, enter:

CompanyName: ""

Say what? Well, one of the requirements to build a union query is that the two record-
sets must both have the exact same number of columns and the exact same data types
in the relative columns. A mailing label sent to a home address doesn’t have a company
name, but you need this fi eld to line up with the ones you created in the fi rst query. In
Chapter 15, “Constructing a Report,” you’ll see how the Mailing Label Wizard elimi-
nates the blank row that would otherwise be created by including this fi eld.

Add the HomeAddress fi eld from tblContacts in the third column and create this
expression in the fourth column on the Field line:

CSZ: tblContacts.HomeCity & ", " & tblContacts.HomeStateOrProvince & " " &
 tblContacts.HomePostalCode

Finally, include the DefaultForCompany fi eld from tblCompanyContacts, and clear the
Show check box but this time set a criterion of False. The Datasheet view of this query
should look like Figure 8-51.

Chapter 8

466 Chapter 8 Building Complex Queries
Figure 8-51 The second part of a union query to display names and addresses displays the home
addresses for persons who are not the primary contact for each company.

Again, you don’t have to save this query. Now, you’re ready to assemble your union
query. Click the Query Design button in the Other group on the Create tab. You’ll see
a blank third query window with the Show Table dialog box open in front. Click the
Close button to dismiss the dialog box. When Access sees that you haven’t chosen any
tables or queries, it makes SQL the default option on the View button at the left end
of the Ribbon. (This means that if you simply click above the View button, which now
displays SQL, you open the SQL view for the query.) Click the SQL button in the Views
group on the Home tab or the Results group of the Design contextual tab to switch to
SQL view for this empty query. You should see a blank window with SELECT; displayed
in the upper-left corner.

Go back to your fi rst query, click the small arrow below the View button on the Home
tab, and then click SQL View (or you can follow the same steps using the Results
group on the Design contextual tab below Query Tools). You should see a window like
Figure 8-52.

Figure 8-52 You’re going to copy the fi rst part of your union query from the fi rst query’s SQL view.

 Editing and Creating Queries in SQL View 467

Ch
ap

te
r 8

By default Access sets the font size for text in the Query window to 8. In order to make

Figure 8-52 and Figure 8-53 more readable in the printed book, we temporarily changed

our font size to 12 for the Query window. Click the Microsoft Offi ce Button, click Access

Options, click the Object Designers category, and then select a font size in the Query

Design Font Size text box in the Query Design section. Click OK to save this change.

Select all the text you see in this window and copy it to the Clipboard. Switch to the
third empty query, and replace SELECT; with the text you copied. Remove the ending
semicolon, place the insertion point at the end of the text, press Enter, type the word
UNION, and press Enter again.

Go to your second query, switch to SQL view, select all the text, and copy it to the Clip-
board. Go back to the third query and paste this text at the end. Your new union query
should look like Figure 8-53.

Figure 8-53 You can assemble a union query by copying and pasting the SQL from two
other queries.

Switch to Datasheet view to see the fi nal result as shown in Figure 8-54.

You should save this query, but you can close and not save the fi rst two queries that
you used to build this. You can fi nd this query saved as qxmplAddressesUnion in the
sample database. If you want to learn more about SQL, see Article 2, “Understanding
SQL,” on the companion CD.

SIDE OUT Changing Font Size for the Query Window

By default Access sets the font size for text in the Query window to 8. In order to make

Figure 8-52 and Figure 8-53 more readable in the printed book, we temporarily changed

our font size to 12 for the Query window. Click the Microsoft Offi ce Button, click Access

Options, click the Object Designers category, and then select a font size in the Query

Design Font Size text box in the Query Design section. Click OK to save this change.

Chapter 8

468 Chapter 8 Building Complex Queries
Figure 8-54 The union query displays the company address for all primary contacts and the home
address for all other contacts.

 Limitations on Using Select Queries to Update Data
The recordset that Access creates when you run a query looks and acts pretty much like
a real table containing data. In fact, in most cases you can insert rows, delete rows, and
update the information in a recordset, and Access will make the necessary changes to
the underlying table or tables for you.

In some cases, however, Access won’t be able to fi gure out what needs to be changed.
Consider, for example, a calculated fi eld named Total that is the result of multiplying
two fi elds named Quantity and Price. If you try to increase the amount in a Total fi eld,
Access can’t know whether you mean to update the Quantity fi eld or the Price fi eld.
On the other hand, you can change either the Price fi eld or the Quantity fi eld and then
immediately see the change refl ected in the calculated Total fi eld.

In addition, Access won’t accept any change that might potentially affect many rows in
the underlying table. For that reason, you can’t change any of the data in a totals query
or in a crosstab query. A Group By fi eld is the result of gathering together one or more
rows with the same value. Likewise, a Sum is most likely the result of adding values
from potentially many rows. A Min or Max value might occur in more than one row.

When working with a recordset that is the result of a join, you can update all fi elds
from the many side of a join but only the non-key fi elds on the one side, unless you have
specifi ed Cascade Update Related Fields in the relationship. Also, you cannot set or
change any fi eld that has the AutoNumber data type. For example, you can’t change the

 Creating PivotTables and PivotCharts from Queries 469

Ch
ap

te
r 8
ContactID fi eld values in the tblContacts table in the Conrad Systems Contacts sample
application.

The ability to update fi elds on the one side of a query can produce unwanted results if
you aren’t careful. For example, you could intend to assign a contact to a different com-
pany. If you change the company name, you’ll change that name for all contacts related
to the current CompanyID. What you should do instead is change the CompanyID
fi eld in the tblCompanyContacts table, not the company name in the tblCompanies
table. You’ll learn techniques in Chapter 13 to prevent inadvertent updating of fi elds
in queries.

When you set Unique Values to Yes in the query’s property sheet, Access eliminates
duplicate rows. The values returned might occur in multiple rows, so Access won’t
know which one you mean to update. And fi nally, when Access combines rows from dif-
ferent tables in a union query, the individual rows lose their underlying table identity.
Access cannot know which table you mean to update when you try to change a row in a
union query, so it disallows all updates.

Query Fields That Cannot Be Updated
Some types of query fi elds cannot be updated:

O Any fi eld that is the result of a calculation

O Any fi eld in a totals or crosstab query

O Any fi eld in a query that includes a totals or crosstab query as one of the row

sources

O A primary key participating in a relationship unless Cascade Update Related Fields

is specifi ed

O AutoNumber fi elds

O Any fi eld in a unique values query or a unique records query

O Any fi eld in a union query

Creating PivotTables and PivotCharts from Queries
Microsoft Access 2002 (Offi ce XP) introduced two very useful new features for tables,
queries, and forms—PivotTables and PivotCharts. These are additional views of a table,
query, or form that you can design to provide analytical views of your data. These views
are built into the objects; they’re not implemented via a separate ActiveX control as is
the old and venerable Microsoft Graph feature.

You learned in this chapter that you can build a crosstab query to pivot the values in
a column to form dynamic column headings. However, crosstab queries have a major
drawback—you can include only one calculated value in the intersection of your row

Query Fields That Cannot Be Updated
Some types of query fi elds cannot be updated:

O Any fi eld that is the result of a calculation

O Any fi eld in a totals or crosstab query

O Any fi eld in a query that includes a totals or crosstab query as one of the row

sources

O A primary key participating in a relationship unless Cascade Update Related Fields

is specifi ed

O AutoNumber fi elds

O Any fi eld in a unique values query or a unique records query

O Any fi eld in a union query

Chapter 8

470 Chapter 8 Building Complex Queries
headings and single column heading. PivotTables in Access are very similar to the
 PivotTable facility in Microsoft Excel. You can categorize rows by several values, just
like you can in a crosstab query, but you can also include multiple column categories
and multiple raw or calculated values in each intersection of rows and column. As its
name implies, you can also pivot the table to swap row headings with column headings.

A PivotChart is a graphical view of the data that you included in your PivotTable. You
can build a PivotChart without fi rst defi ning the PivotTable, and vice versa. When you
design a PivotChart, you’re also designing or modifying the related PivotTable to pro-
vide the data you need for your chart. When you modify a PivotTable, you’ll also change
(or destroy) the related PivotChart you have already designed.

As you explore the possibilities with PivotTables and PivotCharts, you’ll fi nd power-
ful capabilities to “slice and dice” your data or “drill down” into more detail. Unlike a
crosstab query that’s built on summarized data, you can begin with a table or query
that contains very detailed information. The more detail you have to begin with, the
more you can do with your PivotTable and PivotChart.

CAUTION!
You might be tempted to design a very detailed query that returns thousands of rows for

your user to work with. However, the fi ltering capabilities inside a PivotTable aren’t nearly

as effi cient as defi ning a fi lter in your query to begin with. If you’re loading hundreds

of thousands of rows over a network, your PivotTable or PivotChart might be very, very

slow. You should provide enough detail to get the job done, but no more. You should

limit the fi elds in your query to those focused on the task at hand and include fi lters in

your underlying query to return only the subset of the data that’s needed.

Building a Query for a PivotTable
Although you can build a PivotTable directly on a table in your database, you most
likely will need a query to provide the level of detail you want to pivot. Let’s build a
query in the HousingDataCopy.accdb database that provides some interesting detail.

Start a new query with tblFacilities and add tblReservations, tblEmployees, and
 tblDepartments. (Be sure to remove the extra relationship between the EmployeeNum-
ber fi eld in tblEmployees and the ManagerNumber fi eld in tblDepartments.) Create an
expression to display the employee name in the fi rst fi eld:

EmpName: tblEmployees.LastName & ", " & tblEmployees.FirstName &
(" " + tblEmployees.MiddleName)

In the query grid, include the Department fi eld from tblDepartments, the ReservationID
fi eld from tblReservations (we’re going to use this fi eld later to count the number of
reservation days), the FacilityName fi eld from tblFacilities, and the RoomNumber
fi eld from tblReservations. Add an expression in the next fi eld to calculate the actual
charge per day. You could use the DailyRate fi eld from tblReservations, but that’s not

C U O !

 Creating PivotTables and PivotCharts from Queries 471

Ch
ap

te
r 8
an accurate refl ection of how much the room costs per day when the employee stays a
week or more. Your expression should look like this:

DailyCharge: CCur(Round(tblReservations.TotalCharge /
(tblReservations.CheckOutDate – tblReservations.CheckInDate), 2))

Remember that you can calculate the number of days by subtracting the CheckInDate
fi eld from the CheckOutDate fi eld. Divide the TotalCharge fi eld by the number of days
to obtain the actual daily rate. This division might result in a value that has more than
two decimal places, so asking the Round function to round to two decimal places (the 2
parameter at the end) takes care of that. Finally, the expression uses the CCur (Convert
to Currency) function to make sure the query returns a currency value.

Now comes the fun part. Each row in tblReservations represents a stay of one or more
days. In this example, we ultimately want to be able to count individual days to fi nd out
the length of stay within any month. To do that, we need to “explode” each single row
in tblReservations into a row per day for the duration of the reservation. In this sample
database, you’ll fi nd what we call a “driver” table—ztblDates—full of dates to accomplish
this feat. The table contains date values, one per day, for dates from January 1, 1992, to
December 31, 2035. We created this table to “drive” the complete list of dates we need
(at least, complete enough for our purposes) against the rows in tblReservations in
order to provide the explosion.

Include this table in your query and notice that there’s no join line to any of the tables.
When you add a table with no join defi ned to another table or set of records, the query
returns the Cartesian product of the two sets of records—every row in the fi rst table or
set of records is matched with every row in the second table or set of records. For exam-
ple, if there are 90 rows in one set and 12 rows in the second set, the query returns
1080 rows (90 times 12). In this case, each reservation will now be matched with each
of the separate date values in ztblDates.

As we mentioned earlier, you should try to limit the output of a query that you’ll use to
build a PivotTable to only the rows you need to solve the problem. Let’s say the facilities
manager is interested in data for June, July, and August of 2007. Add the DateValue fi eld
from ztblDates and enter Between #6/1/2007# And #8/31/2007# under this fi eld on
the Criteria line. You have now limited the explosion of rows to dates in the months of
interest.

The fi nal step is to further limit the rows created based on the CheckInDate and Check-
OutDate fi elds in tblReservations. Any reservation that crosses the time span of interest
is going to be for a few days or a few weeks. Add the CheckInDate and CheckOutDate
fi elds from tblReservations and clear the Show check box under both. On the Criteria
row under CheckInDate, enter <=ztblDates.DateValue. Under CheckOutDate, enter
>ztblDates.DateValue.

This forces the query to keep any rows where the DateValue fi eld from ztblDates is
within the time span of each reservation row. Voilà! You now have one row per date for
each reservation. Your query should now look like Figure 8-55.

Chapter 8

472 Chapter 8 Building Complex Queries
Figure 8-55 This complex query generates the data you need for a PivotTable.

To better understand how this query expands each reservation into one row per day,
take a look at Table 8-2. The table represents expanded rows after applying the fi nal two
criteria on CheckInDate and CheckOutDate.

Table 8-2 How ztblDates Expands Reservation Rows

ReservationID CheckInDate CheckOutDate DateValue

55 August 6, 2007 August 12, 2007 August 6, 2007

55 August 6, 2007 August 12, 2007 August 7, 2007

55 August 6, 2007 August 12, 2007 August 8, 2007

55 August 6, 2007 August 12, 2007 August 9, 2007

55 August 6, 2007 August 12, 2007 August 10, 2007

55 August 6, 2007 August 12, 2007 August 11, 2007

The end result is that the query selects only the rows from ztblDates that are within
the date range of the individual reservation. Because there’s one (and only one) row for
every date of interest coming from ztblDates, you end up with one row per day that’s
within the span of days in each reservation. Figure 8-56 shows you the Datasheet view
of your query. You can fi nd this query saved as qxmplReservationsByDay in the sample
database.

 Creating PivotTables and PivotCharts from Queries 473

Ch
ap

te
r 8
Figure 8-56 The reservations for June, July, and August are expanded into one row per day.

Designing a PivotTable
Now that you have the data you need, you’re ready to start building a PivotTable. From
Design or Datasheet view, switch to PivotTable view by clicking the small arrow below
the View button and then clicking PivotTable View in the list. (You can fi nd the View
button on both the Home tab and the Design contextual tab.) You should see a blank
PivotTable design area as shown in Figure 8-57. If you don’t see the fi eld list as shown
in Figure 8-57, click the Field List command in the Show/Hide group of the Design con-
textual tab below PivotTable Tools.

In general, you should use as columns those fi elds that have the fewest values. If you
place too many values across your PivotTable, you’ll fi nd that you must scroll left a long
way to see all the details. In this case, we’re interested in statistics by month, and we
know there are only three months of data in the underlying recordset. You’ll still be
able to show the details by day, if you like, because the recordset includes information
by date—you can expand any Months fi eld to show all the days in the month. We might
want to see the data organized by department and facility. It might also be interesting
to provide an easy way to fi lter on employee name, but we don’t need the data from that
fi eld displayed in the table.

Chapter 8

474 Chapter 8 Building Complex Queries
Row Fields drop zone

 Column Fields drop zone

 Filter Fields drop zone

 PivotTable field list

 Totals or Detail Fields drop zone

Dragging the Department field to the Column Fields drop zone

Figure 8-57 You can design PivotTables using the PivotTable design window.

Expand the DateValue By Month list and drag and drop Months on the Column Fields
drop zone. Drag and drop the Department fi eld and the FaciltyName fi eld on the Row
Fields drop zone. Drag and drop the EmpName fi eld on the Filter Fields drop zone.
Finally, drag and drop the ReservationID and DailyCharge fi elds on the Totals or Detail
Fields drop zone. Notice that fi elds you choose now appear in bold in the PivotTable
Field List window. Within the PivotTable, you can click on any plus sign (+) to expand a
category or display details, or any minus sign (–) to contract a category or hide details.
If you expand Months in the Column Fields drop zone, the PivotTable automatically
adds a Days fi eld to the Columns area. You can also expand the categories in the
 PivotTable Field List window by clicking on the plus sign next to each category. Your
PivotTable should look like Figure 8-58.

 Creating PivotTables and PivotCharts from Queries 475

Ch
ap

te
r 8
Figure 8-58 This PivotTable shows fi elds added to all drop zones.

Now would be a good time to take a quick look at the buttons available on the Design
contextual tab below PivotTable Tools, which you saw previously in Figure 8-57.
Table 8-3 shows you the details.

Table 8-3 PivotTable Tools on the Ribbon

Button Usage

When highlighted, indicates automatic fi ltering is active for
the PivotTable. You can click this button to remove all fi lters.
If you defi ne a fi lter, this button becomes highlighted again.

You can select a column or row fi eld and then click this
button to defi ne a fi lter to display only the fi rst or last
number or percentage of rows. This feature works similarly to
the Top Values property of a query.

You can select a column, row, or detail/total fi eld and then
click this button to insert an aggregate function. The list
of available functions includes those you can use in totals
queries except for First and Last. (See Table 8-1 on page 437.)
The functions available in AutoCalc are appropriate to the
fi eld data type and location on the grid. (For example, you
can’t use a Sum function in a text fi eld.)

You can click on a column or row fi eld and then click this
button to insert a subtotal based on the values in that fi eld.
You must defi ne an AutoCalc fi eld before you add a subtotal.

You can click this button to insert an expression in the detail/
total area that calculates an additional value based on the
fi elds in the recordset.

Chapter 8

476 Chapter 8 Building Complex Queries
Button Usage

After you insert AutoCalc total fi elds, you can click in a
fi eld and then click this button to convert the value to a
percentage of the row, column, or grand totals.

Click on a row or column fi eld and click this button to
collapse all subcategories for this fi eld and show summaries
only.

Performs the opposite of Collapse Field.

Hides the details for the selected row or column and shows
only totals.

Performs the opposite of Hide Details.

Refetches the underlying data. You might need to do this if
others are sharing the data and updating it.

Exports your PivotTable in XML format to an HTML (.htm ,
.html) fi le and opens it in Excel.

Opens or closes the PivotTable fi eld list.

Opens or closes the Properties window.

You’re going to need some total calculations for your PivotTable. Click the Reservation
ID column heading, click the AutoCalc button to display the list of available functions,
and click Count. Click the DailyCharge column heading, click AutoCalc, and click Sum.
Click the DailyCharge column heading again, and then click Hide Details to show only
totals. Your PivotTable should now look like Figure 8-59. (We closed the PivotTable
Field List window to show you more of the PivotTable.)

 Creating PivotTables and PivotCharts from Queries 477

Ch
ap

te
r 8
Figure 8-59 The PivotTable now shows two totals calculations and we are hiding all the details.

There are literally hundreds of properties you can set in a PivotTable. Let’s change the
captions of the two totals fi elds to something more meaningful. Click on the Count Of
ReservationID fi eld and then click the Property Sheet button in the Tools group of the
Design contextual tab below PivotTable Tools to open the Properties window as shown
in Figure 8-60.

Figure 8-60 You can change a fi eld’s caption in the Properties window for a fi eld in a PivotTable.

As you can see, you can modify the text format on the fi rst tab. You can also click the
arrow to the right of Select to choose any other element you have defi ned thus far. The
Properties window changes depending on the type of element you choose. Click the
Captions tab and change the caption to Room Days. Go back to the Format tab, select

Chapter 8

478 Chapter 8 Building Complex Queries
Sum of Daily Charge (Total) from the Select list, click the Captions tab again, and
change the caption to Revenue.

You can spend a couple of days playing around in this PivotTable to see what else you
can do. One last thing we might want to do before turning this into a PivotChart is
to actually pivot the table. You do that by grabbing the fi elds in the column area and
moving them to the row area and vice versa. We decided we’d rather see details about
departments fi rst, then facility usage within department, so we placed Department
to the left of FacilityName when we moved the fi elds. You can see the fi nal result in
Figure 8-61.

Figure 8-61 You can look at the data in a PivotTable another way by “pivoting” the rows and
 columns and displaying totals only.

If you switch to Design view, you can open the property sheet for the query and set the
Default View property to PivotTable. We saved this query as qxmplReservationByDayPT
in the sample database. You should save this query under a new name so that you can
start fresh building a PivotChart in the next section.

Designing a PivotChart
Designing a PivotChart is almost as easy as building a PivotTable. You will most
likely use PivotCharts in reports (as an embedded subform), but you can also create a
 PivotChart view of a table, query, or form. As mentioned earlier in the discussion on
PivotTables, you most often need to start with a query to pull together the information
you need.

To start building a new PivotChart from scratch, open the qxmplReservationsByDay
sample query again and switch to PivotChart view. You can see the PivotChart design

 Creating PivotTables and PivotCharts from Queries 479

Ch
ap

te
r 8
window in Figure 8-62. (If necessary, click Field List in the Show/Hide group on the
Design contextual tab to display the Chart Field List window.)

Figure 8-62 We are beginning to design a PivotChart on a query.

Notice that the fi lter area is still near the upper-left corner of the window. However, the
area for data fi elds is now along the top of the gray chart drawing area in the center.
Drop fi elds that you want to use for data points along the bottom axis in the bottom-left
corner. Drop fi elds that you want to use for the vertical axis in the right center area. To
begin designing your PivotChart, expand DateValue By Month in the fi eld list and drag
and drop Months onto the Category Fields drop zone. Next, drag and drop Department
onto the Series Fields drop zone on the right.

You can switch directly into PivotChart view from the Design view or Datasheet View

of any query. If you haven’t previously defi ned the PivotTable, you can still create your

chart by dragging and dropping fi elds from the fi eld list. Keep in mind that any change

you make in PivotChart view also changes what you see in PivotTable view. If you want

to keep separate PivotTable and PivotChart views, you should save two versions of

your query.

SIDE OUT Switching into PivotChart View

You can switch directly into PivotChart view from the Design view or Datasheet View

of any query. If you haven’t previously defi ned the PivotTable, you can still create your

chart by dragging and dropping fi elds from the fi eld list. Keep in mind that any change

you make in PivotChart view also changes what you see in PivotTable view. If you want

to keep separate PivotTable and PivotChart views, you should save two versions of

your query.

Chapter 8

480 Chapter 8 Building Complex Queries
We don’t have anything charted yet, so drag the DailyCharge fi eld from the fi eld list to
the Data Fields drop zone along the top of the chart. Notice that the chart assumes we
want to Sum the fi eld. If you had added the ReservationID fi eld, you would have to click
on the Sum of ReservationID fi eld, click the AutoCalc button, and change the calcula-
tion to Count. Your PivotChart should now look like Figure 8-63.

Figure 8-63 You can create totals and display them using a PivotChart.

This doesn’t look all that informative yet, but we’re starting to make some progress. It
would be nice to add a title, a legend (description of each of the colored bars), and a ver-
tical axis with some values. You might also want to display the actual value of each bar
at the top of it. Let’s get started.

First, open the Properties window (click the Property Sheet button in the Tools group
of the Design tab) and select Chart Workspace from the Select list on the General tab as
shown in Figure 8-64. (Notice as you go through this exercise that the tabs available in
the Properties window change as you select different objects on your PivotChart.)

Click the Title and Legend buttons on the left under Add to create these elements on
your PivotChart. Click on the Chart Workspace title you just added (or select Title from
the Select list on the General tab), click the Format tab, and change the caption to some-
thing like Revenue by Month and Department. Notice that you can also change the font,
font size, font color, and position of the title on this tab.

 Creating PivotTables and PivotCharts from Queries 481

Ch
ap

te
r 8
 Add Legend button
Add Title button

Figure 8-64 In the Properties window you can add a title and legend to the PivotChart workspace.

Go back to the General tab and select Chart Workspace again. Click the Series Groups
tab to see the settings in Figure 8-65. On this tab, you can select one or more items in
the Series box and create a separate set of plot bars by placing them in their own group.
For each group, you can also add an axis and specify its location. Click on group 1 in
the Groups box under Add Axis, select Left in the Axis Position list, and click the Add
button to create the axis.

Figure 8-65 On the Series Groups tab you can add an axis to your PivotChart.

Chapter 8

482 Chapter 8 Building Complex Queries
Finally, go back to the General tab and select the fi ve values in the Select list for the
Department fi eld one at a time, beginning with Finance. You’ll see Add Data Label, Add
Trendline, and Add Errorbar buttons as shown in Figure 8-66. Click the Add Data Label
button for each department name to add the total value at the top of each column.

 Add Errorbar button
 Add Trendline button
Add Data Label button

Figure 8-66 Use the Add Data Label button to display labels on data points on your PivotChart.

Your PivotChart should now like Figure 8-67.

If you think about it, you went to some trouble to assign a different caption to Sum of

DailyCharge when you built the sample PivotTable. There’s actually no way to correct

the caption of a data fi eld in PivotChart view. We recommend that you save what you’ve

done so far, and then switch to PivotTable view, hide the details, and change the cap-

tion for Sum of DailyCharge to Revenue as you did earlier. When you switch back to

PivotChart view, you’ll fi nd the new caption displayed. You can fi nd this chart saved as

 qxmplReservationByDayPC in the sample database.

SIDE OUT Manipulating the Caption of a Data Field in a PivotChart

If you think about it, you went to some trouble to assign a different caption to Sum of

DailyCharge when you built the sample PivotTable. There’s actually no way to correct

the caption of a data fi eld in PivotChart view. We recommend that you save what you’ve

done so far, and then switch to PivotTable view, hide the details, and change the cap-

tion for Sum of DailyCharge to Revenue as you did earlier. When you switch back to

PivotChart view, you’ll fi nd the new caption displayed. You can fi nd this chart saved as

qxmplReservationByDayPC in the sample database.

 Creating PivotTables and PivotCharts from Queries 483

Ch
ap

te
r 8
Axis Data label Chart title Legend

Figure 8-67 The completed PivotChart shows revenue totals by month and department.

If you want to see what your PivotChart might look like plotted in a different way, you
can click the Change Chart Type button in the Type group of the Design contextual tab
below PivotChart Tools to open the Properties window with the PivotChart workspace
selected and the focus on the Type tab. The chart we’ve been building thus far is a sim-
ple column chart, but you can choose from Bar, Line, Smooth Line, Pie, Scatter, and sev-
eral other options. Be aware that changing the chart type often throws away some detail
settings, so you might have to tweak properties again to get exactly what you want.

Now that you understand the fundamentals of building complex select queries and
working with PivotTables and PivotCharts with Access, you’re ready to move on to
updating sets of data with action queries in the next chapter.

CHAPTER 9

Modifying Data with Action Queries

In Chapter 7, “Creating and Working with Simple Queries,” you learned how to insert,
update, and delete single rows of data within a datasheet. In Chapter 8, “Building

Complex Queries,” you discovered that you can use queries to select the data you
want—even from multiple tables. You also learned under what conditions you cannot
update a fi eld in a query. Now you can take the concept of queries one step further
and use action queries to quickly change, insert, create, or delete sets of data in your
 database.

The four types of queries you’ll study in this chapter are

O Update query Allows you to update the fi elds in one or more rows.

O Make-table query Allows you to create a new table by selecting rows from one or
more existing tables.

O Append query Allows you to copy rows from one or more tables into another
table.

O Delete query Allows you to remove one or more rows from a table.

Note
The examples in this chapter are based on the tables and data in HousingDataCopy.accdb

and ContactsDataCopy.accdb on the companion CD included with this book. These

databases are copies of the data from the Housing Reservations and Conrad Systems

Contacts sample applications, respectively, and they contain the sample queries used in

this chapter. The query results you see from the sample queries you build in this chapter

might not exactly match what you see in this book if you have changed the sample data

in the fi les.

Note
The examples in this chapter are based on the tables and data in HousingDataCopy.accdb

and ContactsDataCopy.accdb on the companion CD included with this book. These

databases are copies of the data from the Housing Reservations and Conrad Systems

Contacts sample applications, respectively, and they contain the sample queries used in

this chapter. The query results you see from the sample queries you build in this chapter

might not exactly match what you see in this book if you have changed the sample data

in the fi les.

Updating Groups of Rows . 486

Creating a New Table with a Make-Table Query 495

Inserting Data from Another Table 502

Deleting Groups of Rows . 507

Troubleshooting Action Queries 512
 485

Chapter 9

486 Chapter 9 Modifying Data with Action Queries
 Updating Groups of Rows
It’s easy enough to use a table or a query in Datasheet view to fi nd a single record in
your database and change one value. But what if you want to make the same change to
many records? Changing each record one at a time could be very tedious.

Remember that in Chapter 7 you learned how to construct queries to test proposed
new validation rules. In the HousingDataCopy.accdb database, there’s a table-level
validation rule defi ned in tblFacilityRooms that doesn’t let you enter a WeeklyRate
value that is greater than seven times the DailyRate value. If you want to change this
rule to ensure that the WeeklyRate value is no more than six times the DailyRate value
(thereby ensuring that the weekly rate is a true discount), you must fi rst update the val-
ues in the table to comply with the new rule.

You could open tblFacilityRooms in Datasheet view and go through the individual rows
one by one to set all the WeeklyRate values by hand. But why not let Microsoft Offi ce
Access 2007 do the work for you with a single query?

Testing with a Select Query
Before you create and run a query to update many records in your database, it’s a
good idea to fi rst create a select query using criteria that select the records you want
to update. You’ll see in the next section that it’s easy to convert this select query to an
update query or other type of action query after you’re sure that Offi ce Access 2007 will
process the right records.

You could certainly update all the rows in tblFacilityRooms, but what about rows where
the WeeklyRate value is already less than or equal to 6 times the DailyRate value? You
don’t want to update rows that already meet the proposed validation rule change—you
might actually increase the WeeklyRate value in those rows. For example, a room might
exist that has a DailyRate value of $50 and a WeeklyRate value of $275. If you blan-
ket update all rows to set the WeeklyRate fi eld to six times the DailyRate fi eld, you’ll
change the WeeklyRate value in this row to $300. So, you should fi rst build a query on
 tblFacilityRooms to fi nd only those rows that need to be changed.

Open HousingDataCopy.accdb and start a new query on tblFacilityRooms. Include
the FacilityID, RoomNumber, DailyRate, and WeeklyRate fi elds. Enter the criterion
>[DailyRate]*6 under the WeeklyRate fi eld. Your query should look like Figure 9-1.

When you run the query, you’ll see 276 records that you want to change, as shown in
Figure 9-2. (There are 306 records in the table.)

 Updating Groups of Rows 487

Ch
ap

te
r 9
Figure 9-1 This select query fi nds weekly rates that will fail the new table validation rule.

Figure 9-2 This is the recordset of the select query shown in Figure 9-1.

Chapter 9

488 Chapter 9 Modifying Data with Action Queries
Converting a Select Query to an Update Query
Now you’re ready to change the query so that it will update the table. When you fi rst
create a query, Access 2007 builds a select query by default. You can fi nd commands for
the four types of action queries—make-table, update, append, and delete—in the Query
Type group on the Design contextual tab below Query Tools, as shown in Figure 9-3.
(Switch back to Design view if you haven’t already done so.) Click the Update button to
convert the select query to an update query.

Make Table
 Append
 Update
 Delete

Figure 9-3 The Query Type group on the Design contextual tab below Query Tools contains com-
mands for the four types of action queries.

When you convert a select query to an update query, Access highlights the Update but-
ton in the Query Type group when the query is in Design view and adds a row labeled
Update To to the design grid, as shown in Figure 9-4. You use this row to specify how
you want your data changed for those rows that meet the query’s criteria. In this case,
you want to change the WeeklyRate value to [DailyRate]*6 for all rows where the rate is
currently too high.

Figure 9-4 An update query shows an Update To row in the design grid.

 Updating Groups of Rows 489

Ch
ap

te
r 9

You can enter any valid expression in the Update To row. You can include in the expres-

sion one or more of the fi elds from the source tables in the query. For example, if you

want to raise the DailyRate value for a certain type of room by 10 percent, rounded to

the nearest dollar (zero decimal places), you can include the DailyRate fi eld in the design

grid and enter

Round(CCur([DailyRate] * 1.1), 0)

in the Update To row. Note that this formula uses the Round and CCur built-in functions

discussed in the previous chapter to round the result to the nearest dollar.

Running an Update Query
If you want to be completely safe, you should make a backup copy of your table before
you run an update query. To do that, go to the Navigation Pane, select the table you’re
about to update, and click the Copy command in the Clipboard group on the Home tab
on the Ribbon. Then click the Paste command in the same Clipboard group, and give
the copy of your table a different name when Access prompts you with a dialog box.
(Be sure you select the default Structure And Data option.) Now you’re ready to run the
update query.

To run the query, click the Run command in the Results group on the Design tab below
Query Tools. Access fi rst scans your table to determine how many rows will change
based on your selection criteria. It then displays a confi rmation dialog box like the one
shown in Figure 9-5.

Figure 9-5 This dialog box reports the number of rows that will be changed by an update query.

You already know that you need to update 276 records, so you can perform the update
by clicking Yes in the dialog box. (If the number of rows indicated in the dialog box is
not what you expected or if you’re not sure that Access will update the right records
or fi elds, click No to stop the query without updating.) After the update query runs,
you can look at the table or create a new select query to confi rm that Access made the
changes you wanted. Figure 9-6 shows the result—no weekly rate is greater than six
times the daily rate.

SIDE OUT What Can I Put in Update To?

You can enter any valid expression in the Update To row. You can include in the expres-

sion one or more of the fi elds from the source tables in the query. For example, if you

want to raise the DailyRate value for a certain type of room by 10 percent, rounded to

the nearest dollar (zero decimal places), you can include the DailyRate fi eld in the design

grid and enter

Round(CCur([DailyRate] * 1.1), 0)

in the Update To row. Note that this formula uses the Round and CCur built-in functions

discussed in the previous chapter to round the result to the nearest dollar.

Chapter 9

490 Chapter 9 Modifying Data with Action Queries
Figure 9-6 You can now see the updated data in the tblFacilityRooms table.

If you think you might want to perform this update again, you can save the query and
give it a name. This sample query is saved in the sample database as qxmplUpdate-
Weekly. In the Navigation Pane, Access distinguishes action queries from select queries
by displaying a special icon, followed by an exclamation point, before action query
names. For example, Access displays a pencil and an exclamation point next to the new
update query that you just created. You’ll see later that make-table queries have a small
datasheet with a starburst in one corner, append queries have a green cross, and delete
queries have a red X. Note that if you open an action query from the Navigation Pane,
you’ll execute it. If you want to see the datasheet of the action query, open it in Design
view fi rst, and then switch to Datasheet view.

Note
It’s a good idea to include identifying fi elds (such as FacilityID and RoomNumber in the

preceding example) when you build a test select query that you plan to convert to an

action query. However, Access discards any fi elds for which you have not specifi ed criteria

or that you do not want to update when you save your fi nal action query. This is why you

won’t see anything but the WeeklyRate fi eld in qxmplUpdateWeekly.

Note
It’s a good idea to include identifying fi elds (such as FacilityID and RoomNumber in the

preceding example) when you build a test select query that you plan to convert to an

action query. However, Access discards any fi elds for which you have not specifi ed criteria

or that you do not want to update when you save your fi nal action query. This is why you

won’t see anything but the WeeklyRate fi eld in qxmplUpdateWeekly.

 Updating Groups of Rows 491

Ch
ap

te
r 9
To run an action query again, right-click on the query name in the Navigation Pane and
click Open on the shortcut menu that appears. When you run an action query from the
Navigation Pane, Access 2007 displays a confi rmation dialog box similar to the one
shown in Figure 9-7. Click Yes to complete the action query. If you want to disable this
extra confi rmation step (we don’t recommend that you do so), click the Microsoft Offi ce
Button, click Access Options, and in the Advanced category of the Access Options dia-
log box, clear the Action Queries check box under Confi rm in the Editing section.

Figure 9-7 This dialog box asks you to confi rm an action query.

Updating Multiple Fields
When you create an update query, you aren’t limited to changing a single fi eld at a time.
You can ask Access 2007 to update any or all of the fi elds in the record by including
them in the design grid and then specifying an update formula.

Before Access updates a record in the underlying table or query, it makes a copy of the
original record. Access applies the formulas you specify using the values in the origi-
nal record and places the result in the updated copy. It then updates your database by
writing the updated copy to your table. Because updates are made to the copy before
updating the table, you can, for example, swap the values in a fi eld named A and a fi eld
named B by specifying an Update To setting of [B] for the A fi eld and an Update To set-
ting of [A] for the B fi eld. If Access were making changes directly to the original record,
you’d need to use a third fi eld to swap values because the fi rst assignment of B to A
would destroy the original value of A.

If you remember from Chapter 7, we also discussed the possibility of reducing the
highest daily rate charged for a room to $90. If you do that, you must also update the
WeeklyRate value to make sure it doesn’t exceed six times the new daily rate. First,
build a query to fi nd all rows that have a value in the DailyRate fi eld that exceeds the
new maximum. As before, start a query on tblFacilityRooms and include the FacilityID,
RoomNumber, DailyRate, and WeeklyRate fi elds. Place the criterion >90 under the
 DailyRate fi eld. Your query should look like Figure 9-8. If you run this query, you’ll fi nd
26 rows that meet this criterion in the sample database.

Chapter 9

492 Chapter 9 Modifying Data with Action Queries
Figure 9-8 This query fi nds daily rates greater than $90.

Now comes the tricky part. Change your query to an update query and enter 90 on the
Update To row under DailyRate. You might be tempted to set Update To under Weekly-
Rate to [DailyRate]*6 again, but you would be wrong. The reference to [DailyRate] gets
you the original value of that fi eld in each row—before it gets updated to the value 90. You
know you’re going to set DailyRate in rows that qualify to 90, so enter the constant 540
or the expression (90 * 6) in the Update To line under WeeklyRate. Your update query
should now look like Figure 9-9.

If you want to increase (or decrease) DailyRate by some percentage, then you should

repeat the calculation for the new DailyRate value and multiply by 6 to calculate the

new WeeklyRate value. For example, if you want to increase the rate by 10 percent, your

expression in Update To for DailyRate is

CCur(Round([DailyRate] * 1.1, 0))

Then your expression under WeeklyRate should be

CCur(Round([DailyRate] * 1.1), 0)) * 6

Remember, DailyRate in any expression references the old value in the row before it

is updated.

SIDE OUT Performing Multiple Updates with Expressions That Reference
Table Fields

If you want to increase (or decrease) DailyRate by some percentage, then you should

repeat the calculation for the new DailyRate value and multiply by 6 to calculate the

new WeeklyRate value. For example, if you want to increase the rate by 10 percent, your

expression in Update To for DailyRate is

CCur(Round([DailyRate] * 1.1, 0))

Then your expression under WeeklyRate should be

CCur(Round([DailyRate] * 1.1), 0)) * 6

Remember, DailyRate in any expression references the old value in the row before it d
is updated.

 Updating Groups of Rows 493

Ch
ap

te
r 9
Figure 9-9 This query fi nds daily rates greater than $90.

You can fi nd this query saved as qxmplUpdateDailyWeekly in the sample database.

Creating an Update Query Using Multiple Tables or Queries
The target of an update query should generally be one table, but you might need to
update a table based on criteria you apply to a related query or table. Consider the
tblContacts table in the Conrad Systems Contacts sample application. The table con-
tains an Inactive fi eld that you can set to Yes to remove that contact from most displays
without removing the row from the database. Although you can edit each contact
individually and choose to mark them inactive, you occasionally might want to run an
update query that automatically sets this fl ag when the contact hasn’t had any activity
for a long time.

You studied how to solve a complex unmatched problem in Chapter 8. You need to
apply a similar concept to this problem—fi nd the contacts who have activity since a cer-
tain date of interest and then use an outer join to identify those who have no activity so
that you can mark them inactive.

The sample database contains contact events from January 11, 2007, through July 9,
2007. If you were using this data actively, you would be entering new contact events
every day, but this sample data is static. Let’s assume that today is January 1, 2008, and
you want to fl ag any contact who hasn’t had any event in the last six months.

First, you need to fi nd out who hasn’t contacted you since July 1, 2007. Start by opening
the ContactsDataCopy.accdb sample database. Start a query with tblContactEvents and
include the ContactID and ContactDateTime fi elds in the query grid. Under Contact-
DateTime, enter a criterion of >=#7/1/2007#. Your query should look like Figure 9-10.

Chapter 9

494 Chapter 9 Modifying Data with Action Queries
Figure 9-10 This query fi nds contact events since July 1, 2007.

If you run this query, you’ll fi nd 11 rows for 10 different contacts. Save this query as
qryContactsSinceJuly2007. (You can also fi nd the query saved as qxmplContactEvents-
Since01July2007 in the sample database.)

Next, you want to fi nd who has not contacted you in this time frame. Start a new query
with tblContacts and add the query you just built. You should see a join line linking
the ContactID fi eld in tblContacts and the ContactID fi eld in your query. Remember
from Chapter 8 that you need an outer join from the table to the query to fetch all rows
from tblContacts and any matching rows from the query. Double-click the join line
to open the Join Properties dialog box and choose the option to include all rows from
 tbl Contacts and any matching rows from qryContactsSinceJuly2007. You should now
have an arrow pointing from the table to the query.

Include in the query grid the ContactID, FirstName, LastName, and Inactive fi elds
from tblContacts and the ContactID fi eld from the query. You want contacts who aren’t
in the list of “recent” contact events, so add the Is Null test on the Criteria line under
 ContactID from the query. Your query should now look like Figure 9-11.

If you run this query, you’ll fi nd out that there are no contact events after the specifi ed
date for 22 of the 32 contacts. Remember, this is only an example.

Now you have the contacts you want to set as inactive. In Design view, turn the query
into an update query. Under the Inactive fi eld, set Update To to True. You can now
run this query to verify that it does mark the 22 contacts as inactive. You can fi nd this
query saved as qxmplUpdateInactive in the sample database.

 Creating a New Table with a Make-Table Query 495

Ch
ap

te
r 9
Figure 9-11 This query fi nds contacts with no contact events since July 1, 2007.

In Chapter 7, you learned how to create a date/time comparison expression using the

DateDiff function. In Chapter 8, you learned how to defi ne parameters in your queries.

In the example to update inactive status, you entered a specifi c comparison date in the

select query you built. If you really want to save and run a query like this periodically, the

select query shouldn’t use a static value that you would have to change each time you

wanted to perform this update. Using DateDiff, you can defi ne a comparison with an off-

set relative to the current date. With a parameter, you can create a dynamic prompt for

the date you want at the time you run the query.

You might also want to write a converse query that clears the Inactive fi eld for contacts

who do have recent contact events.

Creating a New Table with a Make-Table Query
Sometimes you might want to save as a new table the data that you extract with a select
query. If you fi nd that you keep executing the same query over and over against data
that isn’t changing, it can be faster to access the data from a table rather than from the
query, particularly if the query must join several tables.

SIDE OUT Making Update Queries Generic with Parameters

In Chapter 7, you learned how to create a date/time comparison expression using the

DateDiff function. In Chapter 8, you learned how to defi ne parameters in your queries.

In the example to update inactive status, you entered a specifi c comparison date in the

select query you built. If you really want to save and run a query like this periodically, the

select query shouldn’t use a static value that you would have to change each time you

wanted to perform this update. Using DateDiff, you can defi ne a comparison with an off-

set relative to the current date. With a parameter, you can create a dynamic prompt for

the date you want at the time you run the query.

You might also want to write a converse query that clears the Inactive fi eld for contacts

who do have recent contact events.

Chapter 9

496 Chapter 9 Modifying Data with Action Queries
In the last chapter, you created a very complex query using a Cartesian product to drive
your PivotTable and PivotChart. At the end of each month or quarter, you might want
to use a query like this to create a series of reports. When you have tens of thousands
of reservations in your database, this complex query might take a long time to run for
each report. You will save a lot of time if you fi rst save the result of the complex query as
a temporary table and then run your reports from that table. Also, after reservations are
completed for a prior period of time, they’re not likely to change, so permanently saving
the data selected by a query as a table could be useful for gathering summary informa-
tion that you intend to keep long after you delete the detailed data on which the query
is based.

Creating a Make-Table Query
In the Housing Reservations application, assume that at the end of each quarter you
want to create and save a table that captures reservations detail for the quarter by facil-
ity, department, and employee. Open the HousingDataCopy.accdb sample database to
follow along with the examples in this section. You might recall from the exercises in
building the complex query to provide data for a PivotTable that you need to include
tblDepartments, tblFacilities, tblEmployees, and tblReservations. You might also want
to include a second copy of tblEmployees to capture the department manager and a
copy of tblFacilityRooms to capture the room types. You’re essentially unnormalizing
the data to create a single archive table that you can also use in reports.

As with most action queries, it’s a good idea to start with a select query to verify that
you’re working with the correct data. Start a new query with tblFacilities, and add
 tblFacilityRooms, tblReservations, tblEmployees, and tblDepartments. Click the rela-
tionship line that the query draws between FacilityID in tblFacilities and FacilityID in
tblReservations and press the Delete key to remove this extra join line. Be sure to also
remove the extra relationship between the EmployeeNumber fi eld in tblEmployees and
the ManagerNumber fi eld in tblDepartments. Add tblEmployees one more time—we
plan to use the fi rst instance of tblEmployees to get employees who have reserva-
tions, and the second instance to get the managers for the departments. Access names
this second table tblEmployees_1 to avoid a duplicate name. Create a join line from
Employee Number in tblEmployees_1 to ManagerNumber in tblDepartments.

To avoid confusion with the two copies of tblEmployees, select tblEmployees_1 and
click the Property Sheet button on the Design tab below Query Tools to open the prop-
erty sheet shown in Figure 9-12. You can actually assign an alias name to any fi eld
list (table or query) in your query. In this case, change the name of the second copy of
tblEmployees to Managers.

Figure 9-12 You can use the property sheet to assign an alias name to a fi eld list in a query.

 Creating a New Table with a Make-Table Query 497

Ch
ap

te
r 9
Now you’re ready to begin defi ning fi elds. Create an expression to display the employee
name in the fi rst fi eld:

EmpName: tblEmployees.LastName & ", " & tblEmployees.FirstName
& (" " + tblEmployees.MiddleName)

In the query grid, include the Department fi eld from tblDepartments, and then add the
manager name in the next column with an expression:

MgrName: Managers.LastName & ", " & Managers.FirstName
& (" " + Managers.MiddleName)

Notice that you’re using the new alias name of the second copy of tblEmployees. On
the next Field line, add the ReservationID fi eld from tblReservations, the FacilityName
fi eld from tblFacilities, the RoomNumber fi eld from tblReservations, and the RoomType
fi eld from tblFacilityRooms. Add an expression in the next fi eld to calculate the actual
charge per day. Remember, you could use the DailyRate fi eld from tblReservations,
but that’s not an accurate refl ection of how much the room costs per day when the
employee stays a week or more. Your expression should look like this:

DailyCharge: CCur(Round(tblReservations.TotalCharge /
(tblReservations.CheckOutDate – tblReservations.CheckInDate), 2))

Your query design should now look something like Figure 9-13.

Figure 9-13 You can design a complex query to gather together many details about reservations.

Chapter 9

498 Chapter 9 Modifying Data with Action Queries
Each row in tblReservations represents a stay of one or more days, but any report you
create later might need to work with detail by individual day. To do that, you need to
“explode” each single row in tblReservations into a row per day for the duration of the
reservation. Recall from Chapter 8 that you’ll fi nd a “driver” table—ztblDates—full of
dates to accomplish this task. The table contains date values, one per day, for dates
from January 1, 1992, to December 31, 2035.

Include this table in your query and notice that there’s no join line from it to any of the
tables. When you add a table with no join defi ned to another table or set of records,
the query returns the Cartesian product of the two sets of records—every row in the fi rst
table or set of records is matched with every row in the second table or set of records. In
this case, each reservation will now be matched with each of the separate date values in
ztblDates.

When you run this query later to create your working statistics table, you’re not going
to want to have to open up the query each time in Design view to fi lter the dates. A
couple of parameters would be a good idea here. Add the DateValue fi eld from ztblDates
and enter Between [Start Date] And [End Date] under this fi eld on the Criteria line.
Click the Parameters button in the Show/Hide group of the Design contextual tab, enter
both parameters ([Start Date] and [End Date]), and set the data type to Date/Time. You
have now provided a way to limit the “explosion” of rows to the dates of interest.

The fi nal step is to further limit the rows created based on the CheckInDate and Check-
OutDate fi elds in tblReservations. Any reservation that crosses the time span of interest
is going to be for a few days or a few weeks. Add the CheckInDate and CheckOutDate
fi elds from tblReservations, and clear the Show check box under both. In the Criteria
row under CheckInDate, enter

<=ztblDates.DateValue

Under CheckOutDate, enter

>ztblDates.DateValue

This forces the query to keep any rows where DateValue from ztblDates is within the
time span of each reservation row. You now have one row per date for each reservation.
Your query should now look like Figure 9-14.

Switch to Datasheet view to verify that you’ll get the rows you want. The sample data
contains reservations from February 28, 2007, through September 15, 2007. To get data
for the second quarter of 2007, you can reply to the two parameter prompts with April
1, 2007, and June 30, 2007. Your result should look like Figure 9-15.

 Creating a New Table with a Make-Table Query 499

Ch
ap

te
r 9
Figure 9-14 Build a complex parameter query to expand reservation details over a specifi ed
time span.

Figure 9-15 This is the recordset of the select query shown in Figure 9-14, for the second quarter
of 2007.

Chapter 9

500 Chapter 9 Modifying Data with Action Queries
To convert this select query to a make-table query, switch back to Design view and
click the Make Table command in the Query Type group of the Design tab below
Query Tools. Access displays the Make Table dialog box, shown in Figure 9-16. Type
an appropriate name for the summary table you are creating, and click OK to close the
dialog box.

Figure 9-16 In the Make Table dialog box, type a name for your summary table.

At any time, you can change the name of the table your query creates. Click the Prop-
erty Sheet button in the Show/Hide group of the Design tab below Query Tools when-
ever the query is in Design view and change the Destination Table property. In this
case, we entered a working table name. (We tend to prefi x our working tables with the
letter z to put them at the bottom of the table list.) After you run this query for a particu-
lar quarter, you’re probably going to rename the table to indicate the actual quarter’s
worth of data that the table contains. You can fi nd this make-table query saved in the
sample database as qxmplReservationDetailsMakeTable.

Running a Make-Table Query
After you set up a make-table query, you can run it by clicking the Run command in
the Results group on the Design tab below Query Tools. After you respond to the date
parameter prompts, Access selects the records that it will place in the new table and dis-
plays a confi rmation dialog box, as shown in Figure 9-17, that informs you how many
rows you’ll be inserting into the new table.

Click Yes to create your new table and insert the rows. Click the menu at the top of the
Navigation Pane, click Object Type under Navigate To Category, and click Tables under
Filter By Group to bring up the table list, which should now include the name of your
new table. Open the table in Datasheet view to verify the information, as shown in Fig-
ure 9-18.

Figure 9-17 This dialog box asks you to confi rm the preliminary results of a make-table query.

 Creating a New Table with a Make-Table Query 501

Ch
ap

te
r 9
Figure 9-18 The new table is the result of running the qxmplReservationDetailsMakeTable query.

One of the shortcomings of a make-table query is it propagates only the fi eld name and

data type to the resulting table. Running the query does not set other property set-

tings such as Caption or Decimal Places in the target table. This is why you see only fi eld

names instead of the original captions in Datasheet view. Notice also that the sequence

of rows in the new table (Figure 9-18) does not match the sequence of rows you saw

when you looked at the Datasheet view of your make-table query (Figure 9-15). Because

the data in a table created with a make-table query has no primary key, Access returns

the rows in the order that they’re stored physically in the database.

You might want to switch to Design view, as shown in Figure 9-19, to correct fi eld
names or to defi ne formatting information. As you can see, Access copies only basic
fi eld attributes when creating a new table.

At a minimum, you should defi ne a primary key that contains the DateValue and
 ReservationID fi elds. You might also want to defi ne default formats for the date/time
fi elds. If you’re planning to create reports on this data that sort or group by department
or facility, you should add indexes to those fi elds.

SIDE OUT Make-Table Query Limitations

One of the shortcomings of a make-table query is it propagates only the fi eld name and

data type to the resulting table. Running the query does not set other property set-

tings such as Caption or Decimal Places in the target table. This is why you see only fi eld

names instead of the original captions in Datasheet view. Notice also that the sequence

of rows in the new table (Figure 9-18) does not match the sequence of rows you saw

when you looked at the Datasheet view of your make-table query (Figure 9-15). Because

the data in a table created with a make-table query has no primary key, Access returns

the rows in the order that they’re stored physically in the database.

Chapter 9

502 Chapter 9 Modifying Data with Action Queries
Figure 9-19 In Design view, you can modify the design of the table created by the
qxmplReservationDetailsMakeTable query.

Inserting Data from Another Table
Using an append query, you can copy a selected set of information from one or more
tables and insert it into another table. You can also use an append query to bring data
from another source into your database—for example, a list of names and addresses
purchased from a mailing list company—and then edit the data and insert it into an
existing table. (You learned how to import data from external sources in Chapter 6,
“Importing and Linking Data.”)

An append query, like a make-table query, provides a way to collect calculated totals
or unnormalized rows from several tables. The difference is that a make-table query
always creates a new table from the data you select, but an append query copies the
data into an existing table that might or might not contain data. You must always mod-
ify the design of the table that a make-table query creates (if only to add effi cient search
indexes) to make it work optimally. Because the target table must already exist for an
append query, you can explicitly defi ne needed fi eld properties and indexes (including
a primary key) in advance. However, it’s easier to run into errors because you’re trying
to insert data that’s already there (based on the primary key you defi ned), because the
data you’re adding doesn’t match the data type you defi ned in the table, or because the
new data fails one or more validation rules.

See “Troubleshooting Action Queries” on page 512 for a specifi c discussion of poten-
tial errors.

 Inserting Data from Another Table 503

Ch
ap

te
r 9
Creating an Append Query
In the previous example, you saw how to take one of the complex queries you learned
about in Chapter 8 and turn it into a make-table query. In truth, if you plan to collect
such data over several months or years, you should probably design a table to hold the
results and use append queries to periodically insert new historical data.

Another good use of append queries is to copy old transaction data to an archive table—
either in the current database or another database. For example, after several months
or years, the contact events table in the Conrad Systems Contacts application might
contain thousands of rows. You might want to keep all events, but copying them to an
archive table and deleting them from the main table can improve application perfor-
mance. (You’ll learn about delete queries later in this chapter.)

Let’s build an append query to select old contact events and copy them to an archive
table. Open the ContactsDataCopy.accdb database to follow along in this exercise.
You’ll fi nd an empty tblContactEventsHistory table defi ned in this database.

Start a new query with tblContactEvents. Because the ContactEventTypeID fi eld is a
“lookup” to tlkpContactEventTypes, it would be a good idea to preserve the original
description of the event rather than the code number. If you kept the original Contact-
EventTypeID numbers, any changes you made in the future to the related ContactEvent-
TypeDescription information would also change the meaning in the archived records.
So, add the tlkpContactEventTypes table so that you can store the current description
rather than the ID in the history table. You should see a join line linking the Contact-
EventTypeID fi elds in the two tables.

Add the ContactID and ContactDateTime fi elds from tblContactEvents to the query
grid. Include in the grid the ContactEventTypeDescription fi eld from tlkpContact-
EventTypes. Finally, add to the query design grid the ContactNotes fi eld from
tblContactEvents. Because you are saving events in a history table, you don’t need the
ContactFollowUp and ContactFollowUpDate fi elds from tblContactEvents.

You want to be able to fi lter the records on the date and time of the event. Each time
you run this query, you probably don’t want to archive any recent events, so you need
to create a prompt to select events that are a specifi ed number of months old. A couple
of handy date/time functions are available for you to do this: DateSerial and DateAdd.
DateSerial returns a date value from a year, month, and day input. You can use it to cal-
culate the fi rst date of the current month like this:

DateSerial(Year(Date()), Month(Date()), 1)

Remember from Table 7-5 on page 376 that the Date function returns today’s date, the
Year function returns the four-digit year value from a date value, and the Month func-
tion returns the month number from a date value. Supplying the value 1 for the day
number gets you the date of the fi rst day of the current month.

Chapter 9

504 Chapter 9 Modifying Data with Action Queries

You can usually think of more than one way to calculate a date value that you want.

To calculate the date of the fi rst day of the current month, you could also write the

 expression

(Date() – Day(Date()) + 1)

This subtracts the day number of the current date from the current date—resulting in the

last day of the previous month—and adds one. For example, August 17, 2007, minus 17

yields July 31, 2007, plus one yields August 1, 2007.

DateAdd adds or subtracts seconds, minutes, hours, days, months, or years from a date
value. You specify the interval you want by choosing a value from Table 7-3 on page
366—in this case, you want m to indicate that you want to add or subtract months.
Finally, you can include a parameter so that you can specify the number of months you
want to subtract. So, under the ContactDateTime fi eld, include the criterion

<DateAdd("m", –[MonthsAgo], DateSerial(Year(Date()),Month(Date()),1))

Click the Parameters button in the Show/Hide group of the Design tab below Query
Tools and defi ne the MonthsAgo parameter as Integer. The DateAdd function will
return the date that is the number of specifi ed months in the past from the fi rst date
of the current month. For example, if today is August 17, 2007, when you respond 6
to MonthsAgo, the expression returns February 1, 2007 (six months prior to August
1). Making sure that the value in ContactDateTime is less than this value ensures that
you archive only contacts that are at least six months old. Your query up to this point
should look like Figure 9-20.

The sample database contains contact events from January 11, 2007, through July 9,
2007. If you want to experiment with this query, you need to take into account the cur-
rent date on your computer. For example, if you’re running this query in January of
2008, you must specify a MonthsAgo value of no more than 12 to see any records. Like-
wise, specifying a MonthsAgo value of less than 6 shows you all the records.

Now, it’s time to turn this into an append query. Click the Append button in the Query
Type group of the Design tab below Query Tools. You’ll see the dialog box shown in
Figure 9-21, asking you where you want the selected rows inserted (appended).

SIDE OUT Using Other Date Expressions

You can usually think of more than one way to calculate a date value that you want.

To calculate the date of the fi rst day of the current month, you could also write the

expression

(Date() – Day(Date()) + 1)

This subtracts the day number of the current date from the current date—resulting in the

last day of the previous month—and adds one. For example, August 17, 2007, minus 17

yields July 31, 2007, plus one yields August 1, 2007.

 Inserting Data from Another Table 505

Ch
ap

te
r 9
Figure 9-20 This query fi nds old contact events to archive.

Figure 9-21 After you click the Append button on the Ribbon, specify the target table of an
append query.

Notice that the default is to append the data into a table in the current database. You
can select the Another Database option and either type the path and name of the target
database or click the Browse button to fi nd the fi le you want. This feature could be par-
ticularly handy if you want to archive the records to another fi le. In this case, click the
arrow to the right of Table Name, select tblContactEventsHistory in the current data-
base, and click OK. Your query design now looks like Figure 9-22.

Notice that Access added an Append To line and automatically fi lled in the matching
fi eld names from the target table. Remember, you want to append the ContactEvent-
TypeDescription fi eld from tlkpContactEventTypes to the ContactEventType fi eld in the
history table, so select that fi eld from the list on the Append To line under ContactEvent-
TypeDescription.

You’re now ready to run this query in the next section. You can fi nd the query saved
as qxmplArchiveContactEvents in the sample database. You’ll also fi nd a companion
 qxmplArchiveContactProducts query.

Chapter 9

506 Chapter 9 Modifying Data with Action Queries
Figure 9-22 In the Append To row you can specify the target fi elds in an append query.

Running an Append Query
As with other action queries, you can run an append query as a select query fi rst to be
sure that you’ll be copying the right rows. You can start out by building a select query,
running it, and then converting it to an append query, or you can build the append
query directly and then switch to Datasheet view from Design view to examine the
data that the query will add. Although you can fi nd and delete rows that you append in
error, you can save time if you make a backup of the target table fi rst.

After you confi rm that the query will append the right rows, you can either run it
directly from Design view or save it and run it from the Navigation Pane. When you run
the qxmplArchiveContactEvents query and respond to the MonthsAgo prompt so that
Access archives events earlier than March 1, 2007, Access should tell you that 34 rows
will be appended, as shown in Figure 9-23. (For example, if the current date on your
computer is any day in May 2007, enter 2 in response to the prompt for the MonthsAgo
value.) If you want to append the rows to the tblContactEventsHistory table, click Yes in
the confi rmation dialog box. Note that after you click Yes, the only way to undo these
changes is to go to the target table and either select and delete the rows manually or
build a delete query to do it.

 Deleting Groups of Rows 507

Ch
ap

te
r 9
Figure 9-23 This dialog box asks you to confi rm the appending of rows.

Go ahead and append these 34 rows. In “Troubleshooting Action Queries” on page 512,
we’ll take a look at what happens if you try to run this query again.

Deleting Groups of Rows
You’re not likely to keep all the data in your database forever. You’ll probably summa-
rize some of your detailed information as time goes by and then delete the data you no
longer need. You can remove sets of records from your database using a delete query.

Testing with a Select Query
After you have copied all the old contact event and contact product data to the archive
tables, you might want to remove this information from the active tables. This is clearly
the kind of query that you will want to save so that you can use it again and again. You
can design the query to automatically calculate which records to delete based on the
current system date and a month parameter as you did in the append queries.

As with an update query, it’s a good idea to test which rows will be affected by a delete
query by fi rst building a select query to isolate these records. Start a new query with
tblContactEvents and include the asterisk (*) fi eld in the query grid. A delete query acts
on entire rows, so including the “all fi elds” indicator will ultimately tell the delete query
from which table the rows should be deleted. Add the ContactDateTime fi eld to the
design grid, and clear the Show check box. This time, let’s use a specifi c date value to
choose rows to delete. In the Criteria line under the ContactDateTime fi eld enter

<[Oldest Date to Keep:]

Click the Parameters button in the Show/Hide group of the Design tab, and defi ne your
parameter as a Date/Time data type. Your query should look like Figure 9-24.

Chapter 9

508 Chapter 9 Modifying Data with Action Queries
Figure 9-24 This query uses a date parameter to select old contact events.

When you switch to Datasheet view for this query, Access prompts you for a date
parameter, as shown in Figure 9-25. In the Enter Parameter Value dialog box, enter
3/1/2007 to see all the old contact events from March 1, 2007 or earlier. The result is
shown in Figure 9-26.

Figure 9-25 Enter the query date parameter when Access prompts you.

Access 2007 recognizes several different formats for date parameters. For example, for

the fi rst day of March in 2007, you can enter any of the following:

3/1/2007 March 1, 2007 1 MAR 2007

SIDE OUT Using Different Date Formats

Access 2007 recognizes several different formats for date parameters. For example, for

the fi rst day of March in 2007, you can enter any of the following:

3/1/2007 March 1, 2007 1 MAR 2007

 Deleting Groups of Rows 509

Ch
ap

te
r 9
Figure 9-26 When you run the select query, you can verify the rows to delete.

The append query you saw earlier that copied these rows to an archive table copied 34
rows, which matches what you see here. After you verify that this is what you want, go
back to Design view and change the query to a delete query by clicking the Delete com-
mand in the Query Type group of the Design tab below Query Tools. Your query should
look like Figure 9-27. Do not run this query! We’ll explain why in the next section.

Figure 9-27 Click the Delete button in the Query Type group on the Ribbon to convert your query
to a delete query.

Chapter 9

510 Chapter 9 Modifying Data with Action Queries
Notice that the query has a new Delete line. In any delete query, you should select From
under the “choose all fi elds” (*) fi eld for the one table from which you want to delete
rows. All other fi elds should indicate Where and have one or more criteria on the Crite-
ria and Or lines.

Using a Delete Query
Because you won’t be able to retrieve any deleted rows, it’s a good idea to fi rst make a
backup copy of your table, especially if this is the fi rst time that you’ve run this delete
query. Use the procedure described earlier in “Running an Update Query” on page 489
to make a copy of your table.

As you just learned, you can create a delete query from a select query by clicking the
Delete command on the Design tab below Query Tools when your query is in Design
view. You must be sure that at least one table includes the “choose all fi elds” indicator
(*) and has From specifi ed on the Delete line. Simply click Run in the Results group on
the Design tab to delete the rows you specifi ed. Because you included a parameter in
this query, you’ll need to respond to the Enter Parameter Value dialog box (shown in
Figure 9-25) again. Access selects the rows to be deleted and displays the confi rmation
dialog box shown in Figure 9-28.

Figure 9-28 This dialog box asks you to confi rm the deletion of rows.

Are you really, really sure you want to delete these rows? Are you sure these rows are
safely tucked away in the archive table? If so, click Yes to proceed with the deletion.
Click No if you’re unsure about the rows that Access will delete. (We recommend that
you click No for now and read on!) You can fi nd this query saved as qxmplDeleteOld-
ContactEventsUnsafe in the sample database. (Does the query name give you a clue?)

Deleting Inactive Data
You now know how to copy old contact event and contact product data to an archive
table, and how to delete the old contact events from the main table. In some applica-
tions, you might want to delete more than just the event records. For example, in an
order entry database, you might want to archive and delete the records of old customers
who haven’t given you any business in more than two years.

In the Conrad Systems Contacts application, you can mark old contacts as inactive
so that they disappear from the primary forms you use to edit the data. In “Updating
Groups of Rows” on page 486, we showed you how to identify contacts who haven’t

 Deleting Groups of Rows 511

Ch
ap

te
r 9
had any activity in a specifi ed period of time and set the Inactive fi eld so that they don’t
show up anymore. Because of this feature, archiving and deleting old contacts isn’t
an issue.

However, you might still want to delete old contact events and contact products that
you have archived. We just showed you how to create a delete query to remove rows, but
there’s a safer way to do it if you have copied the rows elsewhere. Go back to the query
you have been building and add tblContactEventsHistory. Create a join line between
the ContactID fi eld in tblContactEvents and the ContactID fi eld in tblContactEvents-
History. Create another join line between the ContactDateTime fi eld in tblContact-
Events and the same fi eld in tblContactEventsHistory. Your query should now look like
Figure 9-29.

Figure 9-29 This query allows you to safely delete archived rows.

Remember that the default for a join is to include rows only where the values in
both tables match. Now your Delete query won’t return any rows from tblContact-
Events (where you’re performing the delete) unless the row already exists in
 tblContact EventHistory! Run this query now and reply with any date you like. The
query won’t delete rows from tblContactEvents unless a copy is safely saved in the
archive table. You can fi nd this query saved as qxmplDeleteOldContactEventsSafe
in the sample database. There’s also a companion query, qxmplDeleteOldContact-
ProductsSafe, to deal with contact products.

Chapter 9

512 Chapter 9 Modifying Data with Action Queries
 Troubleshooting Action Queries
Access 2007 analyzes your action query request and the data you are about to change
before it commits changes to your database. When it identifi es errors, Access always
gives you an opportunity to cancel the operation.

Solving Common Action Query Errors and Problems
Access identifi es (traps) four types of errors during the execution of an action query.

O Duplicate primary keys This type of error occurs if you attempt to append a
record to a table or update a record in a table, which would result in a duplicate
primary key or a duplicate of a unique index key value. Access will not update or
append any rows that would create duplicates. For example, if the primary key
of a contact event archive table is ContactID and ContactDateTime, Access won’t
append a record that contains a ContactID and ContactDateTime value already in
the table. Before attempting to append such rows, you might have to modify your
append query to not select the duplicate rows.

O Data conversion errors This type of error occurs if you attempt to append data
to an existing table and the data type of the receiving fi eld does not match that
of the sending fi eld (and the data in the sending fi eld cannot be converted to
the appropriate data type). For example, this error will occur if you attempt to
append a text fi eld to an integer fi eld and the text fi eld contains either alphabetic
characters or a number string that is too large for the integer fi eld. You might
also encounter a conversion error in an update query if you use a formula that
attempts a calculation on a fi eld that contains characters. For information on data
conversions and potential limitations, see Table 5-3 on page 226.

O Locked records This type of error can occur when you run a delete query or an
update query on a table that you share with other users on a network. Access can-
not update records that are in the process of being updated by some other user.
You might want to wait and try again later when no one else is using the affected
records to be sure that your update or deletion occurs. Even if you’re not sharing
the data on a network, you can encounter this error if you have a form or another
query open on the data you’re updating and have started to change some of
the data.

O Validation rule violations If any of the rows being inserted or any row being
updated violates either a fi eld validation rule or the table validation rule, Access
notifi es you of an error and does not insert or update any of the rows that fail the
validation test. When you have a referential integrity rule defi ned, you cannot
update or delete a row in a way that would violate the rule.

Another problem that can occur, although it isn’t an error, is that Access truncates data
that is being appended to text or memo fi elds if the data does not fi t. Access does not
warn you when this happens. You must be sure (especially with append queries) that
you have made the receiving text and memo fi elds large enough to store the incom-
ing data.

 Troubleshooting Action Queries 513

Ch
ap

te
r 9
Looking at an Error Example
Earlier in this chapter, you learned how to create an append query to copy old contact
events to an archive table. What do you suppose would happen if you copied rows
through December 31, 2006, forgot to delete them from the main table, and then later
asked to copy rows through April 30, 2007? If you try this starting with an empty
archive table in the ContactsDataCopy.accdb database, run qxmplArchiveContact-
Events once, and then run it again with the same or later cut-off month, you’ll get an
error dialog box similar to the one shown in Figure 9-30.

Figure 9-30 This dialog box alerts you to action query errors.

The dialog box in Figure 9-30 declares that 34 records won’t be inserted because of
duplicate primary key values. Access didn’t fi nd any data conversion errors, locking
problems, or validation rule errors. Note that if some fi elds have data conversion prob-
lems, Access might still append the row but leave the fi eld set to Null. When you see
this dialog box, you can click Yes to proceed with the changes that Access can make
without errors. You might fi nd it diffi cult later, however, to track down all the records
that were not updated successfully. Click No to cancel the append query.

To solve this problem, you can change the “select” part of the query to choose only the
rows that haven’t already been inserted into the target table. Remember from the previ-
ous chapter the technique you used to fi nd “unmatched” rows. You’ll apply that same
technique to solve this problem.

Open the query you built in the previous section (or qxmplArchiveContactEvents)
in Design view. Add tblContactEventsHistory (the target table) to your query. Create
join lines from the ContactID fi eld in tblContactEvents to the same fi eld in tblContact-
EventsHistory. Do the same with ContactDateTime. Double-click each join line to
open the Join Properties dialog box and choose the option to include all rows from
 tblContactEvents and the matching rows from tblContactEventsHistory. You must
do this for each join line so that you end up with both lines pointing to tblContact-
EventsHistory. Include the ContactID fi eld from tblContactEventsHistory in the design
grid, clear the Append To box underneath it (you don’t want to try to insert ContactID
twice), and place the criterion Is Null on the Criteria line. Your query should now look
like Figure 9-31.

Chapter 9

514 Chapter 9 Modifying Data with Action Queries
Figure 9-31 You can design an append query to avoid duplicate row errors.

The end result is that this query will select rows from tblContactEvents only if they
don’t already exist in the archive table. You can now run this query as many times as
you like. If all the rows you choose already exist, the query simply inserts no additional
rows. You can fi nd this query saved as qxmplArchiveContactEventsNoDuplicates in
the sample database. There’s also a companion query, qxmplArchiveContactProducts-
NoDuplicates, to handle the archiving of contact product records.

At this point, you should have a reasonable understanding of how action queries can
work for you. You can fi nd some more examples of action queries in Article 2, “Under-
standing SQL,” on the companion CD. Now it’s time to go on to building the user inter-
face for your application with forms and reports.

PART 3

Creating Forms
and Reports in a
Desktop Application

CHAPTER 10

Using Forms .517

CHAPTER 11

Building a Form .559

CHAPTER 12

Customizing a Form . 609

CHAPTER 13

Advanced Form Design. 685

CHAPTER 14

Using Reports. .735

CHAPTER 15

Constructing a Report.757

CHAPTER 16

Advanced Report Design 811
 515

CHAPTER 10

Using Forms

If you’ve worked through this book to this point, you should understand all the
mechanics of designing and building databases (and connecting to external ones),

entering and viewing data in tables, and building queries. An understanding of tables
and queries is important before you jump into forms because most of the forms you
design will be bound to an underlying table or a query.

This chapter focuses on the external aspects of forms—why forms are useful, what they
look like, and how to use them. You’ll look at examples of forms from the Conrad Sys-
tems Contacts sample database. In Chapters 11, 12 and 13, you’ll learn how to design,
build, and customize your own forms by learning to build some of the forms you see in
the Conrad Systems Contacts and Housing Reservations databases.

Uses of Forms
Forms are the primary interface between users and your Microsoft Offi ce Access 2007
application. You can design forms for many different purposes.

O Displaying and editing data This is the most common use of forms. Forms
provide a way to customize the presentation of the data in your database. You
can also use forms to change or delete data in your database or add data to it.
You can set options in a form to make all or part of your data read-only, to fi ll in
related information from other tables automatically, to calculate the values to be
displayed, or to show or hide data on the basis of either the values of other data in
the record or the options selected by the user of the form.

O Controlling application fl ow You can design forms that work with macros or
with Microsoft Visual Basic procedures to automate the display of certain data
or the sequence of certain actions. You can create special controls on your form,
called command buttons, which run a macro or a Visual Basic procedure when you
click them. With macros and Visual Basic procedures, you can open other forms,
run queries, restrict the data that is displayed, execute a Ribbon command, set
values in records and forms, display customized Ribbons, print reports, and per-
form a host of other actions. You can also design a form so that macros or Visual
Basic procedures run when specifi c events occur—for example, when someone
opens the form, tabs to a specifi c control, clicks an option on the form, or changes

Uses of Forms . 517

A Tour of Forms . 518

Moving Around on Forms and Working with Data . . . 539

Adding Records and Changing Data 543

Searching for and Sorting Data 551

Printing Forms . 557
 517

Chapter 10

518 Chapter 10 Using Forms
data in the form. See Part 4, “Automating an Access Application,” for details about
using macros and Visual Basic with forms to automate your application.

O Accepting input You can design forms that are used only for entering new data
in your database or for providing data values to help automate your application.

O Displaying messages Forms can provide information about how to use your
application or about upcoming actions. Offi ce Access 2007 also provides a Msg-
Box macro action and a MsgBox Visual Basic function that you can use to display
information, warnings, or error messages. See Chapter 20, “Automating Your
Application with Visual Basic,” for more detail.

O Printing information Although you should design and use reports to print most
information, you can also print the information displayed in a form. Because
you can specify one set of options when Access displays a form and another set
of options when Access prints a form, a form can serve a dual role. For example,
you might design a form with two sets of display headers and footers, one set for
entering an order and another set for printing a customer invoice from the order.

A Tour of Forms
The Conrad Systems Contacts sample database is full of interesting examples of forms.
The rest of this chapter takes you on a tour of some of the major features of those forms
and shows you some of the basic techniques for editing data in a form. In the next chap-
ter, you’ll learn how to design and build forms for this database.

Begin by opening the Conrad Systems Contacts database (Contacts.accdb) and set the
Navigation Pane to display only the forms. To do so, click the Navigation Pane menu,
click Object Type under Navigate To Category, and then click Forms under Filter By
Group to see the list of available forms. Note that when you open the database, you see
a copyright notice followed by a message telling you which form to open to start the
application.

Headers, Detail Sections, and Footers
You’ll normally place the information that you want to display from the underlying
table or query in the detail section in the center of the Form window. You can add a
header at the top of the window or a footer at the bottom of the window to display infor-
mation or controls that don’t need to change as you move through the records.

An interesting form in the Conrad Systems Contacts database that includes both a
header and a footer is frmContactSummary. The application uses this form to display
the summary results of a contact search whenever the search fi nds more than fi ve
matching contacts. You can also open this form directly from the Navigation Pane—if
you do so, it will show you all the contacts in the database. Find the frmContactSum-
mary form in the forms list in the Navigation Pane, right-click the form name, and then
click the Open command on the shortcut menu to see a window similar to the one
shown in Figure 10-1.

 A Tour of Forms 519

Ch
ap

te
r 1

0

Footer

 Header

 Detail section

 Figure 10-1 The frmContactSummary form has a header, a detail section, and a footer.

The area at the top of the window containing the title Contact Search Summary is the
header for the form. The header also includes the column names. The area at the bot-
tom of the window is the footer for the form. You can click the View Details button to
see all details for the currently selected contact (the contact with the arrow on the row
selector), or you can click Close to close the form. In the lower-left corner of the form is
the Record Number box that you saw in tables and queries in Datasheet view. Click the
arrow button immediately to the right of the record number to move the row selector
arrow to the next contact record in the detail section of the form; notice that the header
and footer don’t change when you do this. If you move down several records, you can
see the records scroll up in the detail section of the form.

If you click the View Details button in the footer, this form closes and the frmContacts
form opens, showing details of the contact record that you selected before you clicked
the button. The way the form is designed, the View Details button opens the frmCon-
tacts form using a fi lter to show you the currently selected contact. If you decide that
you don’t want to see details, you can click the Close button in the form footer to dis-
miss the form.

Chapter 10

520 Chapter 10 Using Forms
Multiple-Page Forms
When you have a lot of information from each record to display in a form, you can
design a multiple-page form. Open the frmContactsPages form in the Conrad Systems
Contacts database to see an example. When you open the form, you’ll see the fi rst page
of contact data for the fi rst contact. You can use the Record Number box and the but-
tons in the lower-left corner of the form to move through the records, viewing the fi rst
page of information for each contact. Figure 10-2 shows the fi rst page of the second
contact record—the records are sorted by last name. (For those of you who want to visit
Jeff’s Web site, that’s his real Web site address in the form!) To see the second page of
information for any contact, press the Page Down key. Figure 10-3 shows the second
page of Jeff’s contact record. (Notice that this form has a header but no footer.) As you
view different pages of a multiple-page form, the header at the top of the form (with the
form title) doesn’t change.

Figure 10-2 This is the fi rst page of a record in the multiple-page frmContactsPages form.

Continuous Forms
You can create another type of form that is useful for browsing through and editing a
list of records when each record has only a few data fi elds. This type of form is called a
continuous form. Rather than showing you only a single record at a time, a continuous
form displays formatted records one after the other, in the manner of a datasheet.

The frmContactSummary form shown earlier in Figure 10-1 is a simple continuous
form. The frmLkpContactEventTypes form, shown in Figure 10-4, is also a continu-
ous form. You can use the vertical scroll bar to move through the record display, or
you can click the buttons in the lower-left corner of the form to move from record to
record. Also, you can click the New Record button to move to the blank row below the
last record. The application uses this form to let you view and edit the different types of
contact events that you might want to log.

 A Tour of Forms 521

Ch
ap

te
r 1

0

Figure 10-3 Here is the second page of the same record shown in Figure 10-2.

Figure 10-4 The frmLkpContactEventTypes form in the Conrad Systems Contacts database is a
continuous form.

Chapter 10

522 Chapter 10 Using Forms
Split Forms
A new type of form view in Access 2007 called Split Form allows you to simultaneously
display a record in a regular form view and see a list of records in Datasheet view. Open
the frmProducts form in the Conrad Systems Contacts database to see an example, as
shown in Figure 10-5. When you open the form, you’ll see that the upper half of the
form displays the details about one specifi c product and the lower half of the form dis-
plays the complete list of 11 products offered by Conrad Systems.

You can use the Record Number box and the buttons in the lower-left corner of the form
to move through the records. Click the Next Record button and notice that the record
you are currently viewing in the top half becomes the highlighted record in the bottom
half of the form. Depending on the settings in the form’s design, you can edit the infor-
mation about any specifi c product in either the top or the bottom half of the form.

Figure 10-5 The frmProducts form in the Conrad Systems Contacts database is a split form.

Subforms
A subform is a good way to show related data from the many side of a one-to-many rela-
tionship. For example, the frmCompanies form, shown in Figure 10-6, has a subform
to display the related contacts. Although this form looks much like a single display

 A Tour of Forms 523

Ch
ap

te
r 1

0

panel, it has a subform (which looks more like a datasheet than a form) embedded in
the main form. The main part of the frmCompanies form displays information from the
 tbl Com panies table, while the subform in the lower part of the window shows infor-
mation from the tblCompanyContacts table about the contacts related to the current
 company.

Embedded subform

Figure 10-6 The frmCompanies form has an embedded subform that shows the related contacts.

This form looks quite complicated, but it really isn’t diffi cult to build. Because the
 Conrad Systems Contacts database is well designed, it doesn’t take much effort to build
the queries that allow the form to display information from three different tables. Most
of the work of creating the form goes into selecting and placing the controls that dis-
play the data. To link a subform to a main form, you have to set only two properties that
tell Access which linking fi elds to use. (These are actually the same Link Master Fields
and Link Child Fields properties you learned about in Chapter 8, “Building Complex
Queries,” when you defi ned a subdatasheet for a query.) In Chapter 13, “Advanced Form
Design,” you’ll build a subform and link it to a form.

Pop-Up Forms
Sometimes it’s useful to provide information in a window that stays on top regardless of
where you move the focus in your application. You’ve probably noticed that the default
behavior for windows in Microsoft Windows is for the active window to move to the

Chapter 10

524 Chapter 10 Using Forms
front and for all other windows to move behind the active one. One exception in Access
is the property sheet for any object in Design view. If you grab the property sheet and
undock it, it stays fl oating on top so that you can still access its settings regardless of
what you are doing behind it. This sort of fl oating window is called a pop-up window.

You can create forms in Access that open in pop-up windows (called pop-up forms in
Access). If you open any form in the Conrad Systems Contacts application and then
click the About command on the custom Ribbon, this opens the frmAbout form shown
in Figure 10-7, which is designed as a pop-up form. See Chapter 24, “The Finishing
Touches,” for more details about how to create custom Ribbons for forms. If you still
have frmCompanies open, you can click the About command on the Ribbon. Or, you
can switch to the Navigation Pane and open the frmAbout form directly to see how
it behaves. Notice that if you click in the open form or the window behind it, the
 frmAbout form stays on top. Click the Close button on the pop-up form to close it.

Figure 10-7 The frmAbout pop-up form “fl oats” on top of frmCompanies, which has the focus.

Modal Forms
As you add functionality to your application, you’ll encounter situations in which you
need to obtain some input from the user or convey some important information to the
user before Access can proceed. Access 2007 provides a special type of form, called
a modal form, which requires a response before the user can continue working in the

 A Tour of Forms 525

Ch
ap

te
r 1

0

application. The fdlgContactSearch dialog box in the Conrad Systems Contacts data-
base, shown in Figure 10-8, is a modal form. This dialog box normally opens when
you click the Contacts button on the main switchboard form and then click the Search
button on the resulting Select Contacts (frmContactList) form. This dialog box also
opens if you fi rst open the frmContactsPlain form and then click the Search button. You
can open the form on which the dialog box is based directly from the Navigation Pane.
You’ll notice that as long as this dialog box is open, you can’t select any other window
or Ribbon command in the application. To proceed, you must either enter some search
criteria and click the Search button or click the Cancel button to dismiss the form.

Figure 10-8 The fdlgContactSearch form in the Conrad Systems Contacts database is a modal
form that opens as a Windows dialog box.

Have you noticed the different prefi xes on the form names that we designed in the

Conrad Systems Contacts application? We like to create a prefi x that helps us know

more about the type of form when we look at the form list in the Navigation Pane. For

example, we prefi x the names of forms that are designed to open in PivotChart view

with cht. We prefi x dialog forms with fdlg, normal edit forms with frm, forms designed to

edit lookup tables with frmLkp, and subforms with fsub. You may want to adopt a similar

naming convention to help you keep your list of forms organized.

SIDE OUT Using Name Prefi xes to Organize Your Objects

Have you noticed the different prefi xes on the form names that we designed in the

Conrad Systems Contacts application? We like to create a prefi x that helps us know

more about the type of form when we look at the form list in the Navigation Pane. For

example, we prefi x the names of forms that are designed to open in PivotChart view

with cht. We prefi x dialog forms with fdlg, normal edit forms with frm, forms designed to

edit lookup tables with frmLkp, and subforms with fsub. You may want to adopt a similar

naming convention to help you keep your list of forms organized.

Chapter 10

526 Chapter 10 Using Forms
Special Controls
The information in a form is contained in controls. The most common control you’ll
use on a form is a simple text box. A text box can display data from an underlying table
or query, or it can display the result of an expression calculated in the control. You’ve
probably noticed that many controls allow you to choose from among several values or
to see additional content. You can also use controls to trigger a macro or a Visual Basic
procedure. These controls are discussed in the next fi ve sections.

Option Buttons, Check Boxes, Toggle Buttons, and Option Groups
Whenever the data you’re displaying can have only two or three valid values, you can
use option buttons, check boxes, or toggle buttons to see or set the value you want in the
fi eld. For example, when there are two values, as in the case of a simple Yes/No fi eld,
you can use a check box to graphically display the value in the fi eld. A check box that’s
selected means the value is Yes, and a check box that’s cleared means the value is No.
The Inactive control on the frmContactsPages form (see Figure 10-2) and the Default?
control in the subform of frmCompanies (see Figure 10-6) are good examples of the use
of a check box.

Stand-alone option buttons and toggle buttons work in the same way as a check box.
When the value of an option button is Yes or True, the option button has a black dot in
it. When the value of an option button is No or False, the option button appears empty.
Likewise a toggle button appears pressed in when True, and not pressed in when False.

To provide a graphical choice among more than two values, you can place option but-
tons, check boxes, or toggle buttons in an option group. When grouped this way, each
control in the group should have a unique integer value. When the control appears
selected, the value of the option group is the value of the control. Because an option
group can have only one value, when you select a control within the group, all other
controls in the group appear unselected because their values no longer match the value
of the option group.

For example, open frmProducts (this form displays the different products available),
and click the Print button to see the fdlgProductPrintOptions form (shown in Figure
10-9) that lists the various contact reporting options. (You cannot open fdlgProduct-
PrintOptions directly from the Navigation Pane—it has Visual Basic code that runs
when the form opens to verify that the companion frmProducts form is already open. If
not, the code tells Access to not allow the form to open.) If you open this form and click
the available option buttons, you can see that when you click one button, the previously
selected one clears. When you click one of the sales report buttons on this form, the
form reveals additional date range options for your sales report.

 A Tour of Forms 527

Ch
ap

te
r 1

0

Figure 10-9 You can see option groups on the fdlgProductPrintOptions form.

List Boxes and Combo Boxes
When you want to display a list of data values in an open list, a list box is a good choice.
When you view objects in Windows Explorer, the list of fi le names and properties in the
pane on the right side when you’re in Details view is a list box.

A list box can show a list of values you entered when you designed the control, a list of
values returned by an SQL statement, the values of one or more fi elds in a table or in a
query, or a list of fi eld names from a table or a query. When you select a value from the
list, you set the value of the control. You can use a list box on a form that edits data to
display the value of one of the fi elds. When you choose a new value in the list box, you
update the underlying fi eld.

You can also defi ne a list box in which you can select multiple values. When you do
this, however, the list box cannot update an underlying fi eld. This type of list box is
useful to allow a user to choose multiple items or options that your application code
will use to perform some action. As we discussed in “Working with Multi-Value Lookup
Fields” on page 245, Multi-Value Field Lookups, when bound to a combo box, do pro-
vide a list box that allows you to select and save multiple values back to the table.

In the example shown in Figure 10-10 (the frmContactList form), the list box allows
multiple selections and includes the set of names from the tblContacts table. This list
box lets you select one or more entries by holding down the Shift key to select a con-
tiguous range or by holding down the Ctrl key to select several noncontiguous entries.
When you click the Edit button, a Visual Basic procedure evaluates your choices and
opens the frmContacts form (see Figure 10-2) to display the selected contacts.

Chapter 10

528 Chapter 10 Using Forms
Figure 10-10 A list box on the frmContactList form allows you to choose multiple contacts to edit.

A list box like this one can use data from more than one fi eld. In fact, the query behind
this list box returns both the ContactID fi eld (the primary key) from tblContacts and
the expression that you see containing last name, fi rst name, and middle initial. The list
box hides the ContactID, but Visual Basic code behind the form uses that hidden value
to quickly fi nd the contacts you want.

Combo boxes are similar to list boxes. The primary difference is that a combo box has
both a text box and a drop-down list. One major advantage of a combo box is that it
requires space on the form only for one of the values in the underlying list. However,
you can choose only one value in a combo box.

The PostalCode fi eld in the frmCompanies form (see Figure 10-6) is set using a combo
box, as shown in Figure 10-11. The combo box uses four fi elds from the underlying
query—the Zipcode, City, State, and County fi elds from the lookup query qlkpZips.
When you select a postal code, the combo box sets the PostalCode fi eld in the underly-
ing record—a very useful feature. Visual Basic code attached to this control also auto-
matically copies the related City, County, and State data from the selected row in the
combo box to the fi elds on the form for you. As long as you know the postal code, you
don’t have to enter the other related information. You’ll fi nd a similar combo box used
in the application wherever you need to enter a postal code on a form.

Note
In most cases, you will choose settings that disallow choosing a value that’s not in the list

in your combo boxes that update fi elds. You can also write Visual Basic code to examine

a new value that a user tries to enter and determine whether it should appear in the list.

You can learn about how to create code to deal with “not in list” values in Chapter 20.

Note
In most cases, you will choose settings that disallow choosing a value that’s not in the list

in your combo boxes that update fi elds. You can also write Visual Basic code to examine

a new value that a user tries to enter and determine whether it should appear in the list.

You can learn about how to create code to deal with “not in list” values in Chapter 20.

 A Tour of Forms 529

Ch
ap

te
r 1

0

Figure 10-11 When you click the arrow on a combo box, you can see a list of options.

In Chapter 5, “Modifying Your Table Design,” you learned about Multi-Value Lookup
Fields. When you defi ne a fi eld as a Multi-Value Lookup Field, Access 2007 provides a
special control in the Datasheet view of the table and on a form similar to a combo box
to display the valid list of values. When you click the arrow, you’ll see a list box with a
check box next to each of the available value choices. Selecting the check box next to
one or more of the values stores the selected values in the fi eld.

The ContactType fi eld in the frmContactsPlain form is a Multi-Value Lookup Field.
Open this form and you can see a Contact Type fi eld with an arrow on its right side.
Clicking the arrow opens the list of available choices for Contact Type, as shown in
Figure 10-12. You can see that John Viescas is designated as both a Developer and a
Distributor. You can have Access store multiple values for this single record by selecting
the check box next to an available contact type.

Figure 10-12 The Contact Type fi eld on the frmContactsPlain form is a Multi-Value Lookup
Field control.

Chapter 10

530 Chapter 10 Using Forms
Tab Controls
Earlier in this chapter, you saw that one way to deal with the need to display lots of
information on one form is to use a multiple-page form (frmContactsPages, shown in
Figure 10-2 and Figure 10-3). Another way to organize the information on a single form
is to use the tab control to provide what look like multiple folder tabs that reveal differ-
ent information depending on the tab chosen—much like the main Ribbon in Access
2007 provides Home, Create, External Data, and Database Tools tabs. In the Conrad
Systems Contacts database, a contact has basic contact information and notes, as well
as related companies, contact events, and products. Open the frmContactsPlain form
to see how the tab control displays only one of these types of information at a time, as
shown in Figure 10-13.

Figure 10-13 When you fi rst open the frmContactsPlain form, you see information on the Contact
Info tab.

You can click the Companies tab (as shown in Figure 10-14) or any of the other tabs
to see additional information. Note that there’s no programming required to imple-
ment tab selection and data display. See Chapter 13 for details about how to use the
tab control.

 Attachment Controls
In Chapter 4, “Creating Your Database and Tables,” you learned about the new Attach-
ment data type to store complex data. Access 2007 includes a new type of control,
called an attachment control, to add and delete data from this data type. If you still have
the frmContactsPlain form open, click the Contact Info tab to see the contact’s picture
displayed on the right side of the form. The picture is stored in an attachment fi eld in
the contact’s record. On the frmContactsPlain form you can use the attachment control

 A Tour of Forms 531

Ch
ap

te
r 1

0

to add and delete the contact’s picture. When you right-click on the attachment control,
Access shows a shortcut menu with Forward, Back, and Manage Attachments com-
mands, as shown in Figure 10-15.

Figure 10-14 When you click another tab in a complex form you can see different data.

Figure 10-15 Right-click on an attachment control to see a shortcut menu with a Manage Attach-
ments command.

The Forward and Back commands are unavailable because there is only one attachment
assigned to the attachment fi eld in this record. Select Manage Attachments and Access
displays the Attachments dialog box, as shown in Figure 10-16.

Chapter 10

532 Chapter 10 Using Forms
Figure 10-16 You can add and delete different data fi les bound to an Attachment data type using
the Attachments dialog box.

The left side of the Attachments dialog box lists all the fi les stored in the attachment
fi eld in the current record. The Add button opens the standard Windows Choose File
dialog box where you can browse to another fi le to attach to this fi eld. The Remove
 button deletes the attachment selected on the left side from the attachment fi eld in the
current record.

The Open button opens the selected attachment using the application that’s defi ned in
the Windows registry as the default application for this type of data. (On a computer
running Windows Vista, the .jpg fi le opens in the Windows Photo Gallery program
unless you have installed another program to view and edit pictures.) The Save As but-
ton opens the Save Attachment dialog box where you can save the selected attachment
to a folder. The Save All button functions the same as Save As, except that you can save
all the attachments (if there are more than one) in this attachment fi eld to a folder in
one step.

Use the record navigation buttons to move to Jeff’s record, click the Add button to
open the Choose File dialog box, browse to the Documents subfolder where you
installed the sample fi les, and select the Microsoft Offi ce Word document for Jeff called
 JeffConrad.docx. After you select the fi le, click Open to add the fi le to the attachment
fi eld in the current record. You can see the additional fi le listed in the Attachments dia-
log box, as shown in Figure 10-17.

 Figure 10-17 Jeff’s document has now been added to the attachment fi eld in the current record.

 A Tour of Forms 533

Ch
ap

te
r 1

0

Click OK in the Attachments dialog box to return to the frmContactsPlain form and
notice that you still see only one picture displayed for this record. Right-click the attach-
ment control again. You can now use the Forward and Back commands on the shortcut
menu to view the two different fi les saved in the attachment fi eld in the current record,
as shown in Figure 10-18.

Figure 10-18 When you store multiple fi les in an attachment fi eld, you can use the Forward and
Back commands on the shortcut menu to view the fi les.

ActiveX Objects
To demonstrate an ActiveX object, close the Contacts.accdb database and then open
the Contacts2Upsize.accdb database. Open the frmContactsPlain form in this database
from the Navigation Pane to see a form that is nearly identical to frmContactsPlain
in the Contacts.accdb database. Unlike the contact picture you saw earlier on the
 frmContactsPlain form in the Contacts.accdb database, this picture is stored in a fi eld
in the tblContacts table using Microsoft’s ActiveX technology.

Note
The Contacts2Upsize.accdb database is a version of the Conrad Systems Contacts appli-

cation that has been modifi ed to upsize the data to SQL Server and the application code

to an Access project fi le (.adp). Because SQL Server cannot store the data in attachment

fi elds, we changed the Photo fi eld in the tblContacts table from the Attachment data

type to the OLE Object data type. Also, we changed the control on the forms displaying

the Photo fi eld from an attachment control to a bound object frame control.

Note
The Contacts2Upsize.accdb database is a version of the Conrad Systems Contacts appli-

cation that has been modifi ed to upsize the data to SQL Server and the application code

to an Access project fi le (.adp). Because SQL Server cannot store the data in attachment

fi elds, we changed the Photo fi eld in the tblContacts table from the Attachment data

type to the OLE Object data type. Also, we changed the control on the forms displaying

the Photo fi eld from an attachment control to a bound object frame control.

Chapter 10

534 Chapter 10 Using Forms
The logo in the top part of the main switchboard form (frmMain) in the Conrad Sys-
tems Contacts database, on the other hand, is a picture that Access has stored as part
of the form. The control that you use to display a picture or any other ActiveX object
is called an object frame. A bound object frame control is used to display an ActiveX
object that is stored in a fi eld in a table—such as the picture on frmContactsPages or
 frmContactsPlain in this database. When you edit the object in a bound object frame,
you’re updating a fi eld in the table. Use an unbound object frame or an image control to
display an object that is not stored in a table. Access stores the object with the form defi -
nition, and you cannot edit it in Form view.

When you include a bound object frame control on a form and bind the control to an
OLE object fi eld in the database, you can edit that object by selecting it and then right-
clicking the picture to open the shortcut menu. On the Bitmap Image Object submenu,
select Edit, as shown in Figure 10-19.

Note
If you use an unbound object frame or image control on a form, you can edit the con-

tents of the control only when you have the form in Design view.

Figure 10-19 You can select a picture and then edit it by selecting Bitmap Image Object on the
shortcut menu and then selecting Edit on the submenu.

Note
If you use an unbound object frame or image control on a form, you can edit the con-

tents of the control only when you have the form in Design view.

 A Tour of Forms 535

Ch
ap

te
r 1

0

Note
The Contacts2Upsize application also provides handy New Photo, Edit Photo, and Delete

Photo buttons on the frmContactsPlain form. When the form loads, it examines your

Windows registry and determines the default program on your computer to edit bitmap

(.bmp) or JPEG (.jpg) fi les. When you click the New Photo or Edit Photo button, Visual

Basic code behind the form starts that program for you. You don’t have to worry about

navigating the complex shortcut menu.

If the object is a picture, a graph, or a spreadsheet, you can see the object in the object
frame control and you can activate its application by double-clicking the object. If the
object is a sound fi le, you can hear it by double-clicking the object frame control.

Figure 10-19 shows one of the photographs stored in the tblContacts table that is bound
in an object frame control on the frmContactsPlain form. When you double-click the
picture—or select the picture, right-click, select Bitmap Image Object from the shortcut
menu, and then select Edit from the submenu—Access starts the default application on
your computer to edit bitmaps. On most computers, this is the Microsoft Paint applica-
tion. In Windows, Paint is an ActiveX application that can “activate in place,” as shown
in Figure 10-20. You can still see a few Access commands listed on the Paint File menu,
but Paint has added its own toolbars and menu commands. You can update the picture
by using any of the commands on the Paint toolbars and menus. You can paste in a dif-
ferent picture by copying a picture to the Clipboard and clicking the Paste command
on Paint’s Edit menu. After you make your changes, simply click in another area on the
Access form to deactivate Paint and store the result of your edits in the object frame
control. If you save the record, Access saves the changed data in your OLE object fi eld.

Note
If you have registered an application other than Microsoft Paint to handle bitmap

objects, that application will be activated when you select Edit from the submenu.

Command Buttons
Another useful control is the command button, which you can use to link many forms
to create a complete database application. Close the Contacts2Upsize.accdb database
and return to the Contacts.accdb database. In the Conrad Systems Contacts database,
for example, most of the forms are linked to the main switchboard form (frmMain),
shown in Figure 10-21, in which the user can click command buttons to launch
various functions in the application. The advantage of using command buttons is
simplicity—they offer an easy way to trigger a macro or a Visual Basic procedure. The

Note
The Contacts2Upsize application also provides handy New Photo, Edit Photo, and Delete

Photo buttons on the frmContactsPlain form. When the form loads, it examines your

Windows registry and determines the default program on your computer to edit bitmap

(.bmp) or JPEG (.jpg) fi les. When you click the New Photo or Edit Photo button, Visual

Basic code behind the form starts that program for you. You don’t have to worry about

navigating the complex shortcut menu.

Note
If you have registered an application other than Microsoft Paint to handle bitmap

objects, that application will be activated when you select Edit from the submenu.

Chapter 10

536 Chapter 10 Using Forms
procedure might do nothing more than open another form, print a report, or run an
action query to update many records in your database. As you’ll see when you get to
the end of this book, you can build a fairly complex application using forms, reports,
 macros, and some simple Visual Basic procedures.

Figure 10-20 The Photo OLE object fi eld from Figure 10-19 is being edited “in place” with its host
application.

PivotTables and PivotCharts
In Chapter 8, you learned how to create the PivotTable or PivotChart view of a query.
You can also build a form that is connected to a table or query and switch to either Pivot-
Table or PivotChart view to defi ne a custom view of the underlying data. For example,
take a look at the ptContactProducts form shown in Figure 10-22. This form is designed
to open only in PivotTable view or Design view. Note that even though the query on
which this form is based is updatable, you cannot update any of the fi eld values via the
PivotTable.

 A Tour of Forms 537

Ch
ap

te
r 1

0

Figure 10-21 The command buttons on the frmMain switchboard form take the user to various
parts of the application.

Figure 10-22 The ptContactProducts form is designed to open in PivotTable view.

Chapter 10

538 Chapter 10 Using Forms
PivotCharts can be useful in an application to provide a related graphical representa-
tion of data displayed on a form. In the Conrad Systems Contacts sample database,
you can fi nd the chtProductSales form that charts sales by product and by month.
This form is embedded in a report that displays product details (rptProductSalesBy-
ProductWChart) and in a sample form that lets you edit product information while
viewing the related past sales data as a chart (frmProductsWithSales). You can see
 frmProductsWithSales in Figure 10-23.

Figure 10-23 This form to edit product data also has an embedded subform in PivotChart view to
show related sales information.

Designing a form as a PivotTable or PivotChart has three distinct advantages over per-
forming these functions in queries.

1. You can restrict the views of the form to display only the PivotTable or the
PivotChart or both. You can set a default view for a query, but you cannot prevent
the user from switching to Datasheet or Design view.

2. You can embed a form designed as a PivotTable or PivotChart in another form or
in a report to display related information. You cannot embed a query in a form
or report.

 Moving Around on Forms and Working with Data 539

Ch
ap

te
r 1

0

 3. You can write Visual Basic code behind the form to dynamically modify the
PivotTable or PivotChart. You can also restrict the changes a user can make to the
table or chart. You cannot write code behind a query.

You’ll learn more about designing forms as PivotTables or PivotCharts in Chapter 13.

Moving Around on Forms and Working with Data
The rest of this chapter shows you how to move around on and work with data in the
various types of forms discussed earlier in the chapter.

Viewing Data
Moving around on a form is similar to moving around in a datasheet, but there are a
few subtle differences between forms and datasheets (usually having to do with how
a form was designed) that determine how a form works with data. You can use the
frmContacts Plain form in the Conrad Systems Contacts database (which is a copy of
frmContacts without custom Ribbons) to explore the ways in which forms work.

First, if necessary, open the Conrad Systems Contacts database. Next, click the Naviga-
tion Pane menu, click Object Type under Navigate To Category, and then click Forms
under Filter By Group. Select the frmContactsPlain form, right-click on the form
name, and click the Open command on the shortcut menu to see the form shown in
Figure 10-24.

Moving Around
The way you move around on a form depends in part on the form’s design. For example,
the frmContactsPlain form contains three subforms embedded within the tab control—
one for contact companies, another for contact events, and a third for contact products.
The two boxes you see on the Contact Info tab aren’t subforms—they’re rectangle con-
trols that we added to enhance the grouping of the main detail fi elds.

The fsubContactEventsPlain subform on the Events tab is a continuous form. You move
around on it similarly to how you move around in a datasheet. On this subform you
can use the vertical scroll bar to move the display up or down. You can toggle the sub-
form between two different views—Form view (its current state) and Datasheet view. If
you want to see the Datasheet view of the fsubContactEventsPlain subform, right-click
in any of the fi elds on the subform (to ensure that the focus is on the subform), click
Subform on the shortcut menu, and then click the Datasheet command. (Notice that
the PivotTable and PivotChart options on the shortcut menu appear dimmed—we have
disallowed those views in the design of this subform.) The fsubContactEvents subform
will now look like Figure 10-25.

Chapter 10

540 Chapter 10 Using Forms
 First Record Search box
 Previous Record Filter box
Record Number box New Record
 Next Record Last Record

Filter
Toggle Filter
 Advanced Filter Options
 Filter
 Selection
 Switch Windows
 Size To Replace
 Fit Form Find

 Select
Go To

 Spelling
 Delete
 Save Totals
Refresh All New More

 Clear All Sorts
Sort Descending

Sort AscendingView
 Paste
 Format Painter
 Cut
 Copy

Figure 10-24 You can use the frmContactsPlain form in the Conrad Systems Contacts database to
explore moving around on a form.

 Moving Around on Forms and Working with Data 541

Ch
ap

te
r 1

0

Figure 10-25 You can display the fsubContactEventsPlain subform in Datasheet view on the Events
tab of frmContactsPlain.

In the frmContactsPlain form, you view different contact records by using the naviga-
tion buttons and Record Number box at the bottom of the form. To see the next contact,
use the main form’s navigation buttons. To see different companies, events, or products
for a particular contact, use the vertical scroll bar within the subform or the navigation
buttons within the subform window. Note that you can also design a subform without
its own Record Number box and navigation buttons. You might want to do this if you
think the set of navigation buttons will be confusing to your users.

You can also click the Go To command in the Find group on the Home tab on the
Ribbon to move to the fi rst, last, next, or previous record in the main form or in the
subform. You can select any fi eld in the form by clicking anywhere in that fi eld. To use
the Go To command you must fi rst move to the form or the subform containing those
records you want to view.

Keyboard Shortcuts
If you’re typing new data, you might fi nd it easier to use the keyboard rather than the
mouse to move around on a form. Some of the keyboard shortcuts you can use with
forms are listed in Table 10-1 (for moving around in fi elds and records) and in Table
10-2 (for actions in a list box or in a combo box). Note that a form that edits data can
be in one of two modes: Edit mode or Navigation mode. You’re in Edit mode on a form
when you can see a fl ashing insertion point in the current fi eld. To enter Navigation
mode, tab to the next fi eld or press the F2 key to select the current fi eld. As you can see
in the following tables, some keyboard shortcuts work differently depending on the
mode. Other keyboard shortcuts work in only one mode or the other.

Chapter 10

542 Chapter 10 Using Forms
Table 10-1 Keyboard Shortcuts for Fields and Records

Key(s) Movement in Fields and Records

Tab Moves to the next fi eld.

Shift+Tab Moves to the previous fi eld.

Home In Navigation mode, moves to the fi rst fi eld of the current record.
In Edit mode, moves to the beginning of the current fi eld.

End In Navigation mode, moves to the last fi eld of the current record. In
Edit mode, moves to the end of the current fi eld.

Ctrl+Page Up Moves to the current fi eld of the previous record.

Ctrl+Page Down Moves to the current fi eld of the next record.

Ctrl+Up Arrow In Navigation mode, moves to the current fi eld of the fi rst record.
In Edit mode, moves to the beginning of the current fi eld.

Ctrl+Down Arrow In Navigation mode, moves to the current fi eld of the last record. In
Edit mode, moves to the end of the current fi eld.

Ctrl+Home In Navigation mode, moves to the fi rst fi eld of the fi rst record. In
Edit mode, moves to the beginning of the current fi eld.

Ctrl+End In Navigation mode, moves to the last fi eld of the last record. In
Edit mode, moves to the end of the current fi eld.

Ctrl+Tab If in a subform, moves to the next fi eld in the main form. If the
subform is the last fi eld in the tab sequence in the main form,
moves to the fi rst fi eld in the next main record.

If the focus is on a fi eld on a tab, moves the focus to the fi rst fi eld
in the tab order on the next tab. If the focus is on a subform within
a tab, moves the focus to the tab. If the subform within the tab is
the last control on the form, moves the focus to the tab on the next
record.

If the focus is on a tab (not a fi eld within the tab), cycles forward
through the tabs.

Ctrl+Shift+Tab If in a subform, moves to the previous fi eld in the main form. If
the subform is the fi rst fi eld in the tab sequence in the main form,
moves to the last fi eld in the next main record.

If the focus is on a fi eld on a tab, moves the focus to the fi rst fi eld
in the tab order on the previous tab. If the focus is on a subform
within a tab, moves the focus to the tab. If the subform within the
tab is the fi rst control on the form, moves the focus to the tab on
the previous record.

If the focus is on a tab (not a fi eld within the tab), cycles backward
through the tabs.

Ctrl+Shift+Home In Navigation mode, moves to the fi rst fi eld in the record. When
in Navigation mode in a fi eld on a tab, moves the focus to the tab.
When the focus is on a tab (not a fi eld within the tab), moves to the
fi rst tab on the tab control.

In Edit mode, selects all characters from the current insertion point
to the beginning of the fi eld.

 Adding Records and Changing Data 543

Ch
ap

te
r 1

0

Key(s) Movement in Fields and Records

Ctrl+Shift+End In Navigation mode, moves to the last fi eld in the record. When in
Navigation mode in a fi eld on a tab, moves the focus to the tab.
When the focus is on a tab (not a fi eld within the tab), moves to the
last tab on the tab control.
In Edit mode, selects all characters from the current insertion point
to the end of the fi eld.

Alt+F5 Moves to the Record Number box.

Enter Depends on your settings for the Move After Enter option in the
Editing section of the Advanced category in the Access Options
dialog box.

Shift+Enter Saves the current record.

Table 10-2 Keyboard Shortcuts for a List Box or a Combo Box

Key(s) Action in a List Box or a Combo Box

F4 or Alt+Down Arrow Opens or closes a combo box or a drop-down list box.

Down Arrow Moves down one line in a list box or in a combo box when
the list is open.

Up Arrow Moves up one line in a list box or in a combo box when the
list is open.

Page Down Moves down to the next group of lines.

Page Up Moves up to the next group of lines.

Tab Exits the box and moves to the next fi eld.

Adding Records and Changing Data
You’ll probably design most forms so that you can insert new records, change fi eld val-
ues, or delete records in Form view or in Datasheet view. The following sections explain
procedures for adding new records and changing data.

Adding a New Record
The procedure for entering a new record varies depending on the design of the form.
With a form that’s been designed for data entry only, you open the form and enter
data in the (usually empty) data fi elds. Sometimes forms of this type open with default
values in the fi elds or with data entered by a macro or Visual Basic procedure. In the
Conrad Systems Contacts application, frmCompanyAdd and frmContactAdd are two
examples of forms that open in Data Entry mode. You can see frmContactAdd in
Figure 10-26.

Chapter 10

544 Chapter 10 Using Forms
Figure 10-26 The frmContactAdd form opens in Data Entry mode.

When you’re editing company information in frmCompanies and need to enter a new
contact that doesn’t exist, the application opens this form to allow you to fi ll in the
required information for the new contact. After you save the record, the new contact
becomes available to assign to the company displayed in frmCompanies.

You’ll normally create a form that allows you to display and edit data and also add new
records. The frmContactsPlain form is this type of form. On this form, you can go to a
new record in several ways. Open the frmContactsPlain form and try the following:

O Click the Last Record button on the navigation bar at the bottom of the Form win-
dow and then click the Next Record button.

O Click the New Record button on the navigation bar at the bottom of the form.

O Click Go To in the Find group on the Home tab and then click New on the
 submenu.

O Click the New button in the Records group on the Home tab.

O Press Ctrl+Plus Sign.

O Click the Add New command button in the header area of the form. (This last
method puts the form into Data Entry mode, something you cannot do from any
standard command on the Ribbon.)

The fi rst fi ve methods take you to the empty record at the end of the recordset being
edited by this form. This is similar to going to the blank row at the end of a table
or query datasheet to begin entering data for a new row. The last method shifts the
form into Data Entry mode as shown in Figure 10-27. Notice that there now appears
to be only one record—the new record you’re about to enter, and that record displays
the default value specifi ed for Country even though you haven’t started to enter any
data yet.

 Adding Records and Changing Data 545

Ch
ap

te
r 1

0

Record selector

Figure 10-27 When you click the Add New button in the header of the frmContactsPlain form,
Access displays the form in Data Entry mode.

Access places the insertion point in the fi rst fi eld when you start a new record. As soon
as you begin typing, Access changes the indicator on the record selector (if your form
shows the record selector) to a pencil icon to indicate that updates are in progress.
Press Tab to move to the next fi eld.

Note
The frmContactsPlain form provides an Edit All button on the form to return to normal

data display if you clicked the Add New button to enter Data Entry mode.

If you violate a fi eld’s validation rule, Access notifi es you as soon as you attempt to leave
the fi eld. You must provide a correct value before you can move to another fi eld. Press
Shift+Enter in any fi eld in the record or press Tab in the last fi eld in the record to save
your new record in the table. If the data you enter violates a table validation rule, Access
displays an error message and does not save the record. If you want to cancel a new
record, press Esc twice. (There’s also a Cancel button on frmContactsPlain that clears
your edits and closes the form.)

Note
The frmContactsPlain form provides an Edit All button on the form to return to normal

data display if you clicked the Add New button to enter Data Entry mode.

Chapter 10

546 Chapter 10 Using Forms
If you’re adding a new record in a form that has an Attachment or OLE Object data
type, you’ll encounter a special situation. You’ll notice when you tab to the Photo attach-
ment control that you can’t type anything in it. This is because the fi eld in the underly-
ing table is an Attachment data type, and this control is an attachment. In fact, when
the focus is in this control and you happen to type one of the keyboard navigation let-
ters on one of the command buttons (C for Close, N for Cancel, and so on), you’ll “click”
that command button and execute the action programmed in the command button.
You’ll notice this same problem if you open the frmContactsPlain form in the Contacts2-
Upsize.accdb database and tab into the Photo bound object frame control.

To enter data in this type of fi eld in a new record, you must create the object in another
application before you can store the data in Access. To insert a fi le in an attachment
fi eld, follow the instructions given earlier to right-click the attachment control and click
Manage Attachments on the shortcut menu. Click Add in the Attachments dialog box
shown in Figure 10-17 on page 532 to open the Choose File dialog box where you can
select the fi le that you want to store in the attachment fi eld.

If you want to see how to work with an OLE Object fi eld, you’ll have to close the
 Contacts.accdb database and reopen the Contacts2Upsize.accdb database. Open the
frmContactsPlain form and go to a new record. To create and store a new fi le in a bound
object frame, right-click on the bound object frame control and click the Insert Object
command on the shortcut menu. Access displays the Microsoft Offi ce Access dialog
box, shown in Figure 10-28. To create a new object, select the object type you want (in
this case, Bitmap Image), and click OK. Access starts the application that’s defi ned in
the Windows registry as the default application for this type of data (for bitmaps, usu-
ally the Paint application).

Figure 10-28 The Microsoft Offi ce Access dialog box allows you to enter data into an OLE
object fi eld.

If you have an appropriate fi le available to copy into the OLE object fi eld in Access,
select the Create From File option in the Microsoft Offi ce Access dialog box. Access
replaces the Object Type list with a File box where you can enter the path name and fi le
name, as shown in Figure 10-29. You can click the Browse button to open the Browse
dialog box, which lets you search for the fi le you want. After you select a fi le, you can
select the Link check box to create an active link between the copy of the object in
Access and the actual fi le. If you do so, whenever you change the fi le, the linked object

 Adding Records and Changing Data 547

Ch
ap

te
r 1

0

in Access will also change. Select the Display As Icon check box to display the appli-
cation icon instead of the picture in the bound object frame. Your picture will still be
stored or linked in your table even when you choose to display the icon.

Figure 10-29 You can insert an object from a fi le using the Create From File option in the Microsoft
Offi ce Access dialog box.

If you opened the Contacts2Upsize.accdb database to experiment with editing in a
bound object frame, close it and reopen the Contacts.accdb database.

The frmContactsPlain form also includes two text boxes that let you specify the e-mail
address or the Web site address of the contact. To add or edit a hyperlink, you can tab
to the hyperlink fi eld (remember that if the link fi eld contains a valid link, clicking in it
activates the link!), right-click the link fi eld, click Hyperlink on the shortcut menu, and
then click Edit Hyperlink on the submenu. Access displays the dialog box shown in
Figure 10-30, which lets you edit or defi ne the link.

You can enter the descriptor in the Text To Display box at the top. We clicked the
ScreenTip button to open the Set Hyperlink ScreenTip dialog box you see in Figure
10-30. The ScreenTip appears when you rest your mouse pointer on the hyperlink. You
can type the document address directly into the Address box.

Figure 10-30 The Insert Hyperlink dialog box shows a link to the AccessJunkie.com Web site.

Chapter 10

548 Chapter 10 Using Forms
The second option on the left in the Insert Hyperlink dialog box, E-Mail Address, lets
you enter an e-mail address or choose from a list of recently used addresses. This gen-
erates a Mailto: hyperlink that will invoke your e-mail program and start a new e-mail
message to the address you specify here. You can also optionally enter Subject text for
the new e-mail, which adds a question mark after the e-mail address followed by the
subject in the stored hyperlink.

Click OK to save your link. See “Working with Hyperlinks” on page 397, for more
details and cautions about hyperlinks.

Try adding a new record by using the frmContactsPlain form. Open the form, click the
Go To command in the Find group on the Home tab, and then click New. You should
see a form similar to the one shown earlier in Figure 10-27. Make any selection you like
from the Contact Type drop-down list. Because this fi eld is a Multi-Value Lookup Field,
you can select more than one contact type. Click the OK button at the bottom of the list
when you have fi nished selecting one or more contact types. You must enter at least a
last name (the only required fi eld in tblContacts). Tab to the Photo fi eld, and follow the
procedure discussed previously in “Attachment Controls” on page 530 to add a new pic-
ture attachment to this record. You can fi nd several appropriately sized bitmap pictures
of contacts on the companion CD in the Pictures subfolder.

To begin adding some events for your new contact, click the Events tab to reveal the
appropriate subform. Note that when you click in the subform, Access saves the con-
tact data you entered in the main form. Access does this to ensure that it can create a
link between the new record in the main form and any record you might create in the
subform. (The new contact ID has to be saved in the main form before you can create
related contact category records in a subform.)

Select an event type, as shown in Figure 10-31, or type a new one. As soon as you select
an event type, Access automatically fi lls in the Date/Time fi eld with the current date
and time on your computer. You can correct this value or click the small calendar but-
ton to open a calendar form to set a new date and time graphically. If you enter an event
type that isn’t already defi ned, code behind the form prompts you to ask whether you
want to add a new event type. If you click Yes, you’ll see a dialog form open to allow you
to enter the details for your new event type.

When you press Tab in the last fi eld or press Shift+Enter in any fi eld, Access adds the
new event for you. Access also inserts the information required to link the record in the
main form and the new record in the subform. Access fetches the ContactID from the
record in the outer form and creates the new record in the tblContactEvents table with
the related ContactID value. You can’t see or edit the ContactID fi eld on either the outer
form or the subform. You don’t need to see it in the outer form because ContactID in
tblContacts is an AutoNumber fi eld. Because Access automatically copies the value for
you for new rows in the subform, you don’t need to see it there either.

 Adding Records and Changing Data 549

Ch
ap

te
r 1

0

As discussed in Article 1 on the companion CD, “Designing Your Database Application,”

it’s usually preferable to use a combination of data fi elds that have a unique value in each

row to create a primary key. However, choosing a combination of fi elds in tblContacts

that would be guaranteed to be unique in all rows could prove diffi cult. The combination

of fi rst name and last name could easily result in a duplicate when two different people

have the same name. Adding postal code might help, but you still might run into two

people named John Smith who live in the same area.

The simple solution for tables in an Access 2007 desktop database is to use an

 AutoNumber fi eld as the primary key. In fact, in the Conrad Systems Contacts database,

tblCompanies, tblContacts, tblInvoices, and tblProducts all use an AutoNumber fi eld

for the primary key. This guarantees that all rows will have a unique primary key, but it

doesn’t guard against duplicate records—entering the same person twice.

To avoid potential duplicates, you should consider writing Visual Basic code to check

a new row just before Access saves it. We included some simple code to perform a

 Soundex check on the last name in both frmContacts and frmContactsPlain. (Soundex is

an algorithm created by the United States National Archive and Records Administration

to generate a code from a name to identify names that sound alike.) If you try to add a

person in a new row with the last name Camred, you’ll see a warning about a potential

duplicate (Conrad, for example) and a list of all similar names. The warning allows you to

cancel saving the new row. You can learn how this code works in Chapter 20.

One last point about using AutoNumber: As soon as you begin to enter new data in a

table that has an AutoNumber fi eld, Access assigns a new number to that fi eld. If you

decide to cancel the new record before saving it, Access won’t reuse this AutoNumber

value. Access does this to ensure that multiple users sharing a database don’t get the

same value for a new table row. So, if you want primary key numbers to remain consecu-

tive, you should not use AutoNumber.

You can defi ne very functional forms using combo boxes, tab controls, and subforms. To
 really make your application user-friendly, you need to further automate your forms with
Visual Basic. For details about how many of the forms in the sample databases are automated
with Visual Basic, see Chapter 20.

SIDE OUT Dealing with AutoNumber Primary Keys
and Potentially Duplicate Data

As discussed in Article 1 on the companion CD, “Designing Your Database Application,”

it’s usually preferable to use a combination of data fi elds that have a unique value in each

row to create a primary key. However, choosing a combination of fi elds in tblContacts

that would be guaranteed to be unique in all rows could prove diffi cult. The combination

of fi rst name and last name could easily result in a duplicate when two different people

have the same name. Adding postal code might help, but you still might run into two

people named John Smith who live in the same area.

The simple solution for tables in an Access 2007 desktop database is to use an

AutoNumber fi eld as the primary key. In fact, in the Conrad Systems Contacts database,

tblCompanies, tblContacts, tblInvoices, and tblProducts all use an AutoNumber fi eld

for the primary key. This guarantees that all rows will have a unique primary key, but it

doesn’t guard against duplicate records—entering the same person twice.

To avoid potential duplicates, you should consider writing Visual Basic code to check

a new row just before Access saves it. We included some simple code to perform a

Soundex check on the last name in both frmContacts and frmContactsPlain. (Soundex is

an algorithm created by the United States National Archive and Records Administration

to generate a code from a name to identify names that sound alike.) If you try to add a

person in a new row with the last name Camred, you’ll see a warning about a potentiald
duplicate (Conrad, for example) and a list of all similar names. The warning allows you to d
cancel saving the new row. You can learn how this code works in Chapter 20.

One last point about using AutoNumber: As soon as you begin to enter new data in a

table that has an AutoNumber fi eld, Access assigns a new number to that fi eld. If you

decide to cancel the new record before saving it, Access won’t reuse this AutoNumber

value. Access does this to ensure that multiple users sharing a database don’t get the

same value for a new table row. So, if you want primary key numbers to remain consecu-

tive, you should not use AutoNumber.

Chapter 10

550 Chapter 10 Using Forms
Figure 10-31 You can add a new contact event record on the Events tab in the
frmContactsPlain form.

Changing and Deleting Data
If your form permits updates, you can easily change or delete existing data in the
underlying table or query. If you design the form to be used in Datasheet view, you can
use the same techniques you learned in Chapter 7, “Creating and Working with Simple
Queries,” to work with your data.

In Form view, your data might appear in one of several formats. If you design the form
as a single form, you can see the data for only one record at a time. If you design the
form as a continuous form, you might be able to see data for more than one record
at a time.

As with datasheets, you must select a fi eld in the form in order to change the data in
the fi eld. To select a fi eld, either tab to the fi eld or click in the fi eld with the mouse.
(Remember, if the fi eld contains a hyperlink, clicking in it will activate the link. To edit
a hyperlink, either tab to the fi eld or right-click the fi eld to open the shortcut menu,
from which you can click commands to edit the hyperlink.) After you select a fi eld, you
can change the data in it by using the same techniques you used for working with data
in a datasheet. You can type over individual characters, replace a sequence of charac-
ters, or copy and paste data from one fi eld to another.

You might fi nd that you can’t tab to or select some fi elds in a form. When you design
a form, you can set the properties of the controls on the form so that a user can’t

 Searching for and Sorting Data 551

Ch
ap

te
r 1

0

select the control. These properties prevent users from changing fi elds that you don’t
want updated, such as calculated values or fi elds from the one side of a query. You
can also set the tab order to control the sequence of fi eld selection when you use Tab
or Shift+Tab to move around on the form. See Chapter 12, “Customizing a Form,”
for details.

Deleting a record in a single form or in a continuous form is different from deleting a
record in a datasheet. First, you must select the record as you would select a record in a
datasheet. If the form is designed with record selectors, simply click the record selector
to select the record. If the form does not have record selectors, click the Select com-
mand in the Find group on the Home tab, and then click Select on the menu. To delete
a selected record, press the Delete key or click the arrow next to the Delete command
in the Records group on the Home tab, and then click Delete Record. You can also click
the Delete Record command to delete the current record without fi rst having to select it.

When a record you’re trying to delete contains related records in other tables, you will
see an error message unless the relationship defi ned between the tables tells Access
to cascade delete the related fi elds and records. See Chapter 4 for details about defi n-
ing relationships between tables. In frmContacts and frmContactsPlain in the Conrad
Systems Contacts application, Visual Basic code behind the forms checks to see if
dependent rows exist in other tables. This code issues a custom error message, shown
in Figure 10-32, that gives you specifi c information about the problem. (The standard
Access error message is not very user-friendly.) Rather than automatically delete depen-
dent records (you might have asked to delete the contact record in error), the applica-
tion requires you to specifi cally go to the tabs that show the related records and delete
all these records fi rst. You can see how this code works in Chapter 24.

Figure 10-32 The Conrad Systems Contacts application shows you a custom error message when
you attempt to delete a contact that has dependent records in other tables.

Searching for and Sorting Data
When you use forms to display and edit your data, you can search for data or sort it in
a new order in much the same way that you search for and sort data in datasheets. (See
Chapter 7.) The following sections show you how to use some of the form fi lter features
to search for data in a form or use the quick sort commands to reorder your data.

Chapter 10

552 Chapter 10 Using Forms
Performing a Simple Search
You can use Access 2007’s Find feature in a form exactly as you would in a datasheet.
Open the frmContactsPlain form if you closed it, select the fi eld you want to search,
and then click the Find command in the Find group on the Home tab to open the Find
And Replace dialog box, as shown in Figure 10-33. You can enter search criteria exactly
as you would for a datasheet. Note that in a form you can also perform a search on any
control that you can select, including controls that display calculated values.

Figure 10-33 You can use the Find And Replace dialog box to search your records for specifi c
information.

In Figure 10-33 we clicked inside the Last Name fi eld and then opened the Find And
Replace dialog box. By default the Look In list in the Find And Replace dialog box
remembers what you selected the last time you used Find. If you select Conrad Systems
Database from the Look In list, Access will search through all the fi elds in this form for
your criterion. Type the word Viescas in the Find What box, and make sure you select
Last Name from the Look In list to search through only the Last Name fi eld.

In the Match list, you can ask Access to search Any Part Of Field, Whole Field, or Start
Of Field. When you select Any Part Of Field, Access looks for the characters you type
in the Find What box anywhere within the fi eld or fi elds you specifi ed to search. If you
select Whole Field, what you type in the Find What box must exactly match the con-
tents of the fi eld. When you select Start Of Field, the characters you type in the Find
What box must be at the beginning of the fi eld, but any or no characters can appear in
the fi eld after that.

By default, Access searches all records from the beginning of the recordset (the fi rst
record displayed in the form) unless you select either Up or Down in the Search list to
search up or down from the current record position. Select the Match Case check box
if you want to fi nd text that exactly matches the uppercase and lowercase letters you
typed. By default, Access is case-insensitive unless you select this check box.

 Searching for and Sorting Data 553

Ch
ap

te
r 1

0

You can select the Search Fields As Formatted check box if you need to search the data
as it is displayed rather than as it is stored by Access. Although searching this way is
slower, you should select this check box if you are searching a Date/Time fi eld. You
should also probably select this check box when searching any fi eld that has a format
or input mask applied—such as the Postal Code and phone number fi elds in this sample
form. For example, if you’re searching a date fi eld for dates in January, you can specify
-Jan- if the fi eld is formatted as Medium Date and you select the Search Fields As For-
matted check box. You might also want to select this check box when searching a Yes/
No fi eld for Yes because any value except 0 is a valid indicator of Yes. Clear this check
box to improve performance when searching a simple text or numeric fi eld.

After selecting the options you want, click the Find Next button. Access proceeds to
search through the last names in the form’s recordset for the value Viescas, and it fi nds
John’s record. Click Find Next to continue searching from the current record. Each time
you click Find Next again, Access moves to the next value it fi nds. When Access can
fi nd no additional records (either by searching up to the fi rst record when you select
Up in the Search list or by searching to the last record when you select Down or All), it
opens a message box to inform you that it has completed the search. Click OK to dis-
miss the message box and return to the Find And Replace dialog box. Click Cancel to
close the dialog box.

After you have established search criteria in the Find And Replace dialog box, you can
press Shift+F4 to execute the search from the current record without having to open the
dialog box again.

Using the Search Box
Access 2007 includes a new Search box on the record navigation bar at the bottom of
the Form window, as shown in Figure 10-34. The Search box functions similarly to
the Find And Replace dialog box discussed previously. Unlike the Find And Replace
dialog box, the Search box does not give you any choices as to what fi elds to search
in, what part of a string to match, or whether to match the string case. When you type
something in the Search box, Access immediately begins to search through all fi elds in
the form for the sequence of characters you enter. The characters you type can appear
anywhere in the fi eld, and Access performs the match “as formatted.” For example, if
you type /196 in the Search box, you’re likely to fi nd the fi rst person whose birthday is
in the 1960s.

Move to the fi rst record in the frmContactsPlain form and type the letter c in the Search
box. Notice that Access stays on the fi rst record and highlights the letter C of the word
Customer in the Contact Type fi eld. Now type the letter o after the letter c and observe
that Access moves the focus to the Last Name fi eld on the second record and highlights
the letters Co in the name Conrad, as shown previously in Figure 10-34. To clear your
search criteria, highlight all the text in the Search box and press Delete or use the Back-
space key to remove the text.

Chapter 10

554 Chapter 10 Using Forms
Search box

Figure 10-34 You can also use the Search box to search through your form records.

Performing a Quick Sort on a Form Field
As you can with a datasheet, you can select just about any control that contains data
from the underlying recordset and click the Ascending or Descending button in the
Sort & Filter group on the Home tab to reorder the records you see, based on the
selected fi eld. If you want to perform a quick sort, open the frmContactsPlain form,
click in the Postal Code fi eld in the form under Work Contact Info, and then click the
Descending button in the Sort & Filter group on the Home tab. The contact with the
highest postal code is displayed fi rst.

Adding a Filter to a Form
One of Access 2007’s most powerful features is its ability to further restrict or sort the
information displayed in the form without your having to create a new query. This
restriction is accomplished with a fi lter that you defi ne while you’re using the form.
When you apply the fi lter, you see only the data that matches the criteria you entered.

As with datasheets, you can defi ne a fi lter using Filter By Selection, Filter By Form,
or the Advanced Filter defi nition facility. Open the frmContactsPlain form, click the
Advanced button in the Sort & Filter group on the Home tab, and click Filter By Form.
Access adds features to the form to let you enter fi lter criteria, as shown in Figure 10-35.
In this example, we’re looking for all contacts who are the Developer contact type,
whose last name begins with V, and who work in the city of Nashua. You’ll see that you
can click the arrow to the right of each fi eld to display a list that contains all the values
for that fi eld currently in the database. If your database contains many thousands of
rows, Access might not show the list if the fi eld has more than several hundred unique
values—it would take an unacceptably long time to retrieve the entire list. When the list

 Searching for and Sorting Data 555

Ch
ap

te
r 1

0

is too long, Access gives you simple Is Null and Is Not Null choices instead. You can
also type your own criteria, as shown in the Last Name fi eld in Figure 10-35.

Figure 10-35 Enter fi lter criteria for the frmContactsPlain form in the Filter By Form window.

As you can with datasheets, you can enter one set of criteria and then click an Or tab
at the bottom of the blank form to enter additional criteria. If you don’t like some of
the criteria you’ve entered, click the Advanced button in the Sort & Filter group of the
Home tab, and then click Clear Grid to start over. Click the Toggle Filter button in the
Sort & Filter group to fi lter your records. Click the Clear All Filters command to exit
the Filter By Form window without applying the new fi lter. Note that if you specify
criteria on a subform, Access applies the fi lter only for records related to the record cur-
rently displayed on the main form. For example, you can’t create a fi lter on the Products
tab for contacts who own the BO$$ Multi-User edition and then expect to see all the
contacts who own that product—you’ll see only products for the current contact that
match the value BO$$ Multi-User.

To turn off the fi lter, click the Toggle Filter button in the Sort & Filter group on the
Home tab. To see the fi lter defi nition, click the Advanced button in the Sort & Filter
group and then click Advanced Filter/Sort. After you apply the fi lter shown in Figure
10-35 and do an ascending quick sort on the WorkPostalCode fi eld, the Advanced
 Filter/Sort window should look something like that shown in Figure 10-36.

Chapter 10

556 Chapter 10 Using Forms
Figure 10-36 In the Advanced Filter/Sort window for the frmContactsPlain form, you can see crite-
ria previously entered using the Filter By Form command.

Note
If you use one of the Sort (Ascending or Descending) buttons, you’ll discover that this

“quick sort” uses the form’s fi lter defi nition to create the sorting criteria. For example,

if you do a quick sort to arrange contacts in descending order by last name, you’ll fi nd

the LastName fi eld in the form fi lter with the Sort row set to Descending when you click

Advanced Filter/Sort under Advanced in the Sort & Filter group on the Home tab.

If you often use the same fi lter with your form, you can save the fi lter as a query and
give it a name. Open the Advanced Filter/Sort window and create the fi lter. Click the
Advanced command in the Sort & Filter group on the Home tab, click the Save As
Query command, and then type a name for the query when Access prompts you.

You can load an existing query defi nition to use as a fi lter. Click Advanced in the Sort &
Filter group on the Home tab and click Load From Query when you’re in the Filter By
Form window. Access presents a list of valid select queries (those that are based on the
same table or tables as the form you’re using).

Note
If you use one of the Sort (Ascending or Descending) buttons, you’ll discover that this

“quick sort” uses the form’s fi lter defi nition to create the sorting criteria. For example,

if you do a quick sort to arrange contacts in descending order by last name, you’ll fi nd

the LastName fi eld in the form fi lter with the Sort row set to Descending when you click

Advanced Filter/Sort under Advanced in the Sort & Filter group on the Home tab.

 Printing Forms 557

Ch
ap

te
r 1

0

Printing Forms
You can use a form to print information from a table or query. When you design the
form, you can specify different header and footer information for the printed version.
You can also specify which controls are visible. For example, you might defi ne some
gridlines that are visible on the printed form but are not displayed on the screen.

An interesting form to print in the Conrad Systems Contacts database is the frmCon-
tactSummaryXmpl form. Open the form, click the Microsoft Offi ce Button, click the
arrow to the right of the Print command, and then click Print Preview. On the Print
Preview tab, click the Zoom button and scroll to the top of the fi rst page. You should see
a screen that looks like the one shown in Figure 10-37. Notice that the form footer that
you saw earlier in Figure 10-1 (page 519) does not appear in the printed version. In fact,
this form has one set of headers and footers designed for printing and another set for
viewing the form on the screen.

Figure 10-37 When you view the frmContactSummaryXmpl form in Print Preview, you see a
 different set of headers and footers.

You can use the scroll bars to move around on the page. Use the Page Number box in
the lower-left corner of the Print Preview window in the same way that you use the
Record Number box on a form or in a datasheet. Click the Zoom button again to see the
entire page on the screen.

Click the Margins command in the Page Layout group on the Print Preview tab to set
top, bottom, left, and right margins. Click the Page Setup button in the same Page Lay-
out group to set additional options. Access displays the Page Setup dialog box, in which
you can customize the way the form prints. Click the Page tab in the Page Setup dialog

Chapter 10

558 Chapter 10 Using Forms
box (shown in Figure 10-38) to select Portrait or Landscape orientation, the paper size
and source, and the printer. Access will store these specifi cations with the defi nition of
your form.

Figure 10-38 The Page tab of the Page Setup dialog box for forms includes several page options.

Click the Columns tab of the Page Setup dialog box to see additional options, as shown
in Figure 10-39. We’ll explore the Columns options in detail in Chapter 14, “Using
Reports.”

Figure 10-39 The Columns tab of the Page Setup dialog box for forms lets you defi ne grid and
column settings.

You should now have a good understanding of how forms work and of many design
elements that you can include when you build forms. Now, on to the fun part—building
your fi rst form in the next chapter.

CHAPTER 11

Building a Form

From the perspective of daily use, forms are the most important objects you’ll build
in your Microsoft Offi ce Access 2007 application because they’re what users see and

work with every time they run the application. This chapter shows you how to design
and build forms in an Offi ce Access 2007 desktop application. You’ll learn how to work
with a Form window in Design view to build a basic form based on a single table, and
you’ll learn how to use the Form Wizard to simplify the form-creation process. The last
section of this chapter, “Simplifying Data Input with a Form,” shows you how to use
some of the special form controls to simplify data entry on your forms.

Note
The examples in this chapter are based on the forms, tables, and data in ContactsData-

Copy.accdb on the companion CD included with this book. The results you see from the

samples in this chapter might not exactly match what you see in this book if you have

changed the sample data in the fi le. Also, all the screen images in this chapter were

taken on a Microsoft Windows Vista system with the display theme set to Blue, and Use

Windows-Themed Controls On Forms has been turned on in the sample databases. Your

results might look different if you are using a different operating system or a differ-

ent theme. We’ll discuss the Use Windows-Themed Controls On Forms option later in

this chapter.

Forms and Object-Oriented Programming
Access was not designed to be a full object-oriented programming environment, yet it
has many characteristics found in object-oriented application development systems.
Before you dive into building forms, it’s useful to examine how Access implements
objects and actions, particularly if you come from the world of procedural application
development.

In classic procedural application development, the data you need for the application
is distinct from the programs you write to work with the data and from the results

Note
The examples in this chapter are based on the forms, tables, and data in ContactsData-

Copy.accdb on the companion CD included with this book. The results you see from the

samples in this chapter might not exactly match what you see in this book if you have

changed the sample data in the fi le. Also, all the screen images in this chapter were

taken on a Microsoft Windows Vista system with the display theme set to Blue, and Use

Windows-Themed Controls On Forms has been turned on in the sample databases. Your

results might look different if you are using a different operating system or a differ-

ent theme. We’ll discuss the Use Windows-Themed Controls On Forms option later in

this chapter.

Forms and Object-Oriented Programming 559

Starting from Scratch—A Simple Input Form 563

Working with Quick Create Commands
and the Form Wizard . 590

Simplifying Data Input with a Form 601
 559

Chapter 11

560 Chapter 11 Building a Form
 produced by your programs. Each program works with the data independently and
 generally has little structural connection with other programs in the system. For exam-
ple, an order entry program accepts input from a clerk and then writes the order to data
fi les. Later, a billing program processes the orders and prints invoices. Another charac-
teristic of procedural systems is that events must occur in a specifi c order and cannot
be executed out of sequence. A procedural system has diffi culty looking up supplier or
price information while in the middle of processing an order.

In an object-oriented system, however, an object is defi ned as a subject that has proper-
ties, and you can invoke certain actions, or methods, to be performed on that subject.
Objects can contain other objects. When an object incorporates another object, it
inherits the attributes and properties of the other object and expands on the object’s
defi nition. In Access, queries defi ne actions on tables, and the queries then become new
logical tables known as recordsets. That is, a query doesn’t actually contain any data, but
you can work with the data fetched by the query as though it were a table. You can base
a query on another query with the same effect. Queries inherit the integrity and format-
ting rules defi ned for the tables. Forms further defi ne actions on tables or queries, and
the fi elds you include in forms initially inherit the underlying properties, such as for-
matting and validation rules, of the fi elds in the source tables or queries. You can defi ne
different formatting or more restrictive rules, but you cannot override the rules defi ned
for the tables.

Within an Access database, you can interrelate application objects and data. For exam-
ple, you can set startup properties that prepare your application to run. As part of the
application startup, you will usually open a switchboard form. The switchboard form
might act on some of the data in the database, or it might offer controls that open other
forms, print reports, or close the application.

For more information about startup properties, see Chapter 24, “The Finishing Touches.”

Figure 11-1 shows the conceptual architecture of an Access form. In addition to operat-
ing on tables or queries in a database, forms can contain other forms, called subforms.
These subforms can, in turn, defi ne actions on other tables, queries, or forms. Events
that occur in forms and subforms (such as changing the value of a fi eld or moving to a
new record) can trigger macro actions or Microsoft Visual Basic procedures. As you’ll
learn when you read about advanced form design, macro actions and Visual Basic pro-
cedures can be triggered in many ways. The most obvious way to trigger an action is by
clicking a command button on a form. But you can also defi ne macros or Visual Basic
procedures that execute when an event occurs, such as clicking in a fi eld, changing the
data in a fi eld, pressing a key, adding or deleting a row, or simply moving to a new row
in the underlying table or query.

 Forms and Object-Oriented Programming 561

Ch
ap

te
r 1

1

Form

Fields from a query or table

Subform

Fields from a query or table

Another form, report,
query, VBA procedure,
or macro action

Event
Triggers

Figure 11-1 An Access form can contain other objects, including other forms, and you can set
some of its properties to defi ne procedures that respond to events.

In Chapter 20, “Automating Your Application with Visual Basic,” you’ll learn how sev-
eral of the more complex forms in the Conrad Systems Contacts and Housing Reserva-
tions sample databases are automated with Visual Basic. Figure 11-2 shows a few of the
automated processes for the frmContacts form in the Conrad Systems Contacts data-
base. For example, printing the contact currently displayed in the form is triggered by
using a command button.

In addition to automating print options, code behind the frmContacts form automati-
cally fi lls in the city and state when you enter a postal code and provides a graphical
way to choose a date if you click the button next to a date. On the Events tab, when you
enter a sale of a product to the contact, code automatically generates a product record.

Object-oriented systems are not restricted to a specifi c sequence of events. So a user
entering a contact event in Access 2007 can open up a new form object in the Naviga-
tion Pane and start a search in a companies or products form window without having to
fi rst fi nalize or cancel work already in progress in frmContacts.

Chapter 11

562 Chapter 11 Building a Form
Typing a postal code automatically
fills in the City and State fields.

Clicking a calendar icon opens a
form to set the date graphically.

Clicking Print . . .
. . . opens the
Contact Reports
window.

Choosing a
report option
and clicking
Print . . .

. . . opens the report.

Figure 11-2 Some of the automated processes for the frmContacts form include opening a dialog
box to choose a contacts report and automatically fi lling in the city and state when you enter a
postal code.

 Starting from Scratch—A Simple Input Form 563

Ch
ap

te
r 1

1

Starting from Scratch—A Simple Input Form
To start, you’ll create a simple form that accepts and displays data in the tblCompa-
nies table in the Conrad Systems Contacts database. Later, you’ll create a form for the
 tblProducts table in this same database by using the Form Wizard. To follow along in
this section, open the ContactsDataCopy.accdb database.

Building a New Form with Design Tools
To begin building a new form that allows you to display and edit data from a table, you
need to start with a blank Form window. You’ll build this fi rst form without the aid
of the Form Wizard so that you’ll understand the variety of components that go into
form design. Click the Blank Form command in the Forms group on the Create tab. By
default Access opens a blank Form window in Layout view with the fi eld list displayed
on the right, as shown in Figure 11-3.

Figure 11-3 When you click the Blank Form command on the Ribbon, Access opens a new Form
window in Layout view.

Access does not know at this point from which tables or queries you want to display
and edit data. The fi eld list on the right displays a list of each local or linked table.
If you click the plus symbol next to the name of a table, Access expands the list and
 displays the name of every fi eld in that table. You can click on a fi eld name in the fi eld

Chapter 11

564 Chapter 11 Building a Form
list and drag and drop it onto your form. If you click the Edit Table hyperlink on the
right side of the fi eld list, Access opens that specifi c table in Design view. We discuss
Layout view in more detail in Chapter 12, “Customizing a Form”; for now we will focus
on Design view.

When you ask Access to create a new blank form, Access initially displays the form in
Layout view. To switch to Design view, click the arrow under the View button in the
Views group and click Design View. Access switches the Form window to Design view
and provides several design tools on the Design contextual tab under Form Design
Tools on the Ribbon, as shown in Figure 11-4.

Form window

Design Arrange Field list

Figure 11-4 When you open a form in Design view you can use the form grid and tools to create
your form elements.

Access starts with a form that has only a Detail section. The section has a grid on a
background that is the color defi ned for 3-D objects in the Appearance Settings dialog
box—usually a light gray or beige. You can click the edge of the Detail section and then
drag the edge to make the section larger or smaller. (To see more of the grid you might
also want to collapse the Navigation Pane on the left.) You can remove the grid dots
from the Detail section by clicking the Show Grid command in the Show/Hide group

 Starting from Scratch—A Simple Input Form 565

Ch
ap

te
r 1

1

on the Arrange tab under Form Design Tools. If you want to add a Header section or a
Footer section to the form, click the Form Header/Footer command in the same Show/
Hide group.

Note
To set the color for 3-D objects, right-click on the desktop and then click Personalize.

Click Windows Color And Appearance. In the Appearance Settings dialog box, click

Advanced. In the Item list, click 3D Objects. Use the Color 1 list to set the color you want

to use for 3-D objects.

The Detail section starts out at 5 inches (12.7 centimeters) wide by 2 inches (5.08 centi-
meters) high. The measurement gradations on the rulers are relative to the size and res-
olution of your screen. By default, Access sets the grid at 24 dots per inch horizontally
and 24 dots per inch vertically. You can change the density of the grid dots by altering
the Grid X and Grid Y properties in the form’s property sheet. To replace the fi eld list
with the property sheet, click the Property Sheet command in the Tools group on the
Design tab under Form Design Tools. You can fi nd the Grid X and Grid Y properties
near the bottom of the list on the Format tab of the property sheet when you have the
form selected.

Although you can design a form that is up to 22 inches (55.87 centimeters) wide, and

each form section can also be up to 22 inches high (a total of 66 inches if you include

all three sections), you should design your forms to fi t on your users’ screens. We tend

to design all our forms to comfortably fi t on the lowest common screen resolution—

1024×768. A form to fi t this size should be about 9.75 inches (24.8 centimeters) wide, and

the sum of the heights of the sections should be about 5.6 inches (14.2 centimeters) to

allow space for the Ribbon, status bar, and Windows taskbar. If your user has set a higher

screen resolution, and your application is designed using overlapping windows, extra

space will be available on the Access desktop to work with multiple form windows at a

time. If you are using tabbed documents, extra space appears to the right and bottom of

the form when the user opens it on a higher-resolution screen.

You can fi nd a handy form, zsfrm1024x768, in several of the sample databases. When

you’re working in a higher resolution, you can open this form and overlay it on the form

you’re designing. If your form fi ts behind the sample form, your form should be dis-

played properly at the lowest common resolution.

Note
To set the color for 3-D objects, right-click on the desktop and then click Personalize.

Click Windows Color And Appearance. In the Appearance Settings dialog box, click

Advanced. In the Item list, click 3D Objects. Use the Color 1 list to set the color you want

to use for 3-D objects.

SIDE OUT Choosing a Form Width and Height

Although you can design a form that is up to 22 inches (55.87 centimeters) wide, and

each form section can also be up to 22 inches high (a total of 66 inches if you include

all three sections), you should design your forms to fi t on your users’ screens. We tend

to design all our forms to comfortably fi t on the lowest common screen resolution—

1024×768. A form to fi t this size should be about 9.75 inches (24.8 centimeters) wide, and

the sum of the heights of the sections should be about 5.6 inches (14.2 centimeters) to

allow space for the Ribbon, status bar, and Windows taskbar. If your user has set a higher

screen resolution, and your application is designed using overlapping windows, extra

space will be available on the Access desktop to work with multiple form windows at a

time. If you are using tabbed documents, extra space appears to the right and bottom of

the form when the user opens it on a higher-resolution screen.

You can fi nd a handy form, zsfrm1024x768, in several of the sample databases. When

you’re working in a higher resolution, you can open this form and overlay it on the form

you’re designing. If your form fi ts behind the sample form, your form should be dis-

played properly at the lowest common resolution.

Chapter 11

566 Chapter 11 Building a Form
The Grid X and Grid Y property settings determine the intervals per unit of measure-
ment in the grid. You can enter a number from 1 (coarsest) through 64 (fi nest). You
set the unit of measure (U.S. or metric) by default when you select a country on the
Location tab in the Regional And Language Options dialog box. (You open this dialog
box by fi rst clicking Clock, Language, And Region in Control Panel and then click-
ing Regional And Language Options. If your Control Panel is set to Classic View, click
Regional And Language Options.)

For example, if your unit of measurement is inches and you specify a Grid X setting of
10, Access divides the grid horizontally into 0.1-inch increments. When your measure-
ment is in inches and you set the Grid X and Grid Y values to 24 or less, Access displays
the grid dots on the grid. In centimeters, you can see the grid dots when you specify a
setting of 9 or less. If you set a fi ner grid for either Grid X or Grid Y, Access won’t dis-
play the grid dots but you can still use the grid to line up controls. Access always dis-
plays grid lines at 1-inch intervals (U.S.) or 1-centimeter intervals (metric), even when
you set fi ne Grid X or Grid Y values.

Some Key Form Design Terms
As you begin to work in form design, you need to understand a few commonly

used terms.

A form that displays data from your tables must have a record source. A record source

can be the name of a table, the name of a query, or an SQL statement.

When a control can display information (text boxes, option groups, toggle buttons,

option buttons, check boxes, combo boxes, list boxes, bound object frames, and many

ActiveX controls), its control source defi nes the name of the fi eld from the record source

or the expression that provides the data to display. A control that has an expression as its

control source is not updatable.

When a form has a record source, it is bound to the records in that record source—the

form displays records from the record source and can potentially update the fi elds in the

records. When a control is on a bound form and its control source is the name of a fi eld

in the record source, the control is bound to the fi eld—the control displays (and perhaps

allows you to edit) the data from the bound fi eld in the current row of the record source.

A control cannot be bound unless the form is also bound.

A form that has no record source is unbound. A control that has no control source

is unbound.

Before proceeding further, you need to specify a record source for your new form.
Although you can drag and drop fi elds from the fi eld list and Access will fi gure out
the appropriate record source for you, you have more control if you select a record
source fi rst. Click the All tab in the property sheet, click the arrow to the right of the
Record Source property, and select the tblCompanies table from the list as shown in
Figure 11-5.

Some Key Form Design Terms
As you begin to work in form design, you need to understand a few commonly

used terms.

A form that displays data from your tables must have a record source. A record source
can be the name of a table, the name of a query, or an SQL statement.

When a control can display information (text boxes, option groups, toggle buttons,

option buttons, check boxes, combo boxes, list boxes, bound object frames, and many

ActiveX controls), its control source defi nes the name of the fi eld from the record source

or the expression that provides the data to display. A control that has an expression as its

control source is not updatable.

When a form has a record source, it is bound to the records in that record source—the d
form displays records from the record source and can potentially update the fi elds in the

records. When a control is on a bound form and its control source is the name of a fi eld

in the record source, the control is bound to the fi eld—the control displays (and perhapsd
allows you to edit) the data from the bound fi eld in the current row of the record source.

A control cannot be bound unless the form is also bound.

A form that has no record source is unbound. A control that has no control source

is unbound.

 Starting from Scratch—A Simple Input Form 567

Ch
ap

te
r 1

1

Figure 11-5 Select a record source to specify which table or query to use for the data on
your form.

The following sections describe some of the tools you can use to design a form.

The Form Design Tools Contextual Ribbon Tabs
As you learned in Chapter 2, “Exploring the New Look of Access 2007,” and Chapter 3,
“Microsoft Offi ce Access 2007 Overview,” the Ribbon provides contextual tabs when
Access displays objects in various views. When a form is in Design view, two contextual
tabs appear—Design and Arrange under Form Design Tools. These contextual tabs,
shown in Figure 11-6, are the “command center” of form design. These tabs provide all
the essential tools and commands you need to design and modify your forms.

At the heart of these tabs is the Controls group found on the Design tab. This group
contains buttons for all the types of controls you can use when you design a form. It
also contains a button (named Insert ActiveX Control) that gives you access to all the
ActiveX controls (for example, the calendar control that comes with Access) that you
have installed on your system. To select a particular control to place on a form, click
the control’s button in the group. When you move the mouse pointer over the form, the
mouse pointer turns into an icon that represents the control you selected. Position the
mouse pointer where you want to place the control, and click the left mouse button to
place the control on the form. If you want to size the control as you place it, drag the
mouse pointer to make the control the size you want. (You can also size a control after
you place it by dragging the sizing handles at its sides or corners.)

Chapter 11

568 Chapter 11 Building a Form
Figure 11-6 You can use the various commands on the two contextual tabs under Form Design
Tools to create and edit your forms.

Top to bottom, left to right, the buttons in the Controls group are described in Table 11-1.

Table 11-1 Controls Group Buttons

Button Description

Logo. Click this button to insert into a form a picture to be used as a logo
displayed in an image control. (See the description of the image control
later in this table.) When you click Logo, Access opens the Insert Picture
dialog box where you can select the graphic or picture that you want to use
as a logo. By default, Access places the logo in the form’s Header section.
If you have not revealed the form header and footer, the command adds
those sections to your form before inserting the logo in the Header section.

Title. Click this button to insert a new label control in a form’s Header
section to be used as a title for the form. (See the description of the label
control later in this table.) If you have not revealed the form header and
footer, the command adds those sections to your form before inserting the
label control in the Header section.

Insert Page Number. Click this button to open the Page Numbers dialog
box where you can choose to insert page numbers in the Page Header or
Page Footer section of the form in text box controls. (See the description of
the text box control later in this table.) The Page Header and Page Footer
sections appear only when you print the form.

Date & Time. Click this button to open the Date And Time dialog box
where you can choose to insert the date, the time, or both the date and
time displayed in text box controls in the form’s Header section. (See the
description of the text box control later in this table.) You can choose
different formats for both the date and time. If you have not revealed the
form header and footer, the command adds those sections to your form
before inserting the text box controls in the Header section.

Text Box. Click this button to create text box controls for displaying text,
numbers, dates, times, and memo fi elds. You can bind a text box to one
of the fi elds in an underlying table or query. If you let a text box that is
bound to a fi eld be updated, you can change the value in the fi eld in the
underlying table or query by entering a new value in the text box. You can
also use a text box to display calculated values.

 Starting from Scratch—A Simple Input Form 569

Ch
ap

te
r 1

1

Button Description

Label. Click this button to create label controls that contain fi xed text. By
default, controls that can display data have a label control automatically
attached. You can use this command to create stand-alone labels for
headings and for instructions on your form.

Button. Click this button to create a command button control that
can activate a macro or a Visual Basic procedure. You can also specify a
hyperlink address that Access opens when a user clicks the button.

Combo Box. Click this button to create a combo box control that contains
a list of potential values for the control and an editable text box. To create
the list, you can enter values for the Row Source property of the combo
box. You can also specify a table or a query as the source of the values in
the list. Access displays the currently selected value in the text box. When
you click the arrow to the right of the combo box, Access displays the
values in the list. Select a new value in the list to reset the value in the
control. If you bind the combo box to a fi eld in the underlying table or
query, you can change the value in the fi eld by selecting a new value in the
list. If you bind the combo box to a multi-value fi eld, Access displays the list
with check boxes to allow the user to select multiple values. You can bind
multiple columns to the list, and you can hide one or more of the columns
in the list by setting a column’s width to 0. You can bind the actual value in
the control to such a hidden column. When a multiple-column list is closed,
Access displays the value in the fi rst column whose width is greater than 0.
Access displays all nonzero-width columns when you open the list.

List Box. Click this button to create a list box control that contains a list of
potential values for the control. To create the list, you can enter the values
in the Row Source property of the list box. You can also specify a table or
a query as the source of the values in the list. List boxes are always open,
and Access highlights the currently selected value in the list box. You select
a new value in the list to reset the value in the control. If you bind the list
box to a fi eld in the underlying table or query, you can change the value
in the fi eld by selecting a new value in the list. If you bind the list box to a
multi-value fi eld, Access displays the list with check boxes to allow the user
to select multiple values. You can bind multiple columns to the list, and you
can hide one or more of the columns in the list by setting a column’s width
to 0. You can bind the actual value in the control to such a hidden column.
Access displays all nonzero-width columns that fi t within the defi ned width
of the control. If the list box control is unbound, you can allow the user to
select multiple values in the list (also called a multiple-selection list box).

Subform/Subreport. Click this button to embed another form in the
current form. You can use the subform to show data from a table or a
query that is related to the data in the main form. Access maintains the link
between the two forms for you.

Line. Click this button to add lines to a form to enhance its appearance.

Chapter 11

570 Chapter 11 Building a Form
Button Description

Rectangle. Click this button to add fi lled or empty rectangles to a form to
enhance its appearance.

Bound Object Frame. Click this button to display and edit an OLE object
fi eld from the underlying data. Access can display most pictures and graphs
directly on a form. For other objects, Access displays the icon for the
application in which the object was created. For example, if the object is a
sound object created in Windows Sound Recorder, you’ll see a speaker icon
on your form.

Option Group. Click this button to create option group controls that
contain one or more toggle buttons, option buttons, or check boxes. (See
the descriptions of these controls later in this table.) You can assign a
separate numeric value to each button or check box that you include in the
group. When you have more than one button or check box in a group, you
can select only one button or check box at a time, and the value assigned
to that button or check box becomes the value for the option group. If
you have incorrectly assigned the same value to more than one button
or check box, all buttons or check boxes that have the same value appear
highlighted when you click any of them. You can select one of the buttons
or check boxes in the group as the default value for the group. If you bind
the option group to a fi eld in the underlying query or table, you can set a
new value in the fi eld by selecting a button or a check box in the group.

Check Box. Click this button to create a check box control that holds
an on/off, a true/false, or a yes/no value. When you select a check box,
its value becomes –1 (to represent on, true, or yes), and a check mark
appears in the box. Select the check box again, and its value becomes 0
(to represent off, false, or no), and the check mark disappears from the
box. You can include a check box in an option group and assign the check
box a unique numeric value. If you create a group with multiple controls,
selecting a new check box clears any previously selected toggle button,
option button, or check box in that group (unless other buttons or check
boxes in the group also have the same value). If you bind the check box to
a fi eld in the underlying table or query, you can toggle the fi eld’s value by
clicking the check box.

Option Button. Click this button to create an option button control
(sometimes called a radio button control) that holds an on/off, a true/false,
or a yes/no value. When you select an option button, its value becomes –1
(to represent on, true, or yes), and a fi lled circle appears in the center of
the button. Select the button again, and its value becomes 0 (to represent
off, false, or no), and the fi lled circle disappears. You can include an option
button in an option group and assign the button a unique numeric value.
If you create a group with multiple controls, selecting a new option button
clears any previously selected toggle button, option button, or check box in
that group (unless other buttons or check boxes in the group also have the
same value). If you bind the option button to a fi eld in the underlying table
or query, you can toggle the fi eld’s value by clicking the option button.

 Starting from Scratch—A Simple Input Form 571

Ch
ap

te
r 1

1

Button Description

Toggle Button. Click this button to create a toggle button control that
holds an on/off, a true/false, or a yes/no value. When you click a toggle
button, its value becomes –1 (to represent on, true, or yes), and the button
appears pressed in. Click the button again, and its value becomes 0 (to
represent off, false, or no). You can include a toggle button in an option
group and assign the button a unique numeric value. If you create a group
with multiple controls, selecting a new toggle button clears any previously
selected toggle button, option button, or check box in that group (unless
other buttons or check boxes in the group also have the same value). If you
bind the toggle button to a fi eld in the underlying table or query, you can
toggle the fi eld’s value by clicking the toggle button.

Tab Control. Click this button to create a series of tab pages on your
form. Each page can contain a number of other controls to display
information. The tab control works much like many of the option dialog
boxes or property sheet windows in Access—when a user clicks a different
tab, Access displays the controls contained on that tab. See Chapter 13,
“Advanced Form Design,” for details about using the Tab Control button.

Insert Page. Click this button to add an additional tab page to your tab
control. By default Access creates two pages for a new tab control object.
Click on your tab control object on the design grid and then click the Insert
Page command to add an additional tab page.

Insert Chart. Click this button to add a chart on your form grid. Clicking
this button and then placing the control on your form launches the Chart
Wizard to walk you through the steps necessary to create a new chart.

Unbound Object Frame. Click this button to add an object from another
application that supports object linking and embedding. The object
becomes part of your form, not part of the data from the underlying table
or query. You can add pictures, sounds, charts, or slides to enhance your
form. When the object is a chart, you can specify a query as the source of
data for the chart, and you can link the chart display to the current record
in the form by one or more fi eld values.

Image. Click this button to place a static picture on your form. You cannot
edit the picture on the form, but Access stores it in a format that is very
effi cient for application speed and size. If you want to use a picture as the
entire background of your form, you can set the form’s Picture property.

Insert Or Remove Page Break. Click this button to add a page break
between the pages of a multiple-page form. (We think this tool is
misnamed. To remove a page break, you must select the page break
control and press the Delete key.)

Insert Hyperlink. Click this button to add a hyperlink in a label control
to your form design grid. This hyperlink can contain a Uniform Resource
Locator (URL) that points to a location on the World Wide Web, on a local
intranet, or on a local drive. It can also use a Universal Naming Convention
(UNC) fi le name to point to a fi le on a server on your local area network
(LAN) or on your local computer drives. The link might point to a fi le that
is a Web page or even another object in your current database. Clicking
this button opens the Insert Hyperlink dialog box discussed previously in
“Working with Hyperlinks” on page 397.

Chapter 11

572 Chapter 11 Building a Form
Button Description

Attachment. Click this button to insert an attachment control on the
form design grid. You can bind this control to an attachment fi eld in the
underlying data. You can use this control, for example, to display a picture
or to attach other fi les. In Form view this control presents the Manage
Attachments dialog box where you can attach, delete, and view multiple
attachment fi les stored in the underlying fi eld.

Line Thickness menu. Use this drop-down menu to change the selected
line thickness. The available options are Hairline, 1pt, 2pt, 3pt, 4pt, 5pt, and
6pt.

Line Type menu. Use this drop-down menu to change the selected line
type. The available options are Transparent, Solid, Dashes, Short Dashes,
Dots, Sparse Dots, Dash Dot, and Dash Dot Dot.

Line Color menu. Use this drop-down menu to change the selected line
color. You can choose from predefi ned color schemes or create a custom
color from the Color Picker dialog box.

Special Effect menu. Use this drop-down menu to change the look of the
control to fl at, raised, sunken, etched, shadowed, or chiseled.

Set Control Defaults. Click this button if you want to change the default
property settings for all new controls of a particular type. Select a control
of that type, set the control’s properties to the desired default values, and
then click the Set Control Defaults command. The settings of the currently
selected control become the default settings for any subsequent defi nitions
of that type of control on your form.

Select All. Click this button to select all the controls on the form
design grid.

Select. Click this button to select, size, move, and edit existing controls.
This is the default command when you fi rst open a form in Design view.
This button becomes selected again after you have used one of the control
commands to place a new control on your form.

Use Control Wizards. Click this button to activate a control wizard. Click
the button again to deactivate the wizard. When this button appears
pressed in, a control wizard helps you enter control properties whenever
you create a new option group, combo box, list box, or command button.
The Combo Box and List Box Wizards also offer you an option to create
Visual Basic code to move to a new record based on a selection the user
makes in the combo or list box. The Command Button Wizard offers to
generate Visual Basic code that performs various automated actions when
the user clicks the button.

Insert ActiveX Control. Click this button to open a dialog box showing
all the ActiveX controls you have installed on your system. You can select
one of the controls and then click OK to add the control to the form design
grid. Not all ActiveX controls work with Access.

For more information about using controls on forms, see Chapter 12 and Chapter 13.

 Starting from Scratch—A Simple Input Form 573

Ch
ap

te
r 1

1

When you click a button that is a form control, your mouse pointer reverts to the Select

button after you place the selected control on your form. If you plan to create several

controls using the same tool—for example, a series of check boxes in an option group—

double-click the button for that control in the Controls group to “lock” it. You can unlock

it by clicking any other button (including the Select button).

The Field List
Use the fi eld list in conjunction with the Controls group to place bound controls (con-
trols linked to fi elds in a table or a query) on your form. You can open the fi eld list by
clicking the Add Existing Fields button in the Tools group on the Design tab. If the
form is bound to a table or query, Access displays the name of the underlying table or
query along with all the fi elds available, as shown in Figure 11-7. Any tables that have
relationships to the underlying table defi ned are displayed under Fields Available In
Related Tables. The last section of the fi eld list, Fields Available In Other Tables, lists the
tables and fi elds from all other tables in this database. Click the Show Only Fields In
The Current Record Source link to remove the bottom two sections of the fi eld list. You
can undock the fi eld list by clicking the title bar and dragging it away from the right
edge of the Form window. After you undock the fi eld list, you can drag the edges of the
window to resize it so that you can see any long fi eld names. You can drag the title bar
to move the window out of the way. When the list of available fi eld names is too long to
fi t in the current size of the window, use the vertical scroll bar to move through the list.

To use the fi eld list to place a bound control on a form, fi rst click the button for the
type of control you want in the Controls group. Then drag the fi eld you want from the
fi eld list and drop it into position on the form. If you click the button for a control that’s
inappropriate for the data type of the fi eld, Access selects the default control for the
data type. For example, if you click anything but the Attachment button when placing
an attachment fi eld on a form, Access creates an attachment control for you anyway. If
you try to drag any fi eld after clicking the button for the subform/subreport, unbound
object frame, line, rectangle, or page break control, Access creates a text box control or
bound object frame control, as appropriate, instead. If you drag a fi eld from the fi eld list
without clicking a control, Access uses either the display control you defi ned for the
fi eld in the table defi nition or a control appropriate for the fi eld data type.

SIDE OUT Locking a Control Button

When you click a button that is a form control, your mouse pointer reverts to the Select

button after you place the selected control on your form. If you plan to create several

controls using the same tool—for example, a series of check boxes in an option group—

double-click the button for that control in the Controls group to “lock” it. You can unlock

it by clicking any other button (including the Select button).

Chapter 11

574 Chapter 11 Building a Form
Figure 11-7 The fi eld list shows the names of the fi elds in the bound table or query, any related
tables, and fi elds from all other tables in the current database.

The Property Sheet
The form, each section of the form (header, detail, footer), and each control on the
form have a list of properties associated with them, and you set these properties using
a property sheet. Each control on a form, each section on a form, and the form itself
are all objects. The kinds of properties you can specify vary depending on the object.
To open the property sheet for an object, select the object and then click the Property
Sheet button in the Tools group on the Design tab. Access opens a window similar to
the one shown in Figure 11-8 on the right side of the Form window, replacing the fi eld
list. (You cannot have both the property sheet and the fi eld list open at the same time.)
If you have previously undocked either the fi eld list or property sheet, the property
sheet appears in the undocked window. If the property sheet is already open, you can
view the properties specifi c to an object by clicking the object. You can also click the
arrow under Selection Type and then select the object name from the list at the top of
the property sheet.

 Starting from Scratch—A Simple Input Form 575

Ch
ap

te
r 1

1

Figure 11-8 You can view the properties of form controls and sections using the property sheet.

You can drag the title bar to move the property sheet around on your screen. You can
also drag the edges of the window to resize it so that you can see more of the property
settings. Because a form has more than 100 properties that you can set and because
many controls have more than 70 properties, Access provides tabs at the top of the
property sheet so that you can choose to display all properties (the default) or to display
only format properties, data properties, event properties, or other properties. A form
property sheet displaying only the data properties is shown in Figure 11-9.

When you click in a property box that provides a list of valid values, a small arrow
appears on the right side of the property box. Click this arrow to see a list of the values
for the property. For properties that can have a very long value setting, you can click the
property and then press Shift+F2 to open the Zoom dialog box. The Zoom dialog box
provides an expanded text box for entering or viewing a value.

Chapter 11

576 Chapter 11 Building a Form
Figure 11-9 If you click the Data tab on the form property sheet, Access displays only the data
properties.

In many cases, a window, dialog box, or wizard is available to help you create property
settings for properties that can accept a complex expression, a query defi nition, or
code (a macro or a Visual Basic procedure) to respond to an event. When such help is
available for a property setting, Access displays a small button with an ellipsis next to
the property box when you select the property; this is the Build button. If you click the
Build button, Access responds with the appropriate window, dialog box, or wizard.

For example, suppose that you want to see the companies displayed in this form in
ascending order by company name. The easiest way to accomplish this is to create a
query that includes the fi elds from tblCompanies sorted on the CompanyName fi eld,
and then specify that query as the Record Source property for the form. To start, display
the property sheet for the form, click the Data tab to display the form’s data properties,
click in the Record Source property box, and then click the Build button next to Record
Source to start the Query Builder. Access asks whether you want to build a new query
based on the table that is currently the source for this form. If you click Yes, Access
opens a new Query window in Design view with the tblCompanies fi eld list displayed
in the upper part of the window and the property sheet open either in an undocked
window or to the right, as shown in Figure 11-10.

Note
Unlike previous releases, after you open the property sheet in table, query, form, or

report Design view, the window will be open for all objects in Design view until you close

it. Likewise, if you close the property sheet in Design view, the window will be closed for

all other objects in Design view until you reopen it.

BuildBuild

Note
Unlike previous releases, after you open the property sheet in table, query, form, or

report Design view, the window will be open for all objects in Design view until you close

it. Likewise, if you close the property sheet in Design view, the window will be closed for

all other objects in Design view until you reopen it.

 Starting from Scratch—A Simple Input Form 577

Ch
ap

te
r 1

1

Figure 11-10 You can use the Query Builder to create a query for the form’s Record
Source property.

You’ll need all the fi elds in the tblCompanies table for this form, so select them and
drag them to the design grid. For the CompanyName fi eld, specify Ascending as the
sorting order. Close the property sheet for now by clicking the Close button on its title
bar. Your Query Builder window should look like the window shown in Figure 11-11.

Figure 11-11 Select all the fi elds from the table to include them in the query for the Record Source
property of the form.

Chapter 11

578 Chapter 11 Building a Form

To easily select all the fi elds from a fi eld list displayed in the upper part of the Query

window, double-click the title bar of the fi eld list. Access highlights all the fi elds for you.

Then simply click any of them and drag the fi elds as a group to the design grid.

If you close the Query Builder window at this point, Access asks whether you want
to update the property. If you click Yes, Access stores the SQL text for the query in
the Record Source property box. A better approach is to save the query and give it a
name, such as qryCompaniesSortedByName. Do that now by clicking the Save As com-
mand in the Close group on the Design contextual tab under Query Tools, entering
qryCompaniesSortedByName in the Save As dialog box, and then clicking OK. Now
when you close the query, Access asks whether you want to save the query and update
the property. Click Yes, and Access places the name of the query (rather than the SQL
text) in the property sheet.

Building a Simple Input Form for the tblCompanies Table
Now let’s create a simple input form for the tblCompanies table in the Conrad Systems
Contacts database. If you’ve followed along to this point, you should have a blank form
based on the qryCompaniesSortedByName query that you created using the Query
Builder. If you haven’t followed along, click the Blank Form command in the Forms
group on the Create tab.

Click the arrow under View in the Views group on the Design tab and click Design
View to switch from Layout view to Design view. You’ll see the Form window in Design
view and a set of design tools, as shown earlier in Figure 11-4. If necessary, open the
property sheet by clicking the Property Sheet command in the Tools group of the
Design tab under Form Design Tools. By default this new form is unbound, so click
the Record Source property, click the arrow that appears next to the property box, and
select tblCompanies from the list. Now the form is bound to the tblCompanies table,
but we want to change the record source to a saved query based on the tblCompanies
table. Select the Record Source property again, click the Build button, and follow the
procedures discussed in the previous sections, whose results are shown in Figures
11-10 and 11-11; this will create the query you need and make it the source for the form.

In the blank form that now has the qryCompaniesSortedByName query as its record
source, drag the bottom of the Detail section downward to make some room to work.
All the fi elds in tblCompanies are defi ned to be displayed with a text box, so you don’t
need to click a button in the Controls group. If you’d like to practice, though, double-
click the Text Box button in the Controls group before dragging fi elds from the fi eld
list. If the fi eld list is not displayed, click the Add Existing Fields button in the Tools
group on the Design tab. You can drag fi elds (for this exercise, all except the ReferredBy
fi eld) one at a time to the Detail section of the form, or you can click the fi rst fi eld
 (CompanyID), hold down the Shift key, and click the last fi eld (Website) to select them
all. After you drag and drop the fi elds, your form should now look something like the

SIDE OUT Selecting All the Fields

To easily select all the fi elds from a fi eld list displayed in the upper part of the Query

window, double-click the title bar of the fi eld list. Access highlights all the fi elds for you.

Then simply click any of them and drag the fi elds as a group to the design grid.

 Starting from Scratch—A Simple Input Form 579

Ch
ap

te
r 1

1

one shown in Figure 11-12. If you double-clicked the Text Box button to select it for
multiple operations, click the Select button to unlock the selection.

Figure 11-12 You can drag the fi elds from the qryCompaniesSortedByName fi eld list to place these
text box controls on the form design grid.

A quick way to place several successive fi elds on a form is to click the fi rst fi eld you want

in the fi eld list, scroll down until you see the last fi eld you want, and then hold down the

Shift key while you click the last fi eld. This procedure selects all the fi elds between the

fi rst and last fi elds you clicked. Holding down the Ctrl key and clicking several noncon-

tiguous fi elds works, too. If you include a fi eld in error, hold down the Ctrl key and click

the selected fi eld that you don’t want. Click any of the selected fi elds and drag the fi elds

as a group to the Detail section of the form. This has the added benefi t of lining up all

the controls in a vertical column.

When you position the fi eld icon that you’ve dragged from the fi eld list, the upper-left
corner of the new text box will be at the position of the mouse pointer when you release

SIDE OUT Use the Shift or the Ctrl Key to Select Multiple Fields

A quick way to place several successive fi elds on a form is to click the fi rst fi eld you want

in the fi eld list, scroll down until you see the last fi eld you want, and then hold down the

Shift key while you click the last fi eld. This procedure selects all the fi elds between the

fi rst and last fi elds you clicked. Holding down the Ctrl key and clicking several noncon-

tiguous fi elds works, too. If you include a fi eld in error, hold down the Ctrl key and click

the selected fi eld that you don’t want. Click any of the selected fi elds and drag the fi elds

as a group to the Detail section of the form. This has the added benefi t of lining up all

the controls in a vertical column.

Chapter 11

580 Chapter 11 Building a Form
the mouse button. Note that the default text box control has a label control automati-
cally attached to display the bound fi eld’s Caption property (or the fi eld name if the
fi eld does not have a caption), positioned 1 inch to the left of the text box. Also, in
Design view, the label control displays its Caption property, and the text box control
displays its Control Source property (the name of the fi eld to which it is bound).

You should drop each text box about 1.25 inches (3 centimeters) from the left edge of
the Detail section to leave room to the left of the text box for Access to place the control
labels. If you don’t leave room, the text boxes will overlap the labels. Even if you do
leave room, if a caption is too long to fi t in the 1-inch space between the default label
and the default text box (for example, Company / Organization in Figure 11-12), the
text box will overlap the label.

If you selected multiple fi elds in the fi eld list and added them all with one drag-and-
drop action, when you click the Property Sheet button immediately after adding the
fi elds, the property sheet indicates that you have selected multiple controls. (In this
example, we dragged all the selected fi elds to the Detail section at one time.) Whenever
you select multiple controls on a form in Design view, Access displays the properties
that are common to all the controls you selected. If you change a property in the prop-
erty sheet while you have multiple controls selected, Access makes the change to all the
selected controls.

Moving and Sizing Controls
By default, Access creates text boxes that are 1 inch wide (except for Hyperlink and
Memo fi elds). For some of the fi elds, 1 inch is larger than necessary to display the fi eld
value—especially if you are using the default 8-point font size. For other fi elds, the
text box isn’t large enough. You probably also want to adjust the location of some of
the controls.

To change a control’s size or location, you usually have to select the control fi rst. Be
sure that you have clicked the Select button in the Controls group on the Design tab.
Click the control you want to resize or move, and moving and sizing handles appear
around the control. The handles are small boxes that appear at each corner of the con-
trol—except at the upper-left corner, where the larger handle indicates that you cannot
use it for sizing. In Figure 11-12, handles appear around all the text boxes because they
are all selected. To select just one control, click anywhere in the design area where there
is no control; this changes the selection to the Detail section. Then click the control you
want. If the control is wide enough or high enough, Access provides additional handles
at the midpoints of the edges of the control.

To change the size of a control, you can use the sizing handles on the edges, in either
of the lower corners, or in the upper-right corner of the control. When you place the
mouse pointer over one of these sizing handles, the pointer turns into a double arrow,
as shown in Figure 11-13. With the double-arrow pointer, drag the handle to resize the
control. You can practice on the form by shortening the CompanyID text box so that it’s
0.5 inch long. You need to stretch the company name, department, and address fi elds
until they are each about 1.75 inches long. You might also want to reduce the state or
province fi eld to display two characters and decrease the Web site fi eld to 1.75 inches.

 Starting from Scratch—A Simple Input Form 581

Ch
ap

te
r 1

1

Figure 11-13 You can drag a corner handle of a selected control to change the control’s width or
height or both.

To move a control that is not currently selected, click the control and drag it to a new
location. After you click a control, you can move it by placing your mouse pointer any-
where between the handles along the edge of the control. When you do this, the mouse
pointer turns into a pointer with a four arrow crosshair, as shown in Figure 11-14, and
you can then drag the control to a new location. Access displays an outline of the con-
trol as you move the control to help you position it correctly. When a control has an
attached label, moving either the control or the label in this way moves both of them.

Figure 11-14 You can drag the edge of a selected control to move the control.

You can position a control and its attached label independently by dragging the larger
handle in the upper-left corner of the control or label. When you position the mouse
pointer over this handle, the pointer again turns into a pointer with a four arrow cross-
hair, as shown in Figure 11-15. Drag the control to a new location relative to its label.

Figure 11-15 You can drag the large handle of a selected control to move the control indepen-
dently of its label.

You can delete a label from a control by selecting the label and pressing the Delete key.
If you want to create a label that is independent of a control, you can click the Label
 button. If you inadvertently delete a label from a control and you’ve made other changes
so that you can no longer undo the deletion, you can attach a new label by doing the
following:

1. Click the Label button in the Controls group on the Design tab to create a new
unattached label.

2. Select the label, and then click the Cut command in the Clipboard group on the
Home tab to move the label to the Clipboard.

3. Select the control to which you want to attach the label, and then click the Paste
command in the Clipboard group.

Chapter 11

582 Chapter 11 Building a Form
The Font Group
The Font group on the Design tab under Form Design Tools, shown in Figure 11-16,
provides a quick and easy way to alter the appearance of a control by allowing you to
click buttons rather than set properties. Select the object you want to format and then
click the appropriate button in the Font group. The Font group is also handy for setting
background colors for sections of the form. Table 11-2 describes each of the buttons in
this group.

 Underline Font Color
 Font Font Size Fill/Back Color

Align Left Conditional Formatting
 Center Alternate Fill/Back Color
 Align Right
 Format Painter

Bold

Italic

Figure 11-16 The Font group provides you with tools to change the appearance of form controls.

Table 11-2 Font Group Buttons

Button Description

Font Use to set the font for labels, text boxes, command buttons, toggle
buttons, combo boxes, and list boxes.

Bold Click to set font style to bold. Click again to remove bold.

Italic Click to set font style to italic. Click again to remove italic.

Underline Click to underline text. Click again to remove underline.

Font Size Use to set font size.

Align Left Click to left align text.

Center Click to center text.

Align Right Click to right align text.

Format Painter Use to copy formatting from one control to another control.

Font Color Use to set the font color of the control.

Fill/Back Color Use to set the background color of the control or form area. You can
also set the background color to transparent.

Alternate Fill/
Back Color

Use to set a background color for alternating rows for forms displayed
in Datasheet, Split Form, or Continuous Form view.

Conditional
Formatting

Use to defi ne dynamic modifi cation of the formatting of text boxes
and combo boxes by testing the value in the control, by comparing
values in one or more fi elds, or when the control has the focus.

 Starting from Scratch—A Simple Input Form 583

Ch
ap

te
r 1

1

You can click only one of the alignment buttons—Align Left, Align Right, or Center—at

a time. If you do not click a button, alignment is set to General—text data aligns left and

numeric data aligns right. You can also set the Text Align property in the property sheet.

Depending on the object you select, some of the Font group options might not be avail-
able. For example, you can’t set text color on an attachment or a bound object frame
control. If you have the property sheet open and you scroll through it so that you can
see the properties the Font group sets, you can watch the settings in the property sheet
change as you click different options in the Font group.

Setting Border Color, Type, Line Thickness, and Special Effect
You can fi nd a special set of commands at the right end of the Controls group on the
Design tab below Form Design Tools to further customize the look of the controls on
your form, as shown in Figure 11-17. Table 11-3 explains each of these buttons.

 Line Type Line Thickness
 Special Effect

Line Color

Figure 11-17 You can use commands in the Controls group on the Design tab to customize the
borders of your controls.

Table 11-3 Border Formatting Commands for Controls

Button Description

Line Thickness When Special Effect is set to Flat (see below), use this command to set
the border width from hairline to 6 points wide.

Line Type You can make the border transparent or specify a border that is a
solid line, dashes, short dashes, dots, sparse dots, dash dot, or dash
dot dot.

Line Color Use this command to set the border color of the control. You can also
set the border color to transparent.

Special Effect (Shown with list of options open.) You can set the look of the control
to fl at, raised, sunken, etched, shadowed, or chiseled.

SIDE OUT Using the Alignment Buttons

You can click only one of the alignment buttons—Align Left, Align Right, or Center—at

a time. If you do not click a button, alignment is set to General—text data aligns left and

numeric data aligns right. You can also set the Text Align property in the property sheet.

Chapter 11

584 Chapter 11 Building a Form
Depending on the object you select, some of the Controls group options might not be
available. For example, you can’t set the border color on a toggle button or command
button because the color is always set to gray for this kind of control. If you have the
property sheet open and you scroll through it so that you can see the properties these
border commands set, you can watch the settings in the property sheet change as you
click different options in the group.

Setting Text Box Properties
The next thing you might want to do is change some of the text box properties. Figure
11-18 shows some of the properties for the CompanyID text box control. Because the
CompanyID fi eld in the tblCompanies table is an AutoNumber fi eld, which a user can-
not change, you should change the properties of this control to prevent it from being
selected on the form. Access provides two properties that you can set to control what
the user can do. The Enabled property determines whether the control can receive
the focus (the user can click in or tab to the control). The Locked property determines
whether the user can enter data in the control. The defaults are Enabled Yes and
Locked No.

Figure 11-18 You can set the Enabled and Locked properties of the CompanyID text box control so
that users cannot click into that control.

 Starting from Scratch—A Simple Input Form 585

Ch
ap

te
r 1

1

You can set the Enabled property of the control to No so that the user cannot click in or
tab to the control. When you do this, Access prohibits access to the fi eld but causes the
control and its label to appear dimmed because the control is not locked. (When Access
sees that a control is disabled but is still potentially updatable despite being bound to
an AutoNumber, it causes the control to appear dimmed.) To display the control and its
label normally, just set Locked to Yes.

If you specify a Format, Decimal Places, or Input Mask property setting when you
defi ne a fi eld in a table, Access copies these settings to any text box that you bind to
the fi eld. Any data you enter using the form must conform to the fi eld validation rule
defi ned in the table; however, you can defi ne a more restrictive rule for this form. Any
new row inherits default values from the table unless you provide a different default
value in the property sheet. The Status Bar Text property derives its value from the
Description property setting you entered for the fi eld in the table. You can learn more
about control properties in the next chapter and in Part 4, “Automating an Access
 Application.”

Setting Label Properties
You can also set separate properties for the labels attached to controls. Click the label
for CompanyID to see the property sheet shown in Figure 11-19. Access copies the
Caption property from the fi eld in the underlying table to the Caption property in the
associated control label. The default settings for the text box control on a form specify
that all text boxes have labels and that the caption should have a trailing colon. When
you added the CompanyID text box to the form, Access used the caption from the fi eld’s
defi nition in the tblCompanies table (Company ID instead of the fi eld name Compa-
nyID), and added the trailing colon. Also, all controls on a form must have a name, so
Access generated a name (Label0) that is the control type followed by an integer.

You also can correct the caption from inside a label by selecting the label, moving the
mouse pointer inside the label until the pointer changes into an I-beam shape, and then
clicking to set the insertion point inside the label text. You can delete unwanted char-
acters, and you can type new characters. When you fi nish correcting a label caption,
Access automatically adjusts the size of the control smaller or larger to adequately dis-
play the new name. You can change settings using the property sheet to adjust the size
of a label, or you can also select the control and drag the control’s handles to override
the automatic resizing and manually adjust the size and alignment of the control.

Chapter 11

586 Chapter 11 Building a Form
Figure 11-19 This is the property sheet for the CompanyID label control.

Setting Form Properties
You can display the form’s properties in the property sheet (as shown in Figure 11-20)
by clicking anywhere outside the Detail section of the form, by clicking the small
square box in the upper-left corner of the Form window, or by selecting Form from the
Selection Type combo box on the property sheet. On the Format tab in Figure 11-20,
we set the caption to Companies / Organizations. This value will appear on the Form
window’s title bar in Form view or in Datasheet view.

Toward the bottom of the list of properties on the Format tab are the Grid X and Grid Y
properties that control the density of dots on the grid as discussed earlier in this chap-
ter. The defaults are 24 dots per inch across (Grid X) and 24 dots per inch down (Grid
Y), if your measurements are in U.S. units. For metric measurements, the defaults are
5 dots per centimeter in both directions. Access also draws a shaded line on the grid
every inch or centimeter to help you line up controls. If you decide to turn on the Snap
To Grid command in the Control Layout group on the Arrange tab below Form Design
Tools to help you line up controls on your form, you might want to change the density
of the grid dots to give you greater control over where you place objects on the form.

 Starting from Scratch—A Simple Input Form 587

Ch
ap

te
r 1

1

Figure 11-20 You can use the Caption property on the Format tab of the property sheet for the
form to defi ne a title for the form.

Note
You won’t see the grid dots if you set either the Grid X or Grid Y property to more than

24 in U.S. measurements or more than 9 in metric measurements.

You can set the properties beginning with On Current on the Event tab of the property
sheet to run macros or Visual Basic procedures. The events associated with these prop-
erties can trigger macro actions.

Customizing Colors and Checking Your Design Results
Let’s explore some of the interesting effects you can design using colors. To make the
fi elds on the form stand out, you can click in the Detail section and then set the back-
ground to dark gray using the Fill/Back Color button in the Font group on the Design
tab. To make the labels stand out against this dark background, drag the mouse pointer
around all the label controls or click the horizontal ruler directly above all the label

Note
You won’t see the grid dots if you set either the Grid X or Grid Y property to more than

24 in U.S. measurements or more than 9 in metric measurements.

Chapter 11

588 Chapter 11 Building a Form
controls, and then set the Fill/Back Color to white. If you haven’t already moved and
resized the labels, you can select all the labels and then widen them all to the left by
clicking the left edge sizing handle of any of the labels and dragging left. This pulls
the long Company / Organization caption over so that it doesn’t overlap the Company-
Name fi eld. If you also want to make the Detail section fi t snugly around the controls on
your form, drag the edges of the Detail section inward.

To select all controls in a vertical area, click the horizontal ruler above the area containing

the controls you want to select. Likewise, to select all controls in a horizontal area, click

the vertical ruler.

When you fi nish working on this form in Design view, it might look something like the
one shown in Figure 11-21.

First click here to select all labels . . .
 . . . and then choose white as the background color.

Figure 11-21 You can add contrast to the Companies / Organizations form by using the Fill/Back
Color button.

SIDE OUT Using the Ruler to Select All Controls

To select all controls in a vertical area, click the horizontal ruler above the area containing

the controls you want to select. Likewise, to select all controls in a horizontal area, click

the vertical ruler.

 Starting from Scratch—A Simple Input Form 589

Ch
ap

te
r 1

1

Click the arrow below the View button in the Views group on the Ribbon and click
Form View to see your form. It will look similar to the form shown in Figure 11-22. (You
can fi nd this form saved as frmXmplCompany1 in the sample database.) Note that the
labels are all different sizes and the contrast might be too distracting. You could further
refi ne the look of this form by making all the labels the same size and perhaps aligning
the captions to the right. You could also make the label background transparent or the
same color as the Detail section and change the font color to white. You’ll learn more
about customizing your form design in the next chapter.

Figure 11-22 Switch to Form view to see how the Companies / Organizations form looks so far.

Click the Save button on the Quick Access Toolbar or click the Microsoft Offi ce Button
and then Save to save your new form design.

Access 2007 introduces a feature—Allow Layout view—to allow you to further modify

the design of your forms even in a fi nished application. All new forms in Access have the

Allow Layout View property set to Yes by default. This lets any user open the form in

 Layout view to make design changes. You should be sure to set this property to No in all

forms before distributing a fi nished application to users. If you don’t do this, users can

make design changes to your forms, which is probably not a good idea in a production

 application.

Note that this property was called Allow Design Changes in Microsoft Access 2003. Set-

ting this property to Yes in Access 2003 allowed the user to open the property sheet

while in Form view and make changes to the form design by changing property settings.

But Layout view in Access 2007 is much more powerful because the user can not only

change properties but also move and add controls. We will discuss Layout view in more

detail in the next chapter.

SIDE OUT Understanding the Allow Layout View Property

Access 2007 introduces a feature—Allow Layout view—to allow you to further modify

the design of your forms even in a fi nished application. All new forms in Access have the

Allow Layout View property set to Yes by default. This lets any user open the form in

Layout view to make design changes. You should be sure to set this property to No in all

forms before distributing a fi nished application to users. If you don’t do this, users can

make design changes to your forms, which is probably not a good idea in a production

application.

Note that this property was called Allow Design Changes in Microsoft Access 2003. Set-

ting this property to Yes in Access 2003 allowed the user to open the property sheet

while in Form view and make changes to the form design by changing property settings.

But Layout view in Access 2007 is much more powerful because the user can not only

change properties but also move and add controls. We will discuss Layout view in more

detail in the next chapter.

Chapter 11

590 Chapter 11 Building a Form
Working with Quick Create Commands
and the Form Wizard

Now that you understand the basic mechanics of form design, you could continue to
build all your forms from scratch in Design view. However, even the most experienced
developers take advantage of the many wizards built into Access 2007 to get a jump-
start on design tasks. This section shows you how to use quick create form commands
and the Form Wizard to quickly build a custom form.

Creating a Form with the Quick Create Commands
Access 2007 introduces new quick create commands so that you can create new forms
with one click on a Ribbon command. As you’ll learn in this section, you can build
forms designed in a variety of different views, so you can pick the style you need for
the data-editing task at hand. You just walked through creating a form from scratch, so
you should recall how much time it took to place all the fi elds on the form design grid,
resize and move some of the controls, and change some of the form properties. The
quick create commands can do a lot of the heavy work in designing a base form, which
you can then modify to meet your specifi c needs.

Suppose you want to create a data entry form for the tblProducts table in the Conrad
Systems Contacts database. Begin by opening the ContactsDataCopy.accdb database
and click the top of the Navigation Pane to open the Navigation Pane menu. Click
Object Type under Navigate To Category and Tables under Filter By Group to display
a list of only the tables in this database. Select the tblProducts table in the Navigation
Pane and then click the Form command in the Forms group on the Create tab. Access
immediately creates a new single form based on the tblProducts table, including a con-
trol for every fi eld in that table, and displays it in Layout view as shown in Figure 11-23.

As you can see, Access creates this form very quickly, and it looks professional. Switch
to Design view for this form by clicking the arrow below the View button in the Views
group on the Home tab and clicking Design View. Notice how Access creates a text box
on the form for each fi eld in the tblProducts table and an associated label for each text
box with a caption, and aligns all the controls. Access also creates a bitmap picture logo
and a label for the form’s title in the Header section.

This form could still use some modifi cation, such as entering a different form title and
resizing some controls, but overall Access has completed a lot of the hard work of creat-
ing the form. Close this form, and do not save it.

Select the tblProducts table again in the Navigation Pane and then click the Split Form
command in the Forms group on the Create tab. Access immediately creates a new split
form containing every fi eld in the tblProducts table and displays it in Layout view as
shown in Figure 11-24.

 Working with Quick Create Commands and the Form Wizard 591

Ch
ap

te
r 1

1

Figure 11-23 Access can save you time by creating a single form using all the fi elds in the
selected table.

Figure 11-24 When you click the Split Form command, Access creates a new split form based on
your table.

Chapter 11

592 Chapter 11 Building a Form
Here again Access creates controls and associated labels for all the fi elds in the
 tblProducts table. Switch to Design view by clicking the arrow in the Views group and
clicking Design View. The form’s Default View property is set to Split Form, and the
Split Form Orientation property is set to Datasheet On Bottom. The top of the Form
window displays the fi elds from the tblProducts table in Single Form view, and the bot-
tom of the form displays all the records from the tblProducts table in Datasheet view.
Close this form now, and do not save it when prompted.

Select the tblProducts table again in the Navigation Pane and then click the Multiple
Items command in the Forms group on the Create tab. Access immediately creates a
new continuous form based on all the fi elds in the tblProducts table and displays it in
Layout view as shown in Figure 11-25.

Figure 11-25 Use the Multiple Items command to create a continuous form.

In this continuous form, Access creates controls for all the fi elds in the tblProducts
table horizontally across the Form window. Switch to Design view by clicking the arrow
in the Views group and clicking Design View. The form’s properties have been set to
display the products in Continuous Form view, which means you can view more than
one record at a time. Notice that Access places the associated label for each control in
the form’s Header section. Close this form now, and do not save it when prompted.

Select the tblProducts table again in the Navigation Pane, click the More Forms com-
mand in the Forms group on the Create tab, and then click the Datasheet command.
Access immediately creates a new form in Datasheet view using all the fi elds in the
 tblProducts table and displays it as shown in Figure 11-26.

 Working with Quick Create Commands and the Form Wizard 593

Ch
ap

te
r 1

1

Figure 11-26 This datasheet form was created using the Datasheet command on the More
Forms menu.

Switch to Design view by clicking the arrow in the Views group and clicking Design
View. The form’s properties have been set to display the products in Datasheet view,
which means you can view more than one record at a time and all the records are
stacked close together like a table datasheet. In datasheet forms, Access places a column
header with the name that normally appears for an associated label for each control.
Close this form now, and do not save it when prompted.

Access 2007 also has quick create commands for PivotChart and PivotTable views
in the Forms group. You can use these commands to get a jump-start on creating
 PivotChart and PivotTable forms. You’ll learn more about creating and using PivotChart
forms in Chapter 13.

Creating the Basic Products Form with the Form Wizard
The quick create form commands are easy to use, but you have no fl exibility on how
Access initially creates the form. The Form Wizard is another tool you can use to
quickly create forms in your database. Begin by opening the ContactsDataCopy.accdb
database, and click the top of the Navigation Pane to display the Navigation Pane menu.
Select Object Type under Navigate To Category and Tables under Filter By Group to
display a list of only the tables in this database. Select the tblProducts table in the Navi-
gation Pane, click the More Forms command in the Forms group on the Create tab, and
then click the Form Wizard command. Access opens the fi rst page of the Form Wizard,
as shown in Figure 11-27.

You can select any fi eld in the Available Fields list and click the single right arrow (>)
button to copy that fi eld to the Selected Fields list. You can also click the double right
arrow (>>) button to copy all available fi elds to the Selected Fields list. If you copy a fi eld
in error, you can select the fi eld in the Selected Fields list and click the single left arrow
(<) button to remove the fi eld from the list. You can remove all fi elds and start over by
clicking the double left arrow (<<) button. For this example, click the double right arrow
button to use all the fi elds in the tblProducts table in the new form.

Chapter 11

594 Chapter 11 Building a Form
Figure 11-27 The fi rst page of the Form Wizard displays fi elds you can select to include in
your form.

As you’ll learn in Chapter 13, you can select fi elds from one table or query and then
change the data source name in the Tables/Queries combo box to select a different
but related table or query. If you have defi ned the relationships between tables in your
database, the Form Wizard can determine how the data from multiple sources is related
and can offer to build either a simple form to display all the data or a more complex one
that shows some of the data in the main part of the form with related data displayed
in an embedded subform. You’ll use this technique to build a more complex form in
Chapter 13.

At any time, you can click the Finish button to go directly to the last step of the wizard.
You can also click the Cancel button at any time to stop creating the form.

After you select all the fi elds from the tblProducts table, click Next. On the next page,
the wizard gives you choices for the layout of your form. You can choose to display the
controls on your form in columns, arrange the controls across the form in a tabular
format (this creates a continuous form), create a form that opens in Datasheet view, or
place the fi elds in a block “justifi ed” view. For this example, select Columnar, and then
click Next.

The wizard next displays a page on which you can select a style for your form, as shown
in Figure 11-28. Note that if you choose to display the form in Datasheet view, the style
won’t apply to the datasheet but will appear if you shift from Datasheet view to Form
view. The nice thing about this page is that the wizard shows you a sample of each
selection on the left side of the page. You can look at each one and decide which you
like best. In this example, the Solstice style is selected. In Chapter 12, you’ll learn how
to use the AutoFormat facility to create a custom look for your forms.

 Working with Quick Create Commands and the Form Wizard 595

Ch
ap

te
r 1

1

Figure 11-28 You can select a style for your form on the third page of the Form Wizard.

Note
When you select a style in the Form Wizard, the new style becomes the default for new

forms you create using the wizard until you change the style setting again, either in

the Form Wizard or with the AutoFormat commands. We’ll discuss AutoFormat in the

next chapter.

Click Next to display the fi nal page, where the Form Wizard asks for a title for your
form. Type an appropriate title, such as Products. The wizard places this title in the
Caption property of the form and also saves the form with this name. (If you already
have a form named Products, Access appends a number to the end of the name to create
a unique name.) Select the Open The Form To View Or Enter Information option, and
then click the Finish button to go directly to Form view. Or you can select the Modify
The Form’s Design option, and then click Finish to open the new form in Design view.
The fi nished form is shown in Form view in Figure 11-29.

Note
In the initial release of Access 2007, the Form Wizard failed to apply the background

image specifi ed for the style you select when you ask for a Columnar, Datasheet, or

 Justifi ed form. Microsoft intends to fi x this bug in the fi rst service pack. If you do not see

the background image, you can reapply the style to your form using AutoFormat. You

can read more about AutoFormat in the next chapter. The fi gures that follow all show the

background image applied.

Note
When you select a style in the Form Wizard, the new style becomes the default for new

forms you create using the wizard until you change the style setting again, either in

the Form Wizard or with the AutoFormat commands. We’ll discuss AutoFormat in the

next chapter.

Note
In the initial release of Access 2007, the Form Wizard failed to apply the background

image specifi ed for the style you select when you ask for a Columnar, Datasheet, or

Justifi ed form. Microsoft intends to fi x this bug in the fi rst service pack. If you do not see

the background image, you can reapply the style to your form using AutoFormat. You

can read more about AutoFormat in the next chapter. The fi gures that follow all show the

background image applied.

Chapter 11

596 Chapter 11 Building a Form
Figure 11-29 The Form Wizard creates a form in a columnar format using the Solstice style that is
very similar to the form produced with the quick create commands.

Notice that the Solstice style uses labels sized alike with no ending colons on the cap-
tions. Also notice that all the fi elds in this style are left-aligned, regardless of data type.
You’ll learn more about working with styles in the next chapter.

If you’re curious to see the tabular format, you can start a new form on the tblProducts
table and use the Form Wizard again. Select all the fi elds on the fi rst page of the Form
Wizard, select Tabular for the layout, and set the style to Northwind. For a title, type
Products – Tabular, and open the new form in Form view. It should look something like
the form shown in Figure 11-30. Close this form when you fi nish looking at it.

Note
We modifi ed the form you see in Figure 11-30 to preserve the default sunken effect for

text box controls in the Northwind style. If you create this form on a Windows XP or

Windows Vista system, choose Use Windows-Themed Controls On Forms in the Current

Database category of the Access Options dialog box, and choose the default Windows

XP theme in the Display Properties window in Windows XP, or choose the Windows Vista

Basic color scheme in Appearance Settings in Windows Vista, the text boxes appear fl at

on your form.

Note
We modifi ed the form you see in Figure 11-30 to preserve the default sunken effect for

text box controls in the Northwind style. If you create this form on a Windows XP or

Windows Vista system, choose Use Windows-Themed Controls On Forms in the Current

Database category of the Access Options dialog box, and choose the default Windows

XP theme in the Display Properties window in Windows XP, or choose the Windows Vista

Basic color scheme in Appearance Settings in Windows Vista, the text boxes appear fl at

on your form.

 Working with Quick Create Commands and the Form Wizard 597

Ch
ap

te
r 1

1

Figure 11-30 This Products form is in a tabular format using the Northwind style.

You can also investigate what a justifi ed form looks like by going through the exercise
again and selecting Justifi ed for the layout on the second page in the Form Wizard. If
you choose the Offi ce style and name the form Products – Justifi ed your result should
look something like the one shown in Figure 11-31. Close this form when you fi nish
looking at it.

Figure 11-31 This is the Products form in a justifi ed format using the Offi ce style.

Chapter 11

598 Chapter 11 Building a Form
Modifying the Products Form
The Form Wizard took care of some of the work, but there’s still a lot you can do to
improve the appearance and usability of this form. And even though the Form Wizard
adjusted the display control widths, they’re still not perfect. Most of the text boxes are
larger than they need to be. The Form Wizard created a two-line text box for product
name when one should suffi ce. We personally prefer to see fi eld labels right-aligned and
bold so that they’re easier to read. Finally, the ProductID fi eld is an AutoNumber data
type, so you should probably lock it and disable it so the user cannot type in the fi eld.

You can either start with the columnar format form using the Solstice style (shown in
Figure 11-29) or start a new form with the None style. (We decided to modify the Sol-
stice style form from Figure 11-29 for the following examples.) Open the form in Design
view. To help align controls, click outside the Detail section so that the form is selected
and make sure that the Grid X and Grid Y properties in the form’s property sheet are set
to 24. (Leave the settings at Grid X = 5 and Grid Y = 5 if you’re working in metric mea-
surements.) Be sure the Show Grid command is selected in the Show/Hide group on the
Arrange contextual tab.

Begin by selecting the ProductID text box and change the Enabled property to No and
the Locked property to Yes as you learned to do earlier. We will leave the Special Effect
property of this text box set to Flat to give your users a visual clue that they won’t be
able to type in the ProductID text box.

The Product ID fi eld does not need to be as wide as it is, so click that control to select
it and then click and drag the right edge of the text box control to the left. After the
control is about 1 inch wide, release the mouse button and notice that Access resizes all
the text box controls to the same width. The Form Wizard has applied a control layout
so that all the controls will move and resize together. You can tell whether Access has
applied a control layout to the controls by the small box with a crosshair inside just to
the left of and slightly above the Product ID label, as shown in Figure 11-32. We discuss
control layouts in more detail in the next chapter.

To make individual size adjustments to the labels and text box controls, you need to
highlight all the controls and turn off this control layout. Start by clicking the horizon-
tal ruler just above the left edge of the label controls, and then drag in the ruler toward
the right until the selection indicator touches all the labels and text box controls. (If
you can’t see the rulers, be sure that you have clicked the Ruler command in the Show/
Hide group on the Arrange tab.) Release the mouse button to select all the controls and
labels on the form grid, and then click the Remove button in the Control Layout group
on the Arrange tab, as shown in Figure 11-32.

 Working with Quick Create Commands and the Form Wizard 599

Ch
ap

te
r 1

1

Control layout indicator

Figure 11-32 If you or Access has applied a control layout to the form controls, a box with a cross-
hair appears next to the controls.

Now that you have removed any control layouts, you can continue making adjustments
to the individual controls. The ProductName text box needs to be about 3 inches wide.
You can set a specifi c width by clicking the control, opening the property sheet, click-
ing the Format tab, and typing y in the Width property (the fi fth property down the
list). The Form Wizard created a text box that is two lines high for ProductName, but
it doesn’t need to be bigger than one line. Select the control, and then grab the bottom
sizing box in the middle of the control and drag it up to make the control smaller. Click
the Size To Fit command in the Size group on the Arrange tab to resize the control to
display one line. Click the Format tab in the property sheet and change the Scroll Bars
property to None—the Form Wizard specifi ed a vertical scroll bar in the two-line con-
trol that it designed. It doesn’t make sense to show a scroll bar in a one-line control that
is already wide enough to display all the data. Select the ProductName label, and then
grab the bottom sizing box in the middle of the control and drag it up to make it the
same height as the ProductName text box.

Now that you’ve made the ProductName text box and associated label smaller, you
have extra space between it and the CategoryDescription text box. Select the Category-
Description, UnitPrice, TrialVersion, TrialExpire, and PreRequisite text boxes and

Chapter 11

600 Chapter 11 Building a Form
move them up close to the ProductName text box. Unless you turned off Snap To Grid
in the Control Layout group on the Arrange tab, it should be easy to line up the controls
in their new positions. As you move these four controls, their associated labels will stay
aligned with the text boxes.

Next, fi x all the labels. Click in the horizontal ruler above the column of labels to select
them all. (Access selects the Products label in the form header during this procedure
as well, so hold down the Shift key and click the label in the form header to clear it.)
Click the Align Right and Bold buttons in the Font group on the Design contextual tab
to change the appearance of the labels. Click the Products label in the form header and
then click the Italic button in the Font group to add emphasis. Finally, click the Size To
Fit command in the Size group on the Arrange tab to make the Product label shrink in
size around the text. After you shrink the right margin of your form, move all the con-
trols up closer to the form header and left side of the form grid, and shrink the bottom
margin of the form, it should look similar to the one shown in Figure 11-33. Notice that
none of the labels attached to the text boxes shows an ending colon. The Solstice style
doesn’t include them.

Figure 11-33 You can now see the modifi ed Products form in Design view with the changes
you applied.

Finally, switch to Form view and your form should look something like the one shown
in Figure 11-34. The form now looks a bit more customized—and somewhat more like
the frmProducts form in the Conrad Systems Contacts application. You can fi nd this
form saved as fxmplProducts1 in the sample database.

S

 Simplifying Data Input with a Form 601

Ch
ap

te
r 1

1

Figure 11-34 When you switch to Form view, you can see how the modifi ed Products form looks at
this point.

implifying Data Input with a Form
One drawback to working with a relational database is that often you have to deal with
information stored in multiple tables. That’s not a problem if you’re using a query to
link data, but working with multiple tables can be confusing if you’re entering new
data. Access 2007 provides some great ways to show information from related tables,
thus making data input much simpler.

Taking Advantage of Combo Boxes and List Boxes
In Chapter 10, “Using Forms,” you saw how you can use a combo box or a list box to
present a list of potential values for a control. To create the list, you can type the values
in the Row Source property box of the control. You can also specify a table or a query as
the source of the values in the list. Access 2007 displays the currently selected value in
the text box portion of the combo box or as a highlighted selection in the list.

The CategoryDescription fi eld in the tblProducts table is a simple Text data type. To
help ensure data consistency, there’s a separate lookup table that contains a list of
predefi ned product types. There’s also a referential-integrity rule that keeps you from
entering anything other than a predefi ned type in the CategoryDescription fi eld.
However, you can type anything you like in the CategoryDescription text box (labeled
Product Type) that the Form Wizard designed. Go ahead and type any random string of
characters in the text box and then try to save the record. You should see an unfriendly
technobabble message about “related record is required in ‘tlkpProductCategory’.”

You can help avoid this problem by providing a combo box to edit and display the
 CategoryDescription fi eld instead. The combo box can display the list of valid values
from the tlkpProductCategory lookup table to make it easy for your user to choose a
valid value. The combo box can also limit what the user enters to only values in the list.

Chapter 11

602 Chapter 11 Building a Form
In Chapter 20 you’ll learn how to write Visual Basic code to detect when a user tries
to enter something that’s not in the list so that you can provide your own, more user-
friendly, message.

To see how a combo box works, you can replace the CategoryDescription text box
control with a combo box on the Products form. In Design view, select the Category-
Description text box control and then press the Delete key to remove the text box con-
trol from the form (this also removes the related label control). Be sure the Use Control
Wizards button is selected in the Controls group on the Design tab. Display the fi eld
list by clicking the Add Existing Fields button in the Tools group on the same Design
tab. Next, click the Combo Box button in the Controls group and drag the Category-
Description fi eld from the fi eld list to the form. The new control appears on the form,
and Access starts the Combo Box Wizard, as shown in Figure 11-35, to help you out.

Figure 11-35 After you drop the CategoryDescription fi eld onto the form grid, Access opens the
fi rst page of the Combo Box Wizard.

You can change a text box to a combo box by right-clicking on the text box control,

clicking Change To on the shortcut menu, and then clicking Combo Box on the submenu.

However, after you change a text box to a combo box in this way, you have to set the

properties for the display list yourself.

Follow this procedure to build your combo box.

 1. You want the combo box to display values from the tlkpProductCategory lookup
table, so select the I Want The Combo Box To Look Up The Values In A Table Or
Query option, and then click the Next button to go to the next page.

SIDE OUT Manually Changing a Text Box to a Combo Box

You can change a text box to a combo box by right-clicking on the text box control,

clicking Change To on the shortcut menu, and then clicking Combo Box on the submenu.

However, after you change a text box to a combo box in this way, you have to set the

properties for the display list yourself.

 Simplifying Data Input with a Form 603

Ch
ap

te
r 1

1

2. On the second page, the wizard displays a list of available tables in the database.
Note that the wizard also provides an option to view queries or both tables and
queries. Scroll down in the list and click Table: tlkpProductCategory to select that
table, and click Next to go to the next page.

3. On the third page, the wizard shows you the single fi eld in the table,
CategoryDescription. Select that fi eld and click the right arrow (>) to move it to
the Selected Fields list. Click Next to go on.

4. The fourth page allows you to select up to four fi elds to sort either Ascending
or Descending. Click the arrow to the right of the fi rst fi eld and then select the
CategoryDescription fi eld. The button next to the fi rst box indicates Ascending,
and you want to leave it that way. If you click the button, it changes to Descending,
which is not what you want. (You can click the button again to set it back.) Click
Next to go to the next page.

5. The wizard shows you the lookup values that your combo box will display as an
embedded datasheet, as shown here. To size a column, click on the dividing line
at the right edge of a column at the top, and drag the line. You can adjust the size
of the column to be sure it displays all the available descriptions properly. Click
Next to go on.

6. On the next page, the wizard asks whether you want to store the value from the
combo box in a fi eld from the table or query that you’re updating with this form
or simply save the value selected in an unbound control “for later use.” You’ll see
in Part 4 of this book that unbound controls are useful for storing calculated
values or for providing a way for the user to enter parameter data for use by
your macros or Visual Basic procedures. In this case, you want to update the
CategoryDescription fi eld, so be sure to select the Store That Value In This Field
option and verify that CategoryDescription is selected in the list. Click Next to go
to the last page of the wizard.

Chapter 11

604 Chapter 11 Building a Form
7. On the fi nal page, shown here, the wizard suggests a caption that you probably
want to correct. In this case, enter Product Type in the box. Click Finish, and
you’re all done.

If you have the property sheet open, you can study the properties set by the Combo Box
Wizard, as shown in Figure 11-36. The Control Source property shows that the combo
box is bound to the CategoryDescription fi eld. The Row Source Type property indicates
that the data fi lling the combo box comes from the table or query entered in the Row
Source property box. Notice that the wizard generated an SQL statement in the Row
Source property box. You can also specify a value list as the Row Source property, or
you can ask Access to create a list from the names of fi elds in the query or table speci-
fi ed in the Row Source property. Please note in Figure 11-36 that we show both the Data
and the Format tabs so that you can see the properties we are discussing.

Figure 11-36 The Combo Box Wizard set these properties for the CategoryDescription fi eld.

 Simplifying Data Input with a Form 605

Ch
ap

te
r 1

1

The Column Count property is set to 1 to indicate that one column should be created
from the list. You have the option of asking Access to display column headings when
the combo box is open, but you don’t need that for this example, so leave the Column
Heads property set to No. The wizard sets the Column Widths property based on the
width you set in step 5. The next property on the Data tab, Bound Column, indicates
that the fi rst column (the only column in this case) is the one that sets the value of the
combo box and, therefore, the value of the bound fi eld in the table.

When you open the form in Form view, it should look like the one shown in Figure
11-37. You can see that the CategoryDescription combo box now shows the list of valid
values from the lookup table. Notice also that the label the wizard attached looks more
like the labels that the Form Wizard originally created. You can make this label look
like the others by changing it to a bold font and right aligning it. (You can fi nd this
form saved as fxmplProducts2 in the sample database.)

Figure 11-37 A combo box for the CategoryDescription fi eld makes it much easier for the user to
select a correct value.

If you want Access to select the closest matching entry when you type a few leading

characters in a combo box, set the control’s Auto Expand property to Yes.

Using Toggle Buttons, Check Boxes, and Option Buttons
If your table contains a fi eld that has a yes/no, a true/false, or an on/off value, you can
choose from three types of controls that graphically display and set the status of this
type of fi eld: toggle buttons, check boxes, and option buttons.

SIDE OUT Having Access Select Closest Matches While Typing

If you want Access to select the closest matching entry when you type a few leading

characters in a combo box, set the control’s Auto Expand property to Yes.

Chapter 11

606 Chapter 11 Building a Form

Although you can certainly use any of these three controls to display an underlying Yes/

No data type, you should try to use these controls in your application similarly to the way

Windows uses them. Your users might be confused if you try to use them in a different

way.

O Use a toggle button to display an option value. A toggle button works best to dis-

play an option that is on or off.

O Use a check box to display all simple yes/no or true/false values.

O Use an option button when the user needs to make a choice from several options.

You should not use an option button to display simple yes/no or true/false values.

We personally never use a toggle button or an option button except inside an option

group control. You can learn more about working with the option group control in

Chapter 13.

The tblProducts table has a TrialVersion fi eld that indicates whether the particular
product is a free trial edition that expires in a specifi c number of days. As you can see
in the original text box control created by the Form Wizard (see Figure 11-29), the word
Yes or No appears depending on the value in the underlying fi eld. This fi eld might be
more appealing and understandable if it were displayed in a check box control.

To change the TrialVersion control on the Products form, fi rst delete the TrialVersion
text box control. Display the fi eld list by clicking the Add Existing Fields button in the
Tools group. Next, click the Check Box button in the Controls group, and then drag
the TrialVersion fi eld from the fi eld list onto the form in the open space you left on the
form. Your form in Design view should now look like the one shown in Figure 11-38.
Notice that the default check box also includes a label, but the label is positioned to the
right of the control and does not include a colon. If you want to move the label, select it,
and then use the large handle shown earlier in Figure 11-15 to move the label to the left
of the check box. You should also change the font to bold to match the other labels.

After making fi nal adjustments to the TrialVersion label, click the arrow under the
Views button and click Form View to see the result. Your form should look like the one
shown in Figure 11-39. One of the interesting side effects of using a special control to
display data in a form is that the control properties carry over to Datasheet view. Switch
to the Datasheet view of this form. The CategoryDescription fi eld is displayed as a drop-
down list on the datasheet and the TrialVersion fi eld still looks like a check box. You
might decide to design some forms to be used in Datasheet view, but you can customize
the look of the datasheet by using controls other than text boxes while in Design view.
By the way, this design sample is saved as fxmplProducts3 in the sample database.

SIDE OUT Choosing Toggle Buttons and Check Boxes and Option
Buttons—How to Decide?

Although you can certainly use any of these three controls to display an underlying Yes/

No data type, you should try to use these controls in your application similarly to the way

Windows uses them. Your users might be confused if you try to use them in a different

way.

O Use a toggle button to display an option value. A toggle button works best to dis-

play an option that is on or off.

O Use a check box to display all simple yes/no or true/false values.x
O Use an option button when the user needs to make a choice from several options.

You should not use an option button to display simple yes/no or true/false values.

We personally never use a toggle button or an option button except inside an option

group control. You can learn more about working with the option group control in

Chapter 13.

 Simplifying Data Input with a Form 607

Ch
ap

te
r 1

1

Figure 11-38 The Products form now contains a check box control to display the TrialVersion fi eld.

Figure 11-39 Your Products form now has both a combo box control and a check box control to
simplify data entry.

By now, you should be getting a feel for the process of building forms. In the next chap-
ter, you’ll learn how to customize the appearance of your forms.

CHAPTER 12

Customizing a Form
In Chapter 11, “Building a Form,” you created a form from scratch based on the
tblCompanies table in the ContactsDataCopy.accdb sample database. You also had a

chance to build a simple form on tblProducts using a wizard and to make some modi-
fi cations in Design view. These forms are functional, but they’re not yet professional
grade. In this chapter, you’ll learn how to customize your forms in both Design view
and the new Layout view to make them more attractive and useful.

Note
The examples in this chapter are based on the forms, queries, tables, and data in

 HousingDataCopy.accdb on the companion CD included with this book. The results you

see from the samples in this chapter might not exactly match what you see in this book if

you have changed the sample data in the fi le. Also, all the screen images in this chapter

were taken on a Microsoft Windows Vista system with the display theme set to Blue.

Your results might look different if you are using a different operating system or a dif-

ferent theme.

Aligning and Sizing Controls in Design View
To learn how to customize a form, switch to the HousingDataCopy.accdb sample data-
base. You need a form to edit and display employee data, and the easiest way to get
started is to create a blank form based on the tblEmployees table. On the Create tab,
in the Forms group, click the Blank Form button. A blank form grid appears in Layout
view with the fi eld list showing on the right side of the screen. Switch to Design view
by clicking the small arrow below the View button in the Views group on either the
Home tab or the Format contextual tab under Form Layout Tools. Right now the form
is unbound—meaning there is no record source—so you need to bind this form to the
tblEmployees table. Click the Property Sheet button in the Tools group on the Design
tab under Form Design Tools. Find the Record Source property on the All or Data tab of
the Property Sheet window for the form, and select tblEmployees from the list of table
and query names to bind this form to the tblEmployees table.

Note
The examples in this chapter are based on the forms, queries, tables, and data in

HousingDataCopy.accdb on the companion CD included with this book. The results you

see from the samples in this chapter might not exactly match what you see in this book if

you have changed the sample data in the fi le. Also, all the screen images in this chapter

were taken on a Microsoft Windows Vista system with the display theme set to Blue.

Your results might look different if you are using a different operating system or a dif-

ferent theme.

Aligning and Sizing Controls in Design View 609

Working in Layout View . 623

Enhancing the Look of a Form . 642

Setting Control Properties . 651

Setting Form Properties . 670

Setting Form and Control Defaults 680
 609

Chapter 12

610 Chapter 12 Customizing a Form
Drag down the bottom margin of the Detail section to give yourself some room to work.
Click the Arrange contextual tab under Form Design Tools, and make sure Snap To
Grid is not selected. (We’re asking you to do this on purpose so you can learn ways
to line up and evenly space controls.) Open the fi eld list by clicking the Add Existing
Fields button in the Tools group on the Design tab. If the fi eld list displays other tables
in the bottom half of the fi eld list, click the Show Only Fields In The Current Record
Source link at the bottom of the Field List window to show only the fi elds in the tblEm-
ployees table. Drag and drop each fi eld from the fi eld list into a vertical column on your
form about 1.5 inches from the left edge, beginning with the EmployeeNumber fi eld
and ending with the BirthDate fi eld. Your starting point should look something like
Figure 12-1. (If you don’t want to do the work yourself to get to this point, you can fi nd
this form saved as frmXmplEmployee1 in the sample database.)

Figure 12-1 Start to build a form in Design view to display and edit employee data.

Note
The HousingDataCopy.accdb sample database has a special template form called Nor-

mal that has its default control properties set to preserve the sunken and etched special

effects. This ensures that you’ll see the default sunken text boxes when you follow the

exercises in this chapter, even when you’re running Access on a Windows XP or Windows

Vista computer with themed controls enabled. You’ll learn more about creating template

forms later in this chapter.

Note
The HousingDataCopy.accdb sample database has a special template form called Nor-

mal that has its default control properties set to preserve the sunken and etched special

effects. This ensures that you’ll see the default sunken text boxes when you follow the

exercises in this chapter, even when you’re running Access on a Windows XP or Windows

Vista computer with themed controls enabled. You’ll learn more about creating template

forms later in this chapter.

 Aligning and Sizing Controls in Design View 611

Ch
ap

te
r 1

2

If you threw the form together quickly to help you enter some data (as you did in
 Chapter 11 to create a simple Companies input form in the ContactsDataCopy.accdb
database), it probably doesn’t matter if the form doesn’t look perfect. But all the text
boxes except EmailName are the same size, which means some are too large and some
are too small to display the data. The long EmailName control looks completely out of
place compared to the other controls. Also, the labels are different sizes and not right-
aligned. Finally, all the text boxes and labels are out of alignment. If you’re designing
the form to be used continuously in an application, it’s worth the extra effort to fi ne-
tune the design so that it will look professional and be easy to use.

Note
Even if you follow along precisely with the steps described in this chapter, your results

might vary slightly. All the alignment commands are sensitive to your current screen res-

olution. When your screen driver is set to a high resolution (for example, 1280×1024), the

distance between grid points is logically smaller than it is when the screen driver is set to

a low resolution (such as 800×600). You should design your forms at the same resolution

as the computers that will run your application.

To examine the alignment and relative size of controls on your form, you can open
the property sheet in Design view and click various controls. For example, Figure 12-2
shows the property sheets for the EmployeeNumber and the FirstName text box con-
trols. You can see by looking at the values for the Left property (the distance from the
left edge of the form) that the EmployeeNumber control is a bit closer to the left margin
than is the FirstName control.

Figure 12-2 You can see in the Property Sheet windows for the EmployeeNumber and FirstName
text box controls that the two controls are not aligned vertically.

You could move around the form and adjust controls so that they fi t your data. You
could painstakingly enter values for each control’s Left property to get all controls in a
column to line up exactly and then set the Top property (defi ning the distance from the
top of the Detail section) for controls that you want to appear in a row. You could also
adjust the values for the Width and Height properties so that controls and labels are the

Note
Even if you follow along precisely with the steps described in this chapter, your results

might vary slightly. All the alignment commands are sensitive to your current screen res-

olution. When your screen driver is set to a high resolution (for example, 1280×1024), the

distance between grid points is logically smaller than it is when the screen driver is set to

a low resolution (such as 800×600). You should design your forms at the same resolution

as the computers that will run your application.

Chapter 12

612 Chapter 12 Customizing a Form
same width and height where appropriate. Fortunately, there are easier ways to make all
these adjustments.

Sizing Controls to Fit Content
One adjustment you might want to make on this employees form is to bold the font
for all the labels. Remember from the previous chapter that you can click the horizon-
tal ruler at the top of the design area to select all controls in a column, so do this to
select all the label controls on the left. You can then hold down the Shift key and click
the Administrator? label that’s not in the column to include it in your selection. Click
the Bold button in the Font group on the Design tab to change the font in all selected
 controls.

If you think you’ll select multiple controls often, you might want to experiment with an

option setting that governs how you can select controls with your mouse pointer. Click

the Microsoft Offi ce Button, click Access Options, and then click the Object Designers

category in the Access Options dialog box. Under Forms/Reports, when you select the

Partially Enclosed option, the selection box you draw with your mouse needs to touch

only part of a control to select it. If you select the Fully Enclosed option, the selection

box must contain the entire control in order for the control to be selected. Fully Enclosed

is most useful for complex forms with many controls that are close to each other so that

you don’t have to worry about inadvertently selecting controls that you touch but don’t

fully enclose with the selection box.

However, now that you have changed the font, the label controls are no longer large
enough to display all the characters, as shown in Figure 12-3. Notice, for example, that
the last two letters and the colon in the Employee Number label appear clipped off.
Also, although all the text boxes and the combo box appear high enough to adequately
display the data in the default Tahoma 8-point font, they’re actually too small.

Microsoft Offi ce Access 2007 has a command called Size To Fit that sizes label controls
to fi t the width of the caption text in the label. This command also ensures that text
boxes and combo boxes are tall enough to display your data using the font size you’ve
selected. You can, if you like, select all the controls so that you can resize them all at
once. You can click the Select All button in the Controls group on the Design tab to
highlight all the controls on your form. To select a specifi c group of controls, click the
fi rst one and then hold down the Shift key as you click each additional control that you
want to select. You can also drag the mouse pointer across the form—as long as you
don’t start dragging while you are on a control—and the mouse pointer will delineate
a selection box. (If you start by clicking a control and then attempt to delineate other
controls by dragging, you’ll only move the control.) Any controls that are inside the
selection box when you release the mouse button will be selected. You can also select all

SIDE OUT Setting Selection Options

If you think you’ll select multiple controls often, you might want to experiment with an

option setting that governs how you can select controls with your mouse pointer. Click

the Microsoft Offi ce Button, click Access Options, and then click the Object Designers

category in the Access Options dialog box. Under Forms/Reports, when you select the

Partially Enclosed option, the selection box you draw with your mouse needs to touch

only part of a control to select it. If you select the Fully Enclosed option, the selection

box must contain the entire control in order for the control to be selected. Fully Enclosed

is most useful for complex forms with many controls that are close to each other so that

you don’t have to worry about inadvertently selecting controls that you touch but don’t

fully enclose with the selection box.

 Aligning and Sizing Controls in Design View 613

te
r 1

2

controls in a vertical or a horizontal band by making the rulers visible (click the Ruler
button in the Show/Hide group on the Arrange tab) and then dragging the mouse along
the top or side ruler.

Figure 12-3 With the bold font, the label controls are no longer large enough to fi t the
caption text.

You can “size to fi t” any individual control or label by clicking the control to select it and

then double-clicking any of its sizing handles.

After you select the controls you want, on the Arrange tab, in the Size group, click the
Size To Fit command. The Detail section should now look something like that shown in
Figure 12-4. (You cannot see the entire Employee Number label because the right end
of it is hidden under the EmployeeNumber text box.)

SIDE OUT Sizing Individual Controls

You can “size to fi t” any individual control or label by clicking the control to select it and

then double-clicking any of its sizing handles.
Ch
ap

Chapter 12

614 Chapter 12 Customizing a Form
Figure 12-4 After clicking the Size To Fit command, you can see all the text in the labels.

The Size To Fit command works very well to set the height of labels, text boxes, and

combo boxes based on the font you have chosen. It also does a reasonable job setting

the width of labels based not only on the font but also on the characters you have speci-

fi ed in the Caption property. However, it’s not perfect, so you should be aware of the

following:

O When a label contains a long caption and has a large font that is bold or italic or

both, the result of the Size To Fit command is often not wide enough. You will have

to adjust the width manually.

O The Size To Fit command does not adjust the width of a text box or combo box

because it cannot predict in advance how many characters might need to be dis-

played from the Control Source property. You must specifi cally set the width based

on the data you expect the control to display.

O The Size To Fit command does not work for list boxes. When you switch to Form

view and your list box row source contains enough rows to fi ll the list box, you

might fi nd that you see only part of a row at the bottom. (You’ll see only the top

part of the characters.) You must switch back and forth between Design view and

Form view, adjusting the height of the control manually so that it displays com-

plete rows.

SIDE OUT Limitations in Use of the Size To Fit Command

The Size To Fit command works very well to set the height of labels, text boxes, and

combo boxes based on the font you have chosen. It also does a reasonable job setting

the width of labels based not only on the font but also on the characters you have speci-

fi ed in the Caption property. However, it’s not perfect, so you should be aware of the

following:

O When a label contains a long caption and has a large font that is bold or italic or

both, the result of the Size To Fit command is often not wide enough. You will have

to adjust the width manually.

O The Size To Fit command does not adjust the width of a text box or combo box

because it cannot predict in advance how many characters might need to be dis-

played from the Control Source property. You must specifi cally set the width based

on the data you expect the control to display.

O The Size To Fit command does not work for list boxes. When you switch to Form

view and your list box row source contains enough rows to fi ll the list box, you

might fi nd that you see only part of a row at the bottom. (You’ll see only the top

part of the characters.) You must switch back and forth between Design view and

Form view, adjusting the height of the control manually so that it displays com-

plete rows.

 Aligning and Sizing Controls in Design View 615

Ch
ap

te
r 1

2

Switch to Form view, and scroll through several of the records to get an idea of which
controls aren’t wide enough to display the data from the table and which ones could be
narrower. You could painstakingly resize each control to exactly fi t what you see in the
sample data, but this is a bad idea for two reasons:

O The data is a sample of only 16 records, so new data you enter later might be
much longer in some fi elds. You should size the fi elds that aren’t long enough to
be 25 percent to 50 percent wider than what you think you need right now.

O A form that has a hodgepodge of a dozen or more different control widths won’t
make for a very visually pleasing design. You should pick two or three standard
widths to use, even if some of the controls end up being wider than necessary.

You can logically group the text box controls and the combo box control in this form
into three separate lengths, as follows:

O Short EmployeeNumber, DepartmentID, and StateOrProvince

O Medium FirstName, MiddleName, LastName, Password, PostalCode, Home-
Phone, WorkPhone, and BirthDate

O Long EmailName, Offi ceLocation, Photo, Address, City, and Country

Note
The Photo fi eld in tblEmployees is a text fi eld containing the name of the picture fi le. In

Chapter 20, “Automating Your Application with Visual Basic,” you’ll learn how to load the

fi le into an image control using Visual Basic code to display the picture. Also, although

you can resize the check box control, the size of the graphic image inside the control

doesn’t change.

You can make the necessary adjustments by leaving the medium-length fi elds as they
are and adjusting the fi elds in the other two groups. Switch back to Design view now so
that you can begin resizing the controls. First, select the EmployeeNumber control and
then hold down the Shift key while you select the DepartmentID and StateOrProvince
controls. Next, click the sizing box in the middle of the right edge of one of the con-
trols, and drag the right edge to the left until all three controls are about half their origi-
nal sizes. Now, click the EmailName control, and resize this control to about half of
its original width. Next, click the Offi ceLocation control, and hold down the Shift key
while you select the Photo, Address, City, and Country controls. Click the sizing box in
the middle of the right edge of one of these controls, and drag the edge right until all
three controls are about 50 percent bigger than their original sizes. Your layout should
now look something like Figure 12-5.

Note
The Photo fi eld in tblEmployees is a text fi eld containing the name of the picture fi le. In

Chapter 20, “Automating Your Application with Visual Basic,” you’ll learn how to load the

fi le into an image control using Visual Basic code to display the picture. Also, although

you can resize the check box control, the size of the graphic image inside the control

doesn’t change.

Chapter 12

616 Chapter 12 Customizing a Form
Figure 12-5 The form for employee data has controls sized to better fi t the data.

Before you go on, you might want to save the form and name it frmEmployees. You can
fi nd the form at this stage saved as frmXmplEmployee2 in the sample database.

Adjusting the Layout of Controls
You could have also used the Form Wizard and selected Columnar as the layout to get
a jump-start on your employees form. That wizard lays out controls in two columns,
without any regard to clusters of fi elds that might work well lined up side by side. Also,
the wizard would put only two controls in the right column, which would make the
form look lopsided. Setting up two columns to edit this data is probably a good idea
to better use the screen space that is wider than it is tall, but by doing it yourself, you
can choose which fi elds go in which column. For example, you might want to place the
work-related fi elds (EmailName, Department, WorkPhone, Offi ceLocation, Password,
and IsAdmin) in one column, and place the personal fi elds (Address, City, StateOrProv-
ince, PostalCode, Country, HomePhone, BirthDate, and Photo) in another.

To adjust your sample employees form in this way, follow these steps:

1. Stretch the Detail section to about 6 inches wide to give yourself some room to
work.

2. Select as a group the Address, City, StateOrProvince, PostalCode, Country, and
HomePhone controls, and move them into a new column on the right. You’re
going to end up with two fewer controls in the right column than in the left, so
line up the Address control opposite the MiddleName control.

 Aligning and Sizing Controls in Design View 617

Ch
ap

te
r 1

2

3. Grab the Photo control, and move it under HomePhone opposite Password.

4. Select the WorkPhone control, and move it into the space vacated by Photo.

5. Move the BirthDate control under Photo and across from IsAdmin (the
Administrator check box).

6. Grab the lower edge of the Detail section, and shrink the section so that it’s now
wider than it is high.

7. Select the Employee Number label, grab the positioning handle in the upper-
left corner, and move the label to the left out from under the EmployeeNumber
text box.

When you’re done, you should have a form design that looks something like the one
shown in Figure 12-6. Now you’re ready to fi ne-tune your form using alignment and
control-size adjustments.

Figure 12-6 The employees form has the controls arranged into columns that make sense.

“Snapping” Controls to the Grid
It’s a good idea to design your form so that all the controls are spaced evenly down the
form and all controls in a column line up. One way that you might fi nd convenient to
do this is to take advantage of the grid. If you enable Snap To Grid in the Control Lay-
out group on the Arrange tab, when you move any control, its upper-left corner “snaps”
to the nearest grid point. You can use this feature to help you line up controls both hori-
zontally and vertically.

You can adjust the density of the grid by changing the Grid X and Grid Y properties in
the property sheet of the form. Be sure that the property sheet is open (Alt+Enter for a
shortcut), and then select Form in the Selection Type list near the top of the Property
Sheet window. For this example, set the Grid X and Grid Y properties to 16 (0.0625
inch between grid points). This works well for the default 8-point Tahoma font because
the “sized to fi t” text boxes will be 0.17 inch high. You can place these text boxes every

Chapter 12

618 Chapter 12 Customizing a Form
0.25 inch (four grid points) down the form, which leaves adequate space between the
controls. This reduced density also makes it easier to see the grid points so that you can
move controls close to the point you want. You could set Grid X and Grid Y to 4, but
that reduces fl exibility for placing your controls.

The fastest way to snap all controls to the grid is to click Select All in the Controls
group on the Design tab and then click the To Grid button in the Control Alignment
group on the Arrange tab. The result might look something like that shown in Fig-
ure 12-7.

Figure 12-7 This is how your employees form should look after you “snap” the controls to the grid.

When you enable Snap To Grid, Access aligns the upper-left corner of a control to the

grid when you move the control. When you select a control and click To Grid, Access

immediately moves that control’s upper-left corner to the nearest grid point. The differ-

ence is with Snap To Grid, you’re moving the control, and with To Grid, Access moves the

control for you.

If you want to position each control individually, enable Snap To Grid by making sure
it is selected in the Control Layout group on the Arrange tab. (The button appears
highlighted and raised when it is active.) Click each text box, combo box, or check box
control, and drag it vertically to positions every 0.25 inch (every fourth grid point)
down the grid. When you release the mouse button, you’ll see the upper-left corner of
the control “snap” to the nearest grid point. As you saw in the previous chapter, when
you select and move a control that has an attached label, Offi ce Access 2007 moves the
control and its label as a unit. If you previously moved a label up or down independent

SIDE OUT What’s the Difference Between Snap To Grid in Control Layout
and To Grid in Control Alignment?

When you enable Snap To Grid, Access aligns the upper-left corner of a control to the

grid when you move the control. When you select a control and click To Grid, Access

immediately moves that control’s upper-left corner to the nearest grid point. The differ-

ence is with Snap To Grid, you’re moving the control, and with To Grid, Access moves the

control for you.

 Aligning and Sizing Controls in Design View 619

Ch
ap

te
r 1

2

of its attached control by using the positioning handle in the upper-left corner, you
might need to select either the control or its label and use the positioning handle again
to realign each label and associated control.

Note
For a simple form with a few controls, Snap To Grid works well to help you line up con-

trols. For more complex forms, using the commands in the Control Alignment group pro-

duces a better result. Read the next section to learn about these commands.

Snapping to the grid can help you spread the controls apart to make them easier to
work with. You’ll see in the next few steps that it’s easy to line them all up properly.

Lining Up Controls
You now have your controls spaced down the form, but they might not be equally
spaced, and they probably aren’t aligned vertically and horizontally. These problems
are easy to fi x. First, if your form ended up looking like the sample in Figure 12-7 with
one or more pairs of controls touching, you need to create some more space by moving
down the bottom controls in each column. First, click the IsAdmin check box at the
bottom of the fi rst column to select it, and press the Down Arrow once for each pair
of touching controls. (We needed to move the control down two rows of dots in our
sample.) Do the same, if necessary, to the BirthDate control at the bottom of the second
column. Next, select all the text box controls and the check box control in the fi rst col-
umn. You can do this by clicking the fi rst text box control (not its associated label) and
then holding down the Shift key as you click each of the remaining controls in the col-
umn. Or you can click the ruler above the controls. On the Arrange tab, in the Position
group, click the Make Vertical Spacing Equal button. Finally, choose all the text box
controls and the combo box control in the second column, and click the Make Vertical
Spacing Equal button again.

Now you’re ready to line up the labels. To get started, select all the labels in the left
column except the label for the IsAdmin check box. (You can do this the same way you
selected all the data-bound controls in a column.) When you have selected them, your
form should look something like the one shown in Figure 12-8. Notice that Access also
shows large positioning handles in the upper-left corners of all the related controls but
no sizing handles.

The labels will look best if their right edges align. You have two choices at this point. If
you turn off the Snap To Grid command, you can have Access align all the labels with
the label whose right edge is farthest to the right, even if that edge is between dots on
the grid. If you leave Snap To Grid on, you can have Access align the labels with the
label farthest to the right and then snap the entire group to the nearest grid point.

Note
For a simple form with a few controls, Snap To Grid works well to help you line up con-

trols. For more complex forms, using the commands in the Control Alignment group pro-

duces a better result. Read the next section to learn about these commands.

Chapter 12

620 Chapter 12 Customizing a Form
Figure 12-8 The employees form has a column of labels selected.

Note
For this example, we left Snap To Grid turned on, but you can try it both ways to see

which gives you the best result. Try it with Snap To Grid on, and then click the Undo but-

ton on the Quick Access Toolbar and try it with Snap To Grid turned off.

When you’re ready to align the selected labels on your form, on the Arrange tab, in
the Control Alignment group, click the Align Right button. While you’re at it, click the
Align Text Right button in the Font group on the Design tab to align the captions to
the right edges of all the label controls. Click outside the design area to select the form,
which will cancel the selection of the labels. Your form should look similar to the one
shown in Figure 12-9.

Figure 12-9 The labels from Figure 12-8 are right-aligned.

Note
For this example, we left Snap To Grid turned on, but you can try it both ways to see

which gives you the best result. Try it with Snap To Grid on, and then click the Undo but-

ton on the Quick Access Toolbar and try it with Snap To Grid turned off.

 Aligning and Sizing Controls in Design View 621

Ch
ap

te
r 1

2

To further improve the alignment of the controls on the employees form (assuming
your form now looks like Figure 12-9), do the following:

 1. The EmployeeNumber text box is a bit too far to the left. Click the control to
select it, then click the positioning handle in the upper-left corner, and fi nally
drag the control to the right. If you still have Snap To Grid turned on, it should
line up with the FirstName control.

 2. Select the EmployeeNumber, FirstName, MiddleName, LastName, EmailName,
DepartmentID, Offi ceLocation, WorkPhone, Password, and IsAdmin controls.
Click the Align Left button in the Control Alignment group on the Arrange tab.

 3. Select the labels in the right column and right align them. Also click the Align
Text Right button in the Font group on the Design tab to align the captions to the
right edge of the label controls.

 4. In our sample, the labels in the right column end up a bit too close to the related
data controls. Fixing this is a bit tricky. Select the longest label (State/Province),
grab its positioning handle in the upper-left corner, and drag it left one row of
dots. Grab the sizing handle in the middle of the right edge, and expand the label
size until it snaps to one row of dots away from the StateOrProvince text box.
Now, select all the labels again, align them left, and then align them right. Note
that by fi rst setting the right edge of the longest label and then aligning all the
labels fi rst to the left, the longest label is now assured to protrude farthest to the
right. Thus, when the labels are all aligned right again, they line up with the new
right offset of the longest label.

 5. We like all our labels to appear to the left of the related control, so click the
Administrator? label to select it, grab its positioning handle in the upper-left
corner, and drag it to the left of the IsAdmin check box. If you still have Snap To
Grid turned on and you do this carefully, the label should line up vertically with
the other labels in the column and horizontally with the check box. While you’re
at it, click the Align Text Right button in the Font group on the Design tab. If you
like, click the Administrator? label, and add a colon to the end of the text.

 6. Close up the bottom of the Detail section a bit so that you have the same amount
of space below the bottom control as you do above the top control.

After you complete these steps, your form should look something like the one shown in
Figure 12-10.

If you want to move one or more controls only horizontally or only vertically, hold down

the Shift key as you select the control (or the last control in a group) that you want to

move, and then drag either horizontally or vertically. When Access detects movement

either horizontally or vertically, it “locks” the movement and won’t let the objects stray

in the other axis. If you inadvertently start to drag horizontally when you mean to move

vertically (or vice versa), click the Undo button, and try again. Moving controls in this way

is especially useful when you have Snap To Grid turned off.

SIDE OUT Moving Controls in a Horizontal or Vertical Plane

If you want to move one or more controls only horizontally or only vertically, hold down

the Shift key as you select the control (or the last control in a group) that you want to

move, and then drag either horizontally or vertically. When Access detects movement

either horizontally or vertically, it “locks” the movement and won’t let the objects stray

in the other axis. If you inadvertently start to drag horizontally when you mean to move

vertically (or vice versa), click the Undo button, and try again. Moving controls in this way

is especially useful when you have Snap To Grid turned off.

Chapter 12

622 Chapter 12 Customizing a Form
Figure 12-10 The controls and labels are aligned horizontally and vertically.

If you switch to Form view, you can see the result of your work as shown in Figure 12-11.
Click the Save button on the Quick Access Toolbar to save this form. Name the form
frmEmployeesDesignView, and then close the form. You can also fi nd this form saved
as frmXmplEmployee3 in the sample database.

Figure 12-11 This is your employees form with controls aligned and sized.

Forms have an Auto Resize property. If you set this property to Yes and you are using

multiple-document interface mode with overlapping windows, Access sizes the Form

window to exactly fi t the form. Note that Access won’t automatically resize a form in

that case if you’ve switched from Design view to Form view. You can set the Auto Center

property to Yes to center the Form window in the current Access workspace if you are

using overlapping windows.

SIDE OUT Using the Auto Resize Property

Forms have an Auto Resize property. If you set this property to Yes and you are using

multiple-document interface mode with overlapping windows, Access sizes the Form

window to exactly fi t the form. Note that Access won’t automatically resize a form in

that case if you’ve switched from Design view to Form view. You can set the Auto Center

property to Yes to center the Form window in the current Access workspace if you are

using overlapping windows.

 Working in Layout View 623

Ch
ap

te
r 1

2

Working in Layout View
Up to this point you’ve been building a form in Design view to add and edit records in
the tblEmployees table. You’ve seen how to start with a blank form and add fi elds to the
grid, position the controls into a two-column layout, and then align the controls both
horizontally and vertically. In this section, you’ll follow the same procedure to build
an employees form, except this time you’ll use the new Layout view in Access 2007. By
performing the same steps in Layout view, you will learn how the new Layout view can
signifi cantly reduce the amount of time spent aligning and positioning controls. You’ll
also be able to see live data in the tblEmployees table while working with the controls
in Layout view.

Click the Blank Form button in the Forms group on the Create tab. A blank form grid
appears in Layout view with the Field List window showing on the right side of the
screen. The form does not yet have a record source, so you need to bind this form to the
tblEmployees table. Click the Property Sheet button in the Tools group on the Arrange
tab under Form Layout Tools. Find the Record Source property on either the All or Data
tab in the Property Sheet window for the form, and select tblEmployees from the list of
table and query names to bind this form to the tblEmployees table.

Understanding Control Layouts and Control Anchoring
Now that you have the form bound to the tblEmployees table, you can begin to add the
fi elds to the form grid, as you did previously in Design view, but this time you have left
the blank form in Layout view. Open the fi eld list by clicking the Add Existing Fields
button in the Controls group on the Format tab. If the fi eld list displays other tables
in the bottom half of the fi eld list, click the Show Only Fields In The Current Record
Source link at the bottom of the Field List window to show only the fi elds in the tblEm-
ployees table.

Earlier in the chapter, you were able to drag a control from the fi eld list and drop it on
any part of the form grid in Design view. Let’s try the same step now in Layout view.
Drag and drop the EmployeeNumber fi eld from the fi eld list onto the form grid. (It
doesn’t matter on what part of the grid you drop the fi eld.) After you release the mouse,
you’ll notice that Access places the control in the upper-left corner of the form grid, as
shown in Figure 12-12. Notice also that you can see actual data from the table in the
text box.

Access applied a control layout to the grid and anchored the EmployeeNumber control
in the upper-left corner. Access positioned the Employee Number label 0.25 inch from
the top of the form and 0.25 inch from the left side of the form. When you anchor a
control in a control layout, Access resizes or moves the control if you resize or move the
section in which the control resides. In addition to anchoring controls to the default top
left, you can choose to anchor controls at the bottom left, top right, and bottom right.
You can also choose to stretch the controls across the top, down the left side, across the
bottom, down the right side, and down and across the section. On the Arrange tab, in
the Position group, click the Anchoring button to see the nine possible anchoring con-
fi gurations, as shown in Figure 12-13.

Chapter 12

624 Chapter 12 Customizing a Form
Figure 12-12 Access positions the EmployeeNumber control in the upper-left corner no matter
where you drop it on the form grid.

Figure 12-13 Use the anchoring options to select different anchoring positions for your controls.

To see how another anchoring option appears on the form grid, select the Employee-
Number fi eld, if it isn’t already selected, and then click Stretch Across Top in the
Anchoring gallery. You’ll notice that Access increases the width of the EmployeeField
so that it extends closer to the right edge of the form. If you close the Field List window,
you can see that Access again increases the width of the control. Switch to Form view
now by clicking the arrow in the Views group on the Home or Format tab and select-
ing Form View in the list of available views. Access displays the EmployeeNumber fi eld
nearly across the entire top of the form grid, as shown in Figure 12-14. In most cases,
a control this wide is not very practical for a simple text fi eld. Return to Layout view,
select the EmployeeNumber control, click the Anchoring button in the Position group
on the Arrange tab, and change the anchor option back to Top Left.

 Working in Layout View 625

Ch
ap

te
r 1

2

Figure 12-14 The Stretch Across Top anchoring option produces a very wide control.

If you like, you can try some of the other options, but their names are intuitive. Top
Right pins the control in the upper-right corner. Stretch Down expands the control to
fi ll the vertical space on the form. (If you have more than one control stacked in the
layout, Access expands them all equally to fi ll the space.) Stretch Down And Across
expands the control to fi ll the entire space, and so on.

Lining Up Controls
Now that you have the EmployeeNumber fi eld on the grid, let’s add the next fi eld, First-
Name, below EmployeeNumber. Click the FirstName fi eld in the fi eld list, drag it onto
the form, and drop it just below the EmployeeNumber label and text box, as shown in
Figure 12-15. When you have it correctly positioned, Access displays a horizontal I-bar
below the EmployeeNumber controls. You’ll notice that Access doesn’t allow you to
drop the FirstName fi eld to the right of the EmployeeNumber control. It displays this
I-bar only above or below the EmployeeNumber controls.

Figure 12-15 Drag and drop the FirstName fi eld below the EmployeeNumber fi eld.

After you release the mouse, Access places the FirstName fi eld directly below the
EmployeeNumber label and text box controls, as shown in Figure 12-16. Now that you
have two controls on the grid, you can really begin to see the advantages of using a
control layout. Unlike the Design view exercise you performed at the beginning of this
chapter, Access creates label and fi eld controls that exactly match the dimensions of
the fi rst label and fi eld controls when you use a control layout. Access positions the new
controls directly beneath the EmployeeNumber controls and aligns them vertically.

Chapter 12

626 Chapter 12 Customizing a Form
Control layout indicator

Figure 12-16 Access sizes all the same types of controls to the same height and width when you
use a control layout.

Control layouts help you align and position controls on forms and reports. It might be
easier to think of a control layout as being similar to a table in Microsoft Offi ce Word
or a spreadsheet in Microsoft Offi ce Excel. When you widen or narrow one control in a
column, you change the width of any other controls in that column that are part of that
control layout. Likewise, when you increase or decrease the height of a control, you’re
changing the height of all the controls in that row.

Access 2007 has two kinds of control layouts—stacked and tabular. In a stacked control
layout, Access “stacks” bound controls for different fi elds in a column and places all the
labels down the left side. You can have multiple sets of stacked controls within a sec-
tion. Any controls (including associated labels) in a stacked layout must all be in one
section. In the form you’ve built thus far, Access has placed the employee number and
fi rst name controls in a stacked layout in the Detail section. You can tell these controls
are in a control layout by noticing the small box with crosshairs just to the left of and
slightly above the Employee Number label, previously shown in Figure 12-16.

In a tabular control layout, Access places bound controls horizontally with labels along
the top as column headings—much like rows on a spreadsheet. A tabular control layout
can include controls in different sections of a form—for example, the labels can appear
in a header section and the data controls in the Detail section of the form.

Moving Controls Within a Control Layout
Let’s add the remaining fi elds onto the form grid now. Click the MiddleName fi eld in
the fi eld list, hold down the Shift key, and then click the BirthDate fi eld to highlight the
remaining 16 fi elds. Drag all the controls as a group onto the form grid and drop them
just below the FirstName label and text box. After you drop the fi elds onto the grid,
your form should look like Figure 12-17.

When you work with a control layout in Layout view, you can save time positioning,
moving, and resizing controls. As you can see in Figure 12-17, Access sizes all the labels
and text box controls to the same dimensions. When you did this same exercise in
Design view at the beginning of the chapter, you needed to perform extra steps to make

 Working in Layout View 627

Ch
ap

te
r 1

2

all the labels the same size, change the widths of the labels to accommodate the caption
text, and line up the controls both horizontally and vertically. You also had to swap
positions for the IsAdmin check box and label. In the new Layout view, though, Access
correctly places the label to the left of the check box, which makes this part of the form
creation process much easier and faster.

Figure 12-17 You can quickly move a group of fi elds from the fi eld list into a control layout in
 Layout view.

Note
If you look closely again at Figure 12-17, you’ll notice a discrepancy with the order of

the fi elds on the form grid. In the initial release of Access 2007, a bug causes the order

of fi elds to be incorrectly positioned on the form grid when you drag and drop a group

of controls from the fi eld list. If you compare your fi eld list on the form grid to the order

of fi elds displayed in the fi eld list, you’ll see that the order has been rearranged. To work

around this bug, you can drag and drop one fi eld at a time onto the form grid from the

fi eld list instead of dragging a group of controls onto the form grid. For now, we’ll keep

the incorrect order on the grid so that we can show you another advantage to using

 control layouts.

Note
If you look closely again at Figure 12-17, you’ll notice a discrepancy with the order of

the fi elds on the form grid. In the initial release of Access 2007, a bug causes the order

of fi elds to be incorrectly positioned on the form grid when you drag and drop a group

of controls from the fi eld list. If you compare your fi eld list on the form grid to the order

of fi elds displayed in the fi eld list, you’ll see that the order has been rearranged. To work

around this bug, you can drag and drop one fi eld at a time onto the form grid from the

fi eld list instead of dragging a group of controls onto the form grid. For now, we’ll keep

the incorrect order on the grid so that we can show you another advantage to using

control layouts.

Chapter 12

628 Chapter 12 Customizing a Form
When you have controls in a control layout and move them around in Layout view,
Access automatically snaps them back into proper horizontal and vertical alignment. To
see this feature, let’s change the order of the controls on the form grid to match the dis-
play order shown in the fi eld list. Click the MiddleName text box control or label, drag
it up toward the top of the form, and drop it just below the FirstName label and text
box. When you have it correctly positioned, Access displays a horizontal I-bar below the
FirstName controls, as shown in Figure 12-18.

Figure 12-18 Drag the MiddleName label and text box controls into their correct position.

After you release the mouse, Access moves the MiddleName label and text box controls
beneath the FirstName controls and moves all the other controls down to make room,
as shown in Figure 12-19. Access also lines up all the controls both horizontally and
vertically on the form grid. By using a control layout, you can easily move and swap
control positions without having to line up the controls.

 Working in Layout View 629

Ch
ap

te
r 1

2

Figure 12-19 In a control layout, Access repositions controls when you move them around the
form grid.

Using the technique you just learned, reposition the remaining fi elds to match the dis-
play order in the fi eld list. Keep the Field List window open during this process so that
you can see their correct order.

After you reposition all the controls, your form should look like Figure 12-20. You
 repositioned and aligned the controls in a matter of seconds, whereas this same proce-
dure in Design view could take much longer.

Chapter 12

630 Chapter 12 Customizing a Form
Figure 12-20 All the controls now match the fi eld list display order.

Formatting a Column of Controls
As you might recall from earlier in the chapter, we like to right align our labels and bold
the font. When you did this procedure in Design view, you clicked the horizontal ruler
at the top of the design area to select all controls in a column. In Layout view, however,
you cannot display the horizontal ruler. To select all the label controls in a column,
select the Employee Number label and then rest your mouse pointer on the top edge of
the label until it changes to a down arrow, as shown in Figure 12-21. When you see the
down arrow, click once; Access highlights all the labels in that column. Now click the
Bold button in the Font group on the Format tab to change the font in all the label con-
trols to bold. Next, click the Align Text Right button in the Font group to right align all
the text in the labels.

You’ll notice that when you change the font to bold, Access increases the width of all the
label controls to make sure all the text still fi ts within the labels. Access then pushes all
the text controls to the right to accommodate the wider labels. Here again, you can see
how Layout view saves you time compared to doing the same steps in Design view.

 Working in Layout View 631

Ch
ap

te
r 1

2

Figure 12-21 Select all the labels by resting your mouse pointer on the top edge of the Employee
Number label.

Resizing Controls
Now that you have all the labels formatted just the way you want, you should adjust
the width of the text box controls. Remember that earlier in the chapter we discussed
having three different widths for the various text box controls. Right now, all the text
box controls are 3 inches wide, which is much larger than they need to be. Also, we
eventually want to have two columns for our fi elds, so you’ll need to make room for the
second column of controls. Let’s start by resizing all the text box controls to the longest
length we want to have, 1.5 inches, and then we’ll move the controls into two columns.
You’ll have an easier time positioning the controls into two columns when you can see
the maximum width of the text box controls. Click the sizing box in the middle of the
right edge of the EmployeeNumber text box, and drag the right edge to the left until the
control is about 1.5 inches wide. As you drag the control to the left, you’ll immediately
notice that Access resizes every other text box as well, as shown in Figure 12-22.

Chapter 12

632 Chapter 12 Customizing a Form
Figure 12-22 When you resize one control in a control layout, all other controls in the same col-
umn are also resized.

Now you can see one of the great advantages and disadvantages of using a control lay-
out. If you need to resize all the controls in the same column on a form grid to the same
width or height, using a control layout makes this process very simple. However, it is
impossible to make individual sizing changes to some of the controls inside a control
layout. To resize individual controls, you must remove the control layout applied to
the controls. But keep in mind that when you remove the control layout, you lose the
timesaving features of moving and positioning the controls should you need to insert
additional controls.

Removing a Control Layout
To move eight of your fi elds into a second column as you did in Design view earlier in
this chapter, you need to remove the control layout applied to all the controls on the
form grid. Because all the controls are in a stacked layout, Access does not allow you
to drag any of the controls into a second column. To remove the control layout, you
fi rst need to select all the controls. Click the Employee Number label, and move your
pointer to the top edge until it turns into a down arrow. Click, and Access highlights all

 Working in Layout View 633

Ch
ap

te
r 1

2

the labels. Now hold down the Shift key, click the EmployeeNumber text box, and move
your mouse to the upper edge of the control until it becomes a down arrow. Click again,
and Access highlights all the text box controls as well. Now that all the form controls
are selected, on the Arrange tab, in the Control Layout group, click the Remove button,
as shown in Figure 12-23.

Figure 12-23 Click the Remove button to remove the control layout applied to the form controls.

In Layout view, you cannot display the horizontal ruler across the top of the form grid.

When you want to resize a control to a specifi c height or width in this view, it can be dif-

fi cult trying to guess exactly the right size when you drag the edges of the control. To

make this process easier, fi rst display the Property Sheet window by clicking the Property

Sheet button in the Tools group on the Arrange tab. Click either the Format or All tab to

display the Height and Width property settings, and then type the new height or width

directly on the property sheet to resize the control. You can also click a control and then

begin dragging the control edges. After you make an adjustment to the control’s height

or width, release the mouse, and notice that Access adjusts these properties on the

property sheet. You’ll immediately be able to gauge whether you need to make further

adjustments.

SIDE OUT Using the Property Sheet to Help Resize Controls

In Layout view, you cannot display the horizontal ruler across the top of the form grid.

When you want to resize a control to a specifi c height or width in this view, it can be dif-c
fi cult trying to guess exactly the right size when you drag the edges of the control. To

make this process easier, fi rst display the Property Sheet window by clicking the Property

Sheet button in the Tools group on the Arrange tab. Click either the Format or All tab to

display the Height and Width property settings, and then type the new height or width

directly on the property sheet to resize the control. You can also click a control and then

begin dragging the control edges. After you make an adjustment to the control’s height

or width, release the mouse, and notice that Access adjusts these properties on the

property sheet. You’ll immediately be able to gauge whether you need to make further

adjustments.

Chapter 12

634 Chapter 12 Customizing a Form
Now that you’ve removed the control layout, you can move and resize any controls
independently. You need to move eight fi elds into a new column to the right of the
existing column. To select all of these controls as a group, hold down the Shift key, and
then click both the label and the text box for the following fi elds—Photo, Address, City,
StateOrProvince, PostalCode, Country, HomePhone, and BirthDate. After you have all
these controls selected, move your mouse onto the middle of one of the controls until it
becomes double-sided crosshairs. Now drag the controls as a group to the right and line
up the top control even with the MiddleName controls before releasing the mouse, as
shown in Figure 12-24. Make sure to leave a little extra room between the two columns.
(You don’t have to be perfectly precise in this move because you’re still going to move
things around.)

Figure 12-24 Drag the selected controls into a new column.

After you drop the controls in the second column, your form should look like Figure
12-25. The two columns of controls now have large gaps between the various controls
because Access kept the original relative distance between the controls when you
moved them as a group. Earlier in this chapter you saw how to fi ll these missing gaps
in Design view by dragging the controls around and then aligning them to existing
controls. You could follow the same procedure here in Layout view, but let’s use control
layouts to save some extra steps.

 Working in Layout View 635

Ch
ap

te
r 1

2

Figure 12-25 The controls are now separated into two columns, but you still need to move and
align them.

Placing Controls into a Control Layout
If you select all the controls on the form grid and apply them again to a stacked control
layout, Access aligns all the controls to the left edge of the form, essentially undoing the
work you just did in the preceding step. If, however, you create a new control layout for
each column of controls, you can still use the features of control layouts. Select all the
controls in the left column by holding down the Shift key and then clicking each label
and text box (include the IsAdmin check box as well). Next, click the Stacked button in
the Control Layout group on the Arrange tab, as shown in Figure 12-26.

After you click the Stacked button, you’ll notice that Access snaps the three label and
fi eld controls near the bottom of the form grid up next to the other controls. Access
aligns them perfectly both horizontally and vertically with one click.

Chapter 12

636 Chapter 12 Customizing a Form
Figure 12-26 Click the Stacked button to apply a control layout to the controls on the left side of
the form grid.

If you look at Figure 12-27, you’ll notice that Access 2007 aligned all the label captions
back to the left. In a stacked control layout, this is the default, so you’ll need to change
this to right-aligned. (Notice, however, that placing the controls back into a control
layout did not remove the bold font from the labels.) Click the Employee Number label,
rest your mouse pointer on the top edge of the label until the cursor changes to a down
arrow, and then click to highlight all the label controls. Click the Align Text Right but-
ton in the Font group on the Format tab to right align the labels.

Now you need to apply a control layout to the controls on the right side of the form
grid. Select each label and text box on the right side of the form, and then click the
Stacked button in the Control Layout group on the Arrange tab. Access brings all the
label and fi eld controls on the right side up to the Photo controls and aligns them hori-
zontally and vertically. Access again changes all the label captions to be left-aligned, so
highlight the labels, and right align them as you did previously. After you make these
changes, your form should look like Figure 12-28. You can see how quick and easy it is
to align controls when you use control layouts.

 Working in Layout View 637

Ch
ap

te
r 1

2

Figure 12-27 Access aligns all the controls on the left side of the form after you apply a
control layout.

Figure 12-28 Each column of controls is now within its own stacked control layout.

Now that you have applied a control layout to each column, you should check to make
sure that the controls from both columns line up together. Depending upon where you
moved the controls to the right side of the form, they could be a little higher or lower
than the respective controls on the left side. Because each group of controls is in a con-
trol layout, if you move one control, they all move together. To align all the controls ver-
tically, select the MiddleName and Photo controls, and then on the Arrange tab, in the
Control Alignment group, click the Top button, as shown in Figure 12-29.

Chapter 12

638 Chapter 12 Customizing a Form
Figure 12-29 Use the commands in the Control Alignment group to align both control layouts
together.

Note
In our test form, we used the Top button to bring the controls up on the right side of

the form into alignment with the controls on the left side. If you placed the controls in

the right column higher on the form, you might need to select the Birth Date and Work

Phone controls and use the Bottom button to bring your controls in the right column

down to align them.

Adding Some Space with Control Padding
All your controls from both sides of the form are now aligned vertically, but they seem
to be too close together. Earlier in the chapter, you adjusted the space between the con-
trols by using the grid properties and snapping the controls to the grid. You can also
adjust the spacing between the controls by using the control padding commands. Con-
trol padding adjusts the amount of space between the controls on the form.

Access 2007 has four settings for control padding—None, Narrow (the default),
Medium, and Wide. Let’s change the control padding around all the controls from Nar-
row to Medium. Select all the controls on the grid by clicking the Employee Number
label, moving the mouse pointer over the top edge until it becomes a down arrow, and
then clicking once to highlight all the labels in that column. Hold down the Shift key,

Note
In our test form, we used the Top button to bring the controls up on the right side of

the form into alignment with the controls on the left side. If you placed the controls in

the right column higher on the form, you might need to select the Birth Date and Work

Phone controls and use the Bottom button to bring your controls in the right column

down to align them.

 Working in Layout View 639

Ch
ap

te
r 1

2

and do the same procedure for the EmployeeNumber text box, the Photo label, and the
Photo text box. After you have all the controls on the form grid selected, click Control
Padding in the Control Layout group on the Arrange tab, and then click Medium, as
shown in Figure 12-30.

Figure 12-30 Change the control padding from Narrow to Medium to increase the space between
the controls.

You can quickly select all the controls in a specifi c control layout by clicking one of the

controls and then clicking the small box with crosshairs just to the left of and slightly

above the fi rst control in the control layout.

After you click the Medium button, Access increases the padding around all the con-
trols so that they are spaced further apart, as shown in Figure 12-31. You’ll notice,
however, that the controls from the two separate control layouts don’t quite line up.
This is easy to fi x using the techniques you learned previously—select the MiddleName
and Photo controls, and click the Bottom button in the Control Alignment group on the
Arrange tab. Access moves down all the controls on the right side of the form to line up
with the controls on the left side.

SIDE OUT Selecting All Controls in a Control Layout

You can quickly select all the controls in a specifi c control layout by clicking one of the

controls and then clicking the small box with crosshairs just to the left of and slightly

above the fi rst control in the control layout.

Chapter 12

640 Chapter 12 Customizing a Form
Figure 12-31 You now have more space between the controls after increasing the control padding.

Completing the Form
Your form is now looking very similar to the employees form you created in Design
view at the beginning of the chapter. The last steps you need to take are to resize the
columns to the different widths and move two fi elds. You need to move the WorkPhone
controls above the Password controls and move the Photo controls between the Home-
Phone and BirthDate controls. Click the WorkPhone label or text box, and drag and
drop them just below the Offi ceLocation label and text box. Access moves the Password
and IsAdmin controls down to allow space for the WorkPhone controls. Similarly, click
the Photo label or text box, and drag and drop them just below the HomePhone label
and text box. Access moves all the other controls on the right side of the form up to
allow space for the Photo controls. All your controls are now positioned correctly and
match the layout of the form you previously created in Design view.

In “Resizing Controls,” you learned you cannot have different widths and heights for
controls contained within a control layout. To individually resize the text boxes, you
must remove both control layouts. The control layouts served their purpose in helping
you position and align the controls, but they have now reached the limits of their use-
fulness. To remove the control layout for the controls on the left side of the form, click
one of the controls in that group, and then click the small box with crosshairs (just to
the left of and slightly above the Employee Number label) to highlight all the controls.
Next, click the Remove button in the Control Layout group on the Arrange tab. Remove
the control layout for the controls on the right side of the form by following the same
steps. You can now resize each label or text box independently.

The text boxes you want to be the longest—EmailName, Offi ceLocation, Photo, Address,
City, and Country—are already at the correct width, so you need to resize only the
remaining text boxes. Let’s fi rst resize the text box controls that should be the shortest.
Click the EmployeeNumber text box, hold down the Shift key, and then click the

 Working in Layout View 641

Ch
ap

te
r 1

2

DepartmentID and StateOrProvince text box controls. Next, click the sizing box in the
middle of the right edge of the StateOrProvince text box, and drag the right edge to the
left until the control is about 0.5 inch wide, as shown in Figure 12-32.

Figure 12-32 Resize the EmployeeNumber, DepartmentID, and StateOrProvince text boxes to a
smaller width.

Now you need to resize the following fi elds to about 1 inch—FirstName, MiddleName,
LastName, Password, PostalCode, HomePhone, WorkPhone, and BirthDate. Select them
all by clicking each one while holding down the Shift key, and then drag the right edge
of one of the text boxes to the left until the text boxes are about 1 inch wide.

If you switch to Form view, you can see the result of your work, as shown in Figure
12-33. You have now seen how to create the same basic employees form in both Design
view and Layout view. Click the Save button on the Quick Access Toolbar to save this
form. Name the form frmEmployeesLayoutView, and then close it. You can also fi nd
this form saved as frmXmplEmployeeLayout in the sample database.

Figure 12-33 You now have a good, basic employees form created entirely in Layout view.

Chapter 12

642 Chapter 12 Customizing a Form

Layout view for forms works best for positioning, aligning, and resizing controls. In Lay-

out view, you can see live data in the controls, which makes resizing controls to fi t their

contents very easy. However, Layout view does have limitations. You cannot, for example,

use most of the tools available in the Controls group that you see for a form in Design

view. You also cannot see any of the form sections when you display a form in Layout

view. This can make it diffi cult to position controls within specifi c sections. We’ve found

that using both Design view and Layout view increases our productivity.

Enhancing the Look of a Form
The employees forms you’ve built thus far in Design view and Layout view look fairly
plain. They use default fonts and a background color that’s inherited from the color you
have defi ned in Windows for three-dimensional (3-D) objects (sometimes called the
Button Face color). In this section, you’ll learn about additional enhancements you can
make to your form’s design. To follow along with the rest of this chapter, you can use
either the form you created in Design view, the form you created in Layout view, or one
of the example forms saved in the database. We used the form we created using Design
view for the remainder of this chapter. Open your form in Design view to continue with
the next examples.

Lines and Rectangles
Access 2007 comes with two drawing tools, the Line tool and the Rectangle tool, that
you can use to enhance the appearance of your forms. You can add lines to separate
parts of your form visually. Rectangles are useful for surrounding and setting off a
group of controls on a form.

On your employees form, it might be helpful to add a line to separate the primary
information about the employee in the fi rst column from personal information in the
second column. To make suffi cient room for the line, you should move the controls in
the fi rst column to the left. The easiest way to do this is to switch to Design view, select
all the affected controls and labels, and then move them as a group. Start by clicking
the top ruler just above the right edge of the controls, and then drag inside the ruler
toward the left until the selection indicator touches all the controls in the left column.
(If you can’t see the rulers, be sure that the Ruler button is selected in the Show/Hide
group on the Arrange tab.) Release the mouse button, and all the controls and labels in
the left column will be selected. To be sure you move all these controls as a group, click
the Group button in the Control Layout group on the Arrange tab. Access shows you
that the controls are now grouped by placing a rectangular line around all the controls.
Rest the mouse pointer on the square in the upper-left corner of the group so that the
pointer changes to a pointer with a crosshairs shape (see Figure 12-34), and slide the
entire group left a bit.

SIDE OUT When to Use Layout View

Layout view for forms works best for positioning, aligning, and resizing controls. In Lay-

out view, you can see live data in the controls, which makes resizing controls to fi t their

contents very easy. However, Layout view does have limitations. You cannot, for example,

use most of the tools available in the Controls group that you see for a form in Design

view. You also cannot see any of the form sections when you display a form in Layout

view. This can make it diffi cult to position controls within specifi c sections. We’ve found

that using both Design view and Layout view increases our productivity.d

 Enhancing the Look of a Form 643

Ch
ap

te
r 1

2

Pointer with crosshairs Group button

Figure 12-34 You can group a set of controls and then move them together.

Next, on the Design tab, in the Controls group, click the Line tool. To draw your line,
click near the top of the form between the two columns, about two grid rows below the
top edge, and drag toward the form’s bottom edge. If the line isn’t exactly vertical, you
can drag the bottom end left or right to adjust it. You can also set its Width property
to 0 in the property sheet to make it perfectly vertical. (As you might imagine, setting
the Height property to 0 makes the line horizontal.) Use the Line Thickness button
in the Controls group on the Design tab to make the line a little thicker if you want.
(Or, change the Border Width property in the property sheet.) Click the button, and
choose the thickness you want. Your form should now look similar to the one shown in
Figure 12-35.

When drawing a line on your form, you can make your line exactly horizontal or exactly

vertical if you hold down the Shift key as you click and draw the line.

SIDE OUT Ensuring Your Lines Are Straight

When drawing a line on your form, you can make your line exactly horizontal or exactly

vertical if you hold down the Shift key as you click and draw the line.

Chapter 12

644 Chapter 12 Customizing a Form
Figure 12-35 Use the Line tool to draw a line on a form; use the Border Thickness button to adjust
the line width.

You can add emphasis to the form by drawing a rectangle around all the controls. To do
this, you might fi rst need to move all the controls down and to the right a bit and make
the Detail section slightly wider and taller. First, expand your form by about 0.5 inch
across and down. Click the Select All button in the Controls group on the Design tab,
and then drag all the controls so that you have about 0.25 inch of space around all the
edges. (This might seem like too much space, but we’ll use the extra space to have some
fun later.) Select the Rectangle tool in the Controls group, click where you want to place
one corner of the rectangle, and drag to the intended location of the opposite corner.
When you draw a rectangle around all the controls, your form will look similar to the
one shown in Figure 12-36.

Figure 12-36 Use the Rectangle tool to place a rectangle with a default etched look on the
employees form.

 Enhancing the Look of a Form 645

Ch
ap

te
r 1

2

Note that the rectangle control actually covers and is on top of all the other controls.
However, because the default rectangle is transparent with an etched special effect,
you can see the other controls through the rectangle. (You might need to click the form
or another control so that you can see the etched look of the rectangle.) If you prefer a
solid rectangle, you can select the rectangle control and then use the Fill/Back Color
button in the Font group on the Design tab to select the color you want. (A light gray
will work best.) When you add a solid control like this after you’ve created other con-
trols, the solid control will cover the previous controls. You can select the control and
click Send To Back in the Position group on the Arrange tab to reveal the covered con-
trols and keep the solid control in the background.

Go ahead and make the rectangle a solid light gray and send it to the back. Now switch
to Form view, and see how your form looks up to this point. Your employees form
should look similar to the one shown in Figure 12-37.

Figure 12-37 The employees form in Form view has a line and a solid rectangle added.

Colors and Special Effects
You can also use color and special effects to highlight objects on your form. For exam-
ple, you can make all the controls appear to “fl oat” on a raised surface on the form. To
do so, switch to Design view, and select the rectangle you just created. Click the arrow
on the Special Effect button in the Controls group on the Design tab, and then click
Special Effect: Raised to change the rectangle from Etched to Raised. Your form in Form
view will look similar to the one shown in Figure 12-38.

Chapter 12

646 Chapter 12 Customizing a Form
Figure 12-38 The rectangle behind the controls appears raised above the surface of the form
background.

Next, switch to Design view if you changed to Form view, select the Rectangle tool
again, and set Back Color to dark gray and Special Effect to Sunken using the buttons in
the Font and Controls groups. Draw a second rectangle so that it forms a border about
halfway between the edge of the fi rst rectangle and the edge of the grid. Click Send To
Back in the Position group on the Arrange tab to send this latest rectangle to the back-
ground. Switch to Form view to see the result. The fi rst gray rectangle now appears to
fl oat on the form, surrounded by a “moat” of dark gray, as shown in Figure 12-39.

Figure 12-39 The fi rst light gray rectangle appears to fl oat on the form using special effects.

You can fi nd this form saved as frmXmplEmployee4 in the sample database.

 Enhancing the Look of a Form 647

Ch
ap

te
r 1

2

Although you can certainly pick from a broad palette of colors for any design object,

you might want to design your forms so that they always inherit colors from the options

the user has set in the Windows Display dialog box. In fact, if you select the Detail sec-

tion of the employees form you’ve been building, open the Property Sheet window, and

fi nd the Back Color property, you’ll fi nd the property set to System Button Face. This

special option tells Access to use the color set in Windows for button faces and other 3-D

objects. In any color property, Access lists 31 system color names that you can use to set

colors in your forms and controls to match those set in Windows objects. All these color

names begin with the word System.

You can also see in the Back Color property (or, for that matter, any color property) a list

of 20 additional options. These include Alternate Row, Background Form, Background

Light Header, Background Dark Header, Borders/Gridlines, Text Black, Text Description,

Text Light, Text Dark, Highlight, and Access Theme 1, Access Theme 2, and so on, up to

Access Theme 10. These are shades of the color scheme you chose in Access Options—

shades of blue for the Blue or Silver theme, and shades of gray and black for the Black

theme, and with a shade of orange in all themes for Highlight. If you click the Build but-

ton on the Back Color property line or click the arrow next to the Font Color or Fill/Back

Color commands in the Font group on the Design tab, Access opens a color palette

where you can see the color defi ned for each of these options, as shown here:

If you select any of the colors under Access Theme Colors, Access enters the name of the

theme or color option on the property line. If you click one of the colors under Standard

Colors, Access sets a hexadecimal value in the property that represents the red, green,

and blue (RGB) color value—#000000 for Black, #FF0000 for Red, #00FF00 for Green,

#0000FF for Blue, and #FFFFFF for White, for example. See Article 5, “Color Names and

Codes,” on the companion CD for a list of common color hexadecimal equivalents.

SIDE OUT Using System Colors and the Color Palette

Although you can certainly pick from a broad palette of colors for any design object,

you might want to design your forms so that they always inherit colors from the options

the user has set in the Windows Display dialog box. In fact, if you select the Detail sec-

tion of the employees form you’ve been building, open the Property Sheet window, and

fi nd the Back Color property, you’ll fi nd the property set to System Button Face. This

special option tells Access to use the color set in Windows for button faces and other 3-D

objects. In any color property, Access lists 31 system color names that you can use to set

colors in your forms and controls to match those set in Windows objects. All these color

names begin with the word System.

You can also see in the Back Color property (or, for that matter, any color property) a list

of 20 additional options. These include Alternate Row, Background Form, Background

Light Header, Background Dark Header, Borders/Gridlines, Text Black, Text Description,

Text Light, Text Dark, Highlight, and Access Theme 1, Access Theme 2, and so on, up to

Access Theme 10. These are shades of the color scheme you chose in Access Options—

shades of blue for the Blue or Silver theme, and shades of gray and black for the Black

theme, and with a shade of orange in all themes for Highlight. If you click the Build but-

ton on the Back Color property line or click the arrow next to the Font Color or Fill/Back

Color commands in the Font group on the Design tab, Access opens a color palette

where you can see the color defi ned for each of these options, as shown here:

If you select any of the colors under Access Theme Colors, Access enters the name of the

theme or color option on the property line. If you click one of the colors under Standard

Colors, Access sets a hexadecimal value in the property that represents the red, green,

and blue (RGB) color value—#000000 for Black, #FF0000 for Red, #00FF00 for Green,

#0000FF for Blue, and #FFFFFF for White, for example. See Article 5, “Color Names and

Codes ” on the companion CD for a list of common color he adecimal eq i alents

Chapter 12

648 Chapter 12 Customizing a Form
Under Recent Colors on the color palette, Access displays up to 10 recently used colors.

Click one of these to enter the code or name for that color in the color property. If you

want to create your own custom color, you can click More Colors to open the Colors

dialog box. In the Colors dialog box, you can choose from a wider selection of colors on

the Standard tab or defi ne a custom color on the Custom tab by adjusting individual RGB

values or selecting the color you want from a color rainbow palette.

Fonts
Another way you can enhance the appearance of your forms is by varying the fonts
and font sizes you use. When you select any control that can display text or data,
Access makes font, font size, and font attribute controls available in the Font group on
the Design tab so that you can easily change how the text in that control looks. Click
the arrow next to the Font Name combo box to open a list of all the available fonts, as
shown in Figure 12-40. Select the font you want for the control.

Figure 12-40 This is a partial list of fonts available to you in the Font Name combo box.

Under Recent Colors on the color palette, Access displays up to 10 recently used colors.

Click one of these to enter the code or name for that color in the color property. If you

want to create your own custom color, you can click More Colors to open the Colors

dialog box. In the Colors dialog box, you can choose from a wider selection of colors on

the Standard tab or defi ne a custom color on the Custom tab by adjusting individual RGB

values or selecting the color you want from a color rainbow palette.

 Enhancing the Look of a Form 649

Ch
ap

te
r 1

2

Note
The font list shows all fonts currently installed on your computer. Use the Fonts folder in

Windows Control Panel to add or remove fonts. A double-T icon next to the font name

in the list indicates a TrueType font that is suitable for both screen display and printing.

A printer icon next to the font name indicates a font designed for your printer but that

might not look exactly the same when displayed on your screen. A font with no icon

indicates a font designed for your screen; a screen font might look different when you

print it.

If you want to add some variety, you can use bold or italic type in a few key places. In
this case, select all the labels on the form, and select a serif font such as Times New
Roman.

You can add a label to the header of the form to display a title such as Employees. You
can either do this manually or use a button on the Ribbon designed specifi cally for this
task. If you’d like Access to do most of the work, click the Title button in the Controls
group on the Design tab. Access opens the header and footer section, places a new label
in the header section, and sets the caption to the name of your form. Double-click the
new label to select the existing text, type Employees in the label, and press Enter.

To do this same task manually, you need to fi rst open the header and footer of the form
by clicking the Form Header/Footer button in the Show/Hide group on the Arrange tab.
Grab the bottom edge of the footer, and close it up so that it has zero height. Expand the
header to give yourself some room to work. Choose the Label tool in the Controls group
on the Design tab, draw a label about 1.5 inches wide and 0.5 inch high, type the word
Employees in the label, and press Enter.

Set the label in the header to the Tahoma font (a sans serif font), bold, italic, and 18
points in size. Double-click one of the sizing boxes to size the control to fi t, and drag
the right edge to the right if all the letters don’t show in the label. You can see a portion
of this work under way in Figure 12-41.

Figure 12-41 Adjust the size of the label to fi t the form header title.

Note
The font list shows all fonts currently installed on your computer. Use the Fonts folder in

Windows Control Panel to add or remove fonts. A double-T icon next to the font name

in the list indicates a TrueType font that is suitable for both screen display and printing.

A printer icon next to the font name indicates a font designed for your printer but that

might not look exactly the same when displayed on your screen. A font with no icon

indicates a font designed for your screen; a screen font might look different when you

print it.

Chapter 12

650 Chapter 12 Customizing a Form
You can create a special “shadowed” effect behind this label in the header by doing the
following:

 1. Copy the label you just created to the Clipboard, and paste it in the header.

 2. Change the font color of the pasted label to white, and then click the Send To
Back button in the Position group on the Arrange tab.

 3. Turn off the Snap To Grid command if it is on in the Control Layout group on the
Arrange tab, and use the arrow keys to move the white label so that it is slightly
lower and to the right of the fi rst label.

 4. Click the Form Header bar to select that section, and set the background color to
light gray to provide some contrast.

When you fi nish, the form should look similar to the one shown in Figure 12-42. (You
can fi nd this form saved in the sample database as frmXmplEmployee5.)

Figure 12-42 The employees form now has a title and some different fonts for variety.

A form with too many fonts or font sizes will look busy and jumbled. In general, you

should use only two or three fonts per form. Use one font and font size for most bound

data displayed in controls. Make label text bold or colored for emphasis. Select a sec-

ond font for controls in the headers and perhaps a third (at most) for information in

the footers.

SIDE OUT More Is Not Always Better When It Comes to Fonts

A form with too many fonts or font sizes will look busy and jumbled. In general, you

should use only two or three fonts per form. Use one font and font size for most bound

data displayed in controls. Make label text bold or colored for emphasis. Select a sec-

ond font for controls in the headers and perhaps a third (at most) for information in

the footers.

 Setting Control Properties 651

Ch
ap

te
r 1

2

Setting Control Properties
Access 2007 gives you many properties for each control to allow you to customize the
way your form works. These properties affect formatting, the presence or absence of
scroll bars, the enabling or locking of records, the tab order, and more.

Formatting Properties
In the property sheet for each text box, combo box, and list box are three properties
that you can set to determine how Access displays the data in the form. These proper-
ties are Format, Decimal Places, and Input Mask, as shown in Figure 12-43. (The Input
Mask property is listed farther down the list on the All tab of the property sheet and
isn’t shown in Figure 12-43.)

Figure 12-43 You can select a format from the list of format settings for the BirthDate control,
which uses the Date/Time data type.

We recommended earlier that you change the date display in the Regional And Lan-

guage Options section of Windows Control Panel to display a four-digit year. Although

Access adjusts the century digits automatically when you enter two-digit years, you will

avoid confusion about the actual value stored after the year 1999 if you always display

the full year. All samples you see in this book using the Short Date format show four-digit

years because we changed the settings on our computers. If your computer is set to dis-

play a two-digit year, you will see a different result everywhere we used the Short Date

format.

SIDE OUT Always Use Four-Digit Year Values

We recommended earlier that you change the date display in the Regional And Lan-

guage Options section of Windows Control Panel to display a four-digit year. Although

Access adjusts the century digits automatically when you enter two-digit years, you will

avoid confusion about the actual value stored after the year 1999 if you always display

the full year. All samples you see in this book using the Short Date format show four-digit

years because we changed the settings on our computers. If your computer is set to dis-

play a two-digit year, you will see a different result everywhere we used the Short Date

format.

Chapter 12

652 Chapter 12 Customizing a Form
For details on the Input Mask property, see Chapter 4, “Creating Your Database and Tables.”
For details on dynamically changing format properties (also called conditional formatting)
based on the value currently displayed, see Chapter 13, “Advanced Form Design.”

Access copies these properties from the defi nition of the fi elds in the underlying table.
If you haven’t specifi ed a Format property in the fi eld defi nition, Access sets a default
Format property for the control, depending on the data type of the fi eld bound to the
control. In the control’s property sheet, you can customize the appearance of the data
on your form by selecting a format setting from the Format property’s list or by entering
a custom set of formatting characters. The following sections present the format set-
tings and formatting characters available for each data type.

Specifying a Format for Numbers and Currency
If you don’t specify a Format property setting for a control that displays a number or a
currency value, Access displays numbers in the General Number format and currency
in the Currency format. You can choose from seven Format property settings, as shown
in Table 12-1.

Table 12-1 Format Property Settings for Number and Currency Data Types

Format Description

General Number Displays numbers as entered with up to 11 signifi cant digits. If a
number contains more than 11 signifi cant digits or the control you
are using to display the value is not wide enough to show all digits,
Access fi rst rounds the displayed number and then uses scientifi c
(exponential) notation for very large or very small numbers (more
than 10 digits to the right or to the left of the decimal point).

Currency Displays numeric data according to the Currency setting in the
Regional And Language Options section of Windows Control Panel.
In the U.S. layout, Access uses a leading dollar sign, maintains
two decimal places (rounded), and encloses negative numbers in
parentheses.

Euro Displays numeric data according to your Currency setting, but
always uses a leading euro symbol.

Fixed Displays numbers without thousands separators and with two
decimal places. The number displayed is rounded if the underlying
value contains more than two decimal places.

Standard Displays numbers with thousands separators and with two decimal
places. The number displayed is rounded if the underlying value
contains more than two decimal places.

Percent Multiplies the value by 100, displays two decimal places, and adds
a trailing percent sign. The number displayed is rounded if the
underlying value contains more than four decimal places.

Scientifi c Displays numbers in scientifi c (exponential) notation.

 Setting Control Properties 653

Ch
ap

te
r 1

2

You can also create a custom format. You can specify a different display format for
Access to use (depending on whether the numeric value is positive, negative, 0, or Null)
by providing up to four format specifi cations in the Format property. You must separate
the specifi cations by semicolons. When you enter two specifi cations, Access uses the
fi rst for all nonnegative numbers and the second for negative numbers. When you pro-
vide three specifi cations, Access uses the third specifi cation to display numbers with a
value of 0. Use the fourth specifi cation to indicate how you want Null values handled.

To create a custom number format, use the formatting characters shown in Table 12-2.
Notice that you can include text strings in the format and specify a color to use.

Table 12-2 Formatting Characters for Number and Currency Data Types

Character Usage

Decimal separator Use to indicate where you want Access to place the decimal
point. Use the decimal separator defi ned in the Regional And
Language Options section of Windows Control Panel. In the
English (U.S.) layout, the separator is a period (.).

Thousands separator Use to indicate placement of the thousands separator character
that is defi ned in the Regional And Language Options section of
Windows Control Panel. In the English (U.S.) layout, the separator
is a comma (,). When the position immediately to the left of the
separator is # and no digit exists in that position, the thousands
separator also is not displayed.

0 Use this placeholder character to indicate digit display. If no digit
exists in the number in this position, Access displays 0.

Use this placeholder character to indicate digit display. If no digit
exists in the number in this position, Access displays a blank space.

– + $ () or a
blank space

Use these characters anywhere you want in your format string.

"text" Use double quotation marks to embed any text you want
displayed.

\ Use to always display the character immediately following (the
same as including a single character in double quotation marks).

! Use to force left alignment. You cannot use any other digit
placeholder characters (0 or #) when you force left alignment;
however, you can use character placeholders as shown in Table
12-3 on page 655.

* Use to designate the immediately following character as the fi ll
character. Access usually displays formatted numeric data right-
aligned and fi lled with blank spaces to the left. You can embed
the fi ll character anywhere in your format string. For example,
you can specify a format string for a Currency value as follows:
$#,##0*^.00

Using the above format, the value $1,234.57 appears as follows:

$1,234^^^^^^^^^.57

Access generates fi ll characters so that the displayed text
completely fi lls the display area.

Chapter 12

654 Chapter 12 Customizing a Form
Character Usage

% Place as the last character in your format string to multiply the
value by 100 and include a trailing percent sign.

E– or e– Use to generate scientifi c (exponential) notation and to display a
minus sign preceding negative exponents. It must be used with
other characters, as in 0.00E–00.

E+ or e+ Use to generate scientifi c (exponential) notation and to display
a minus sign preceding negative exponents and a plus sign
preceding positive exponents. It must be used with other
characters, as in 0.00E+00.

[color] Use brackets to display the text in the color specifi ed. Valid color
names are Black, Blue, Green, Cyan, Red, Magenta, Yellow, and
White. A color name must be used with other characters, as in
0.00[Red].

Keep in mind that what you specify in Format and Decimal Places properties affects

only what you see on your screen—these settings do not modify the actual data in the

underlying table in any way. For example, if you specify a format that displays two deci-

mal places but the underlying data type contains additional precision (such as a Currency

data type that always contains four decimal places), you’ll see a rounded value. If you

later sum the values, the total might not agree with the sum of the displayed values. Like-

wise, if you specify a format that displays only the date portion of a Date/Time data type,

you won’t see any time portion unless you click the control. If we had a penny for every

time we’ve had to explain this concept in the support newsgroups, we would be very

wealthy, indeed!

For example, to display a number with two decimal places and comma separators when
positive, enclosed in parentheses and shown in red when negative, Zero when 0, and
Not Entered when Null, you would specify the following:

#,##0.00;(#,##0.00)[Red];"Zero";"Not Entered"

To format a U.S. phone number and area code from a numeric fi eld, you would specify
the following:

(000) 000–0000

SIDE OUT Don’t Get Fooled by the Format Property

Keep in mind that what you specify in Format and Decimal Places properties affects

only what you see on your screen—these settings do not modify the actual data in the

underlying table in any way. For example, if you specify a format that displays two deci-

mal places but the underlying data type contains additional precision (such as a Currency

data type that always contains four decimal places), you’ll see a rounded value. If you

later sum the values, the total might not agree with the sum of the displayed values. Like-

wise, if you specify a format that displays only the date portion of a Date/Time data type,

you won’t see any time portion unless you click the control. If we had a penny for every

time we’ve had to explain this concept in the support newsgroups, we would be very

wealthy, indeed!

 Setting Control Properties 655

Ch
ap

te
r 1

2

Specifying a Format for Text
If you don’t specify a Format property setting for a control that displays a text value,
Access left aligns the data in the control. You can specify a custom format with one
entry or with two entries separated by semicolons. If you include a second format speci-
fi cation, Access uses that specifi cation to show empty values (a zero-length string). If
you want to test for Null, you must use the Immediate If (IIf) and IsNull built-in func-
tions. See “Showing the Null Value in Text Fields” on page 657 for details.

By default, Access fi lls text placeholder characters (@ and &) using characters from
the underlying data from right to left. If a text fi eld contains more characters than the
number of placeholder characters you provide, Access fi rst uses up the placeholder
characters and then displays the remaining characters as though you had specifi ed the
@ placeholder character in that position. Table 12-3 lists the formatting characters that
are applicable to the Text data type.

 Table 12-3 Formatting Characters for the Text Data Type

Character Usage

@ Use this placeholder character to display any available character in
this position. If all available characters in the underlying text have
been placed, any extra @ placeholder characters generate blanks. For
example, if the text is abc and the format is @@@@@, the resulting
display is left-aligned and has two blank spaces on the left preceding
the characters.

& Use to display any available character in this position. If all available
characters in the underlying text have been placed, any extra &
placeholder characters display nothing. For example, if the text is abc
and the format is &&&&&, the resulting display shows only the three
characters left-aligned.

< Use to display all characters in lowercase. This character must appear at
the beginning of the format string and can be preceded only by the !
specifi cation.

> Use to display all characters in uppercase. This character must appear
at the beginning of the format string and can be preceded only by the
! specifi cation.

– + $ () or a
blank space

Use these characters anywhere you want in your format string.

"text" Use double quotation marks to embed any text you want displayed.

\ Use to always display the character immediately following (the same as
including a single character in double quotation marks).

! Use to force placeholders to fi ll left to right instead of right to left. If
you use this specifi cation, it must be the fi rst character in the format
string.

Chapter 12

656 Chapter 12 Customizing a Form
Character Usage

* Use to designate the immediately following character as the fi ll
character. Access usually displays formatted text data left-aligned and
fi lled with blank spaces to the right. You can embed the fi ll character
anywhere in your format string. For example, you can specify a format
string as follows:

>@@*!@@@@@

Using the above format, the value abcdef appears as follows:

A!!!!!!!!!!!!!!!BCDEF

(And the above string has a leading blank.)

If you force the pattern to be fi lled from the left by adding a leading
exclamation point, the data appears as follows:

AB!!!!!!!!!!!!!!CDEF

(And the above string has a trailing blank.)

Access generates fi ll characters so that the displayed text completely
fi lls the display area.

[color] Use brackets to display the text in the color specifi ed. Valid color names
are Black, Blue, Green, Cyan, Red, Magenta, Yellow, and White. A color
name must be used with other characters, as in >[Red].

(Keep in mind that in the absence of placeholder characters, Access
places the characters as though you had specifi ed @ in all positions.)

For example, if you want to display a six-character part number with a hyphen between
the second character and the third character, fi lled from the left, specify the following:

!@@-@@@@

To format a check amount string in the form of Fourteen Dollars and 59 Cents so that
Access displays an asterisk (*) to fi ll any available space between the word and and the
cents amount, specify the following:

**@@@@@@@@

Using this format in a text box wide enough to display 62 characters, Access displays
Fourteen Dollars and 59 Cents as

Fourteen Dollars and *********************************59 Cents

and One Thousand Two Hundred Dollars and 00 Cents as

One Thousand Two Hundred Dollars and *****************00 Cents

 Setting Control Properties 657

Ch
ap

te
r 1

2

As you might have noticed, there is no third optional format specifi cation you can sup-

ply for a Null value in a text fi eld as there is with Number, Currency, and Date/Time data

types. If the fi eld is Null, Access displays it as though it is empty. If the fi eld can contain

an empty string or a Null, you can distinguish it visibly by using the second optional for-

mat specifi cation. Assuming your text fi eld is fi ve characters long, your Format specifi ca-

tion could look like

@@@@@;"<empty string>"

If the fi eld has a value, Access displays the value. If the fi eld is an empty string, you will

see <empty string> in the text box until you click it. If the fi eld is Null, the text box will be

blank.

An alternative is to use the IIf and IsNull built-in functions in the Control Source property

of the text box. Your control source could look like

=IIf(IsNull([FieldToDisplay]), "*Null Value*",[FieldToDisplay])

If you do this, however, you won’t be able to update the fi eld because the source will be

an expression.

Specifying a Format for Date/Time
If you don’t specify a Format property setting for a control that displays a date/time
value, Access displays the date/time in the General Date format. You can also select one
of the six other Format property settings shown in Table 12-4.

You can also specify a custom format with one entry or with two entries separated by
semicolons. If you include a second format specifi cation, Access uses that specifi cation
to show Null values. Table 12-5 lists the formatting characters that are applicable to the
Date/Time data type.

For example, to display a date as full month name, day, and year (say, May 29, 2007)
with a color of cyan, you would specify the following:

mmmm dd, yyyy[Cyan]

SIDE OUT Showing the Null Value in Text Fields

As you might have noticed, there is no third optional format specifi cation you can sup-

ply for a Null value in a text fi eld as there is with Number, Currency, and Date/Time data

types. If the fi eld is Null, Access displays it as though it is empty. If the fi eld can contain

an empty string or a Null, you can distinguish it visibly by using the second optional for-

mat specifi cation. Assuming your text fi eld is fi ve characters long, your Format specifi ca-

tion could look like

@@@@@;"<empty string>"

If the fi eld has a value, Access displays the value. If the fi eld is an empty string, you will

see <empty string> in the text box until you click it. If the fi eld is Null, the text box will be

blank.

An alternative is to use the IIf and IsNull built-in functions in the Control Source property

of the text box. Your control source could look like

=IIf(IsNull([FieldToDisplay]), "*Null Value*",[FieldToDisplay])

If you do this, however, you won’t be able to update the fi eld because the source will be

an expression.

Chapter 12

658 Chapter 12 Customizing a Form
Table 12-4 Format Property Settings for the Date/Time Data Type

Format Description

General Date Displays the date as numbers separated by the date separator
character. Displays the time as hours, minutes, and seconds separated
by the time separator character and followed by an AM/PM indicator.
If the value has no time component, Access displays the date only.
If the value has no date component, Access displays the time only.
Example: 3/17/2007 06:17:55 PM.

Long Date Displays the date according to the Long Date setting in the Regional
And Language Options section of Windows Control Panel. Example:
Saturday, March 17, 2007.

Medium Date Displays the date as dd-mmm-yyyy. Example: 17-Mar-2007.

Short Date Displays the date according to the Short Date setting in the Regional
And Language Options section of Windows Control Panel. Example:
3/17/2007. To avoid confusion for dates in the twenty-fi rst century,
we strongly recommend you take advantage of the Use Four-Digit
Year formatting options. Click the Microsoft Offi ce Button, click
Access Options, click the Advanced category, and then set these
options in the General section.

Long Time Displays the time according to the Time setting in the Regional
And Language Options section of Windows Control Panel. Example:
6:17:12 PM.

Medium Time Displays the time as hours and minutes separated by the time
separator character and followed by an AM/PM indicator. Example:
06:17 PM.

Short Time Displays the time as hours and minutes separated by the time
separator character, using a 24-hour clock. Example: 18:17.

Table 12-5 Formatting Characters for the Date/Time Data Type

Character Usage

Time separator Use to show Access where to separate hours, minutes, and seconds.
Use the time separator defi ned in the Regional And Language
Options section of Windows Control Panel. In the English (U.S.)
layout, the separator is a colon (:).

Date separator Use to show Access where to separate days, months, and years. Use
the date separator defi ned in the Regional And Language Options
section of Windows Control Panel. In the English (U.S.) layout, the
separator is a slash (/).

c Use to display the General Date format.

d Use to display the day of the month as one or two digits, as needed.

 Setting Control Properties 659

Ch
ap

te
r 1

2

Character Usage

dd Use to display the day of the month as two digits.

ddd Use to display the day of the week as a three-letter abbreviation.
Example: Saturday = Sat.

dddd Use to display the day of the week fully spelled out.

ddddd Use to display the Short Date format.

dddddd Use to display the Long Date format.

w Use to display a number for the day of the week. Example: Sunday
= 1.

m Use to display the month as a one-digit or two-digit number, as
needed.

mm Use to display the month as a two-digit number.

mmm Use to display the name of the month as a three-letter abbreviation.
Example: March = Mar.

mmmm Use to display the name of the month fully spelled out.

q Use to display the calendar quarter number (1–4).

y Use to display the day of the year (1–366).

yy Use to display the last two digits of the year.

yyyy Use to display the full year value (within the range 0100–9999).

h Use to display the hour as one or two digits, as needed.

hh Use to display the hour as two digits.

n Use to display the minutes as one or two digits, as needed.

nn Use to display the minutes as two digits.

s Use to display the seconds as one or two digits, as needed.

ss Use to display the seconds as two digits.

ttttt Use to display the Long Time format.

AM/PM Use to display 12-hour clock values with trailing AM or PM, as
appropriate.

A/P or a/p Use to display 12-hour clock values with trailing A or P, or a or p, as
appropriate.

AMPM Use to display 12-hour clock values using morning/afternoon
indicators as specifi ed in the Regional And Language Options
section of Windows Control Panel.

– + $ () or a
blank space

Use these characters anywhere you want in your format string.

"text" Use double quotation marks to embed any text you want displayed.

\ Use to always display the character immediately following (the same
as including a single character in double quotation marks).

Chapter 12

660 Chapter 12 Customizing a Form
Character Usage

* Use to designate the immediately following character as the fi ll
character. Access usually displays formatted date/time data right-
aligned and fi lled with blank spaces to the left. You can embed the
fi ll character anywhere in your format string. For example, you can
specify a format string as follows:

mm/yyyy ** hh:nn

Using the above format, the value March 17, 2007 06:17:55 PM
appears as follows:

03/2007 ************** 18:17

Access generates fi ll characters so that the displayed text completely
fi lls the display area.

[color] Use brackets to display the text in the color specifi ed. Valid color
names are Black, Blue, Green, Cyan, Red, Magenta, Yellow, and
White. A color name must be used with other characters, as in
ddddd[Red].

Specifying a Format for Yes/No Fields
You can choose from among three standard formats—Yes/No, True/False, or On/Off—to
display Yes/No data type values, as shown in Table 12-6. The Yes/No format is the
default. As you saw earlier, it’s often more useful to display Yes/No values using a check
box or a button rather than a text box.

Table 12-6 Format Property Settings for the Yes/No Data Type

Format Description

Yes/No (the default) Displays 0 as No and any nonzero value as Yes.

True/False Displays 0 as False and any nonzero value as True.

On/Off Displays 0 as Off and any nonzero value as On.

You can also specify your own custom word or phrase for Yes and No values. Keep in
mind that a Yes/No data type is actually a number internally. (–1 is Yes, and 0 is No.)
So, you can specify a format string containing three parts separated by semicolons just
as you can for a number. Leave the fi rst part empty (a Yes/No value is never a positive
number) by starting with a semicolon, specify a string enclosed in double quotation
marks (and with an optional color modifi er) followed by a semicolon in the second
part for the negative Yes values, and specify another string (also with an optional color
modifi er) in the third part for the zero No values.

To display Invoice Sent in red for Yes and Not Invoiced in blue for No, you would specify
the following:

;"Invoice Sent"[Red];"Not Invoiced"[Blue]

 Setting Control Properties 661

Ch
ap

te
r 1

2

How Format and Input Mask Work Together
If you specify both an Input Mask setting (see Chapter 4) and a Format property setting,

Access uses the Input Mask setting to display data when you move the focus to the con-

trol and uses the Format setting when the control does not have the focus. If you don’t

include a Format setting but do include an Input Mask setting, Access formats the data

using the Input Mask setting. Be careful not to defi ne a Format setting that confl icts with

the Input Mask. For example, if you defi ne an Input Mask setting for a phone number

that looks like

!\(###") "000\-0000;0;_

(which stores the parentheses and hyphen with the data) and a Format setting that looks

like

(&&&) @@@-@@@@

your data will be displayed as

(206() 5) 55-1212

Adding a Scroll Bar
When you have a fi eld that can contain a long data string (for example, the Notes fi eld
in the tblReservationRequests table), it’s a good idea to provide a scroll bar in the con-
trol to make it easy to scan through all the data. This scroll bar appears whenever you
select the control. If you don’t add a scroll bar, you must use the arrow keys to move up
and down through the data.

To add a scroll bar, fi rst open the form in Design view. Select the control, and open its
property sheet. Then set the Scroll Bars property to Vertical. For example, if you open
the frmXmplReservationRequests form in Form view and tab to (or click) the Notes
text box, the vertical scroll bar appears, as shown in Figure 12-44.

Figure 12-44 When you click in the Notes text box, Access displays a scroll bar.

How Format and Input Mask Work Together
If you specify both an Input Mask setting (see Chapter 4) and a Format property setting,

Access uses the Input Mask setting to display data when you move the focus to the con-

trol and uses the Format setting when the control does not have the focus. If you don’t

include a Format setting but do include an Input Mask setting, Access formats the data

using the Input Mask setting. Be careful not to defi ne a Format setting that confl icts with

the Input Mask. For example, if you defi ne an Input Mask setting for a phone number

that looks like

!\(###") "000\-0000;0;_

(which stores the parentheses and hyphen with the data) and a Format setting that looks

like

(&&&) @@@-@@@@

your data will be displayed as

(206() 5) 55-1212

Chapter 12

662 Chapter 12 Customizing a Form
Enabling and Locking Controls
You might not want users of your form to select or update certain controls. You can set
these conditions with the control’s Enabled and Locked properties. For example, if you
use a control to display an AutoNumber fi eld, you can be certain that Access will pro-
vide the fi eld’s value. So, it’s a good idea to set the control’s Enabled property to No (so
that the user can’t select it) and the control’s Locked property to Yes (so that the user
can’t update it). Table 12-7 shows the effects of the Enabled and Locked property set-
tings. Note, however, that if you want the user to be able to use the Access built-in Find
facility to search for a particular AutoNumber value, you should leave Enabled set to Yes
to allow the user to select the fi eld and fi nd values in it.

Table 12-7 Settings for the Enabled and Locked Properties

Enabled Locked Description

Yes Yes Control can have the focus. Data is displayed normally and can
be copied or searched but not changed.

No No Control cannot have the focus. Control and data appear
dimmed.

Yes No Control can have the focus. Data is displayed normally and can
be copied and changed.

No Yes Control cannot have the focus. Data is displayed normally but
can’t be copied or changed.

In some cases, you might want to allow a control to be selected with the mouse but to
be skipped over as the user tabs through the controls on the form. You can set the con-
trol’s Tab Stop property to No while leaving its Enabled property set to Yes. This might
be useful for controls for which you also set the Locked property to Yes. Setting the Tab
Stop property to No keeps the user from tabbing into the control, but the user can still
select the control with the mouse to use the Find command or to copy the data in the
control to the Clipboard.

Setting the Tab Order
As you design a form, Access sets the tab order for the controls in the order in which
you place the controls on the form. When you move a control to a new location, Access
doesn’t automatically change the tab order. Also, when you delete a control and replace
it with another, Access places the new control at the end of the tab order. If you want to
change the tab order that Access created, you can set a different tab order.

You probably should do this with your sample employees form because you moved con-
trols around after you initially placed them on the form. (If you want to test the exist-
ing order, try tabbing through the controls in one record in frmXmplEmployee5—you
should see the pointer jump from Offi ceLocation in the fi rst column to Photo in the
second column and then back to Password in the fi rst column.) Open your form in
Design view, select the Detail section (or any control in the Detail section), and then
click the Tab Order button in the Control Layout group on the Arrange tab to open the
Tab Order dialog box, as shown in Figure 12-45.

 Setting Control Properties 663

Ch
ap

te
r 1

2

Figure 12-45 You can change the tab order on the form by using the Tab Order dialog box.

You can click the Auto Order button to reorder the controls so that the tab order cor-
responds to the arrangement of the controls on the form, from left to right and from
top to bottom—but that’s probably not what you want in this case. Because this form
has two columns, you might want to rearrange the tab order to fi rst move down one
column and then the other. You can make custom adjustments to the list by clicking
the row selector for a control to highlight it and then clicking the row selector again and
dragging the control to its new location in the list. As you can see, the Photo and Work-
Phone controls don’t appear where they should in the Custom Order list. Click Photo,
and drag it down after HomePhone. Click WorkPhone, and drag it up to follow Offi ce-
Location. Click OK to save your changes to the Custom Order list.

You can also change an individual control’s place in the tab order by setting the con-
trol’s Tab Index property. The Tab Index property of the fi rst control on the form is 0,
the second is 1, and so on. If you use this method to assign a new Tab Index setting to a
control and some other control already has that Tab Index setting, Access resequences
the Tab Index settings for controls appearing in the order after the one you changed.
The result is the same as if you had dragged the control to that relative position (as indi-
cated by the new Tab Index setting) in the Tab Order dialog box. (We fi nd it easier to
use the Tab Order dialog box.)

Adding a Smart Tag
Microsoft introduced smart tags in Microsoft Offi ce XP. Smart tags are little applications
that you can hook into your documents to recognize items such as names, addresses, or
stock symbols and provide options, or actions, for recognized fi elds. For example, you
might have an address smart tag in an Offi ce Word document that provides an option

Chapter 12

664 Chapter 12 Customizing a Form
to open a map to the location. In an Offi ce Excel spreadsheet, you might defi ne a smart
tag for a stock symbol column to go look up the latest price on the Web.

If you have Microsoft Visual Studio, you can actually build your own smart tag applica-
tions with Visual Basic. You can download the Smart Tag Software Development Kit
(SDK) by going to www.microsoft.com/downloads/ and performing a search on the key-
words smart tags. Most Word and Excel smart tag applications have two parts: a recog-
nizer and a set of actions. When a smart tag is active in Word or Excel, the recognizer
code runs as you type data and decides whether what you typed is something for which
the smart tag has an action. If the smart tag recognizes the text, it passes available
actions back to the application, and you see a Smart Tag option available that you can
click to invoke one of the actions.

Access 2007 supports smart tags but in a slightly different way than Word or Excel.
You can defi ne a smart tag for labels, text boxes, combo boxes, and list boxes. For text
boxes, combo boxes, and list boxes, the smart tag uses the current value of the control
as specifi ed in the Control Source property. For labels, the smart tag uses the contents
of the Caption property. Because data in Access not only has a specifi c data type but
also a specifi c meaning, the recognizer code in a smart tag does not come into play.
Access assumes that you know that the data in the label, text box, combo box, or list
box is something the smart tag understands. So, you can use smart tags in Access that
have only actions defi ned.

The 2007 Offi ce release installs a few smart tags that you can use in Access 2007:

O Date A smart tag that uses a date/time value to schedule a meeting or show your
Microsoft Outlook calendar on that date.

O Telephone Number A smart tag that accepts a phone number and opens the
matching contact from your contacts list.

O Financial Symbol A smart tag that can accept a NYSE or NASDAQ stock symbol
and display the latest quote, company report, or news from the MSN Money Cen-
tral Web site.

O Person Name A smart tag that can accept a person name (fi rst name and last
name) or e-mail address and send an e-mail, schedule a meeting, open the match-
ing contact from your contacts list, or add the name to your contacts list.

CAUTION!
If you assign a smart tag to a control containing data that the smart tag cannot handle,

the smart tag won’t work, and it might generate an error.

In your employees form, the EmailName is a hyperlink fi eld that opens a new message
to the e-mail address when you click it. However, you might also want to use the Person
Name smart tag to provide additional options. To add this smart tag, open your form in
Design view, click the EmailName text box, open the Property Sheet window, click the

CAUTION!

 Setting Control Properties 665

Ch
ap

te
r 1

2

Data tab, and scroll down to the last property in the list—Smart Tags. Click the property,
and then click the Build button to open the Smart Tags dialog box, as shown in Fig-
ure 12-46.

Figure 12-46 You can defi ne smart tags for your controls using the Smart Tags dialog box.

Select the Person Name check box, and click OK to set the property. Note that you can
also click the More Smart Tags button to go to the Microsoft Web site to download and
install additional smart tags.

After defi ning a smart tag, switch to Form view. Controls that have a smart tag defi ned
display a small triangle in the lower-right corner. Rest your mouse pointer on the tri-
angle or tab into the control, and you’ll see the smart tag information box appear. Click
the down arrow next to the box to see the action choices, as shown in Figure 12-47.
Click the action you want to activate that action.

Figure 12-47 You can select a smart tag action from the menu that appears.

Chapter 12

666 Chapter 12 Customizing a Form
Understanding Other Control Properties
As you’ve already discovered, many of the properties for controls that can be bound to
fi elds from your form’s record source are exactly the same as those you can set in table
Design view on the General or Lookup tab. (See Chapter 4 for more details.) If you do
not specify a different setting in the control, the form uses the properties you defi ned
for the fi eld in your table. In some cases, a particular fi eld property setting migrates
to a different property in the bound control on your form. For example, the Descrip-
tion property of a fi eld becomes the Status Bar Text property of the bound control. The
 Caption property of a fi eld moves to the Caption property of a bound control’s associ-
ated label.

Table 12-8 describes control settings not yet discussed and explains their usage. The
table lists the properties in the sequence you will fi nd them on the All tab in the Prop-
erty Sheet window.

Table 12-8 Other Control Properties

Property Description

Visible Specify Yes (the default) to make the control visible in Form
view. Specify No to hide the control. You will fi nd this property
useful when you begin to automate your application and write
code to optionally display/hide controls depending on the
contents of other fi elds. See Chapter 20 for details.

Text Format For controls that can display or be bound to text, you can
specify whether the data is stored as plain text or rich text.
When you set this property to Rich Text, the data can appear
with embedded formatting such as italics or bold.

Datasheet Caption You can assign a caption for this control that will be displayed
when the form is in Datasheet view. The caption appears as a
column header.

Show Date Picker You can specify For Dates (the default) to instruct Access to
display a date picker button to the right of the control when
the control is bound to a date/time fi eld. Select Never if you do
not want Access to display the date picker control.

Width, Height, Top,
Left

These properties specify the location and size of the control.
Access automatically adjusts these settings when you move
a control to a new location or adjust its size. You can enter
specifi c values if you want a control to be placed in a particular
location or have a specifi c size.

Back Style Choose Normal (the default) to be able to specify a color for
the background of the control. Choose Transparent to allow
the color of any control or section behind the control to show
through.

 Setting Control Properties 667

Ch
ap

te
r 1

2

Property Description

Back Color, Border
Style, Border Width,
Border Color,
Special Effect, Font
Name, Font Size,
Font Weight, Font
Underline, Font Italic,
Fore Color

Access automatically sets these properties when you choose a
setting on one of the available buttons in the Font group on
the Design contextual tab under Form Tools. You can enter
a specifi c setting in these properties rather than choose an
option on the Ribbon. For the color options, you can click the
Build button next to the property to select a custom color from
the palette of available colors on your computer.

Text Align The default setting is General, which left aligns text and right
aligns numbers. You also can choose Left, Center, and Right
options (also available in the Font group on the Design tab)
to align the text to the left, in the center, or to the right,
respectively. The fi nal option, Distribute, spreads the characters
evenly across the available display space in the control.

Line Spacing You can specify a different line spacing for the text displayed.
The default is 0, which spaces the lines based on the font type
and size.

Is Hyperlink Fields that are the Hyperlink data type are always displayed as
a hyperlink. You can change this setting to Yes to treat non-
Hyperlink data type fi elds as hyperlinks. The default is No.

Display As Hyperlink Choose If Hyperlink (the default) to instruct Access to display
the data as a hyperlink only if the underlying data type is
Hyperlink. Choose Always to display the data as a hyperlink
even if the data type is not Hyperlink. Choose Screen Only to
display the control as a hyperlink only when in Form view.

Gridline Style Top,
Gridline Style Bottom,
Gridline Style Left,
Gridline Style Right

These properties control the style of the gridlines around the
control. Transparent (the default) specifi es that no gridlines
appear. You can choose between Solid, Dashes, Short Dashes,
Dots, Sparse Dots, Dash Dot, and Dash Dot Dot. You can also
use the Style button in the Gridlines group on the Design tab
to set these properties.

Gridline Color Specify a color to use if you have set gridlines to a value other
than Transparent. You can click the Build button next to the
property to select a custom color from the palette of available
colors on your computer. The default color is black (#000000).

Gridline Width Top,
Gridline Width
Bottom, Gridline
Width Left, Gridline
Width Right

These properties control the thickness of the gridlines around
controls if you have specifi ed a Control Style setting other than
Transparent. You can choose from Hairline, 1 pt (the default),
2 pt, 3 pt, 4 pt, 5 pt, and 6 pt. You can also use the Width
button in the Gridlines group on the Design tab to set these
properties.

Left Margin, Top
Margin, Right Margin,
Bottom Margin

In a text box control, you can specify alternative margins for
the text displayed. The default for all these properties is 0,
which provides no additional margin space. You can also use
the Control Margins button in the Control Layout group on the
Arrange tab to adjust these settings to four options—None,
Narrow, Medium, or Wide.

Chapter 12

668 Chapter 12 Customizing a Form
Property Description

Top Padding, Bottom
Padding, Left Padding,
Right Padding

These properties control the amount of space between the
control and any gridlines. You can set an amount in inches
different from the default of 0.0208 inches.

Horizontal Anchor This specifi es how the control is anchored horizontally when
it is in a control layout. You can choose Left (the default) to
place the control on the left side, Right to place the control on
the right side, or Both to stretch the control equally across the
control layout. You can also use the Anchoring button in the
Size group on the Arrange tab to set this property.

Vertical Anchor This specifi es how the control is anchored vertically when it is in
a control layout. You can choose Top (the default) to place the
control at the top, Bottom to place the control at the bottom,
or Both to stretch the control equally across the control layout
from top to bottom. You can also use the Anchoring button in
the Size group on the Arrange tab to set this property.

Can Grow, Can Shrink These properties apply to controls on a report or in Print
Preview. See Chapter 16, “Advanced Report Design,” for details.

Display When Choose Always (the default) to display this control in Form
view, in Print Preview, and when you print the form. Choose
Print Only to display the control only when you view the form
in Print Preview or you print the form. Choose Screen Only to
display the control only when in Form view.

Reading Order Choose Context (the default) to set the order the characters are
displayed based on the fi rst character entered. When the fi rst
character is from a character set that is normally read right to
left (such as Arabic), the characters appear right to left. Choose
Left-To-Right or Right-To-Left to override the reading order.

Scroll Bar Align Choose System (the default) to align scroll bars based on
the form’s Orientation property setting. See the section
“Understanding Other Form Properties” on page 676 for
details. Choose Right or Left to override the form setting.

Numeral Shapes On an Arabic or Hindi system, you can choose settings to alter
the way numbers are displayed. The default setting is System,
which displays numbers based on your system settings.

Keyboard Language System (the default setting) assumes the keyboard being used
is the default for your system. You can also choose from any
available installed keyboard.

Filter Lookup Choose Database Default (the default setting) to honor the
options you set in the Advanced category in the Access Options
dialog box. Choose Never to disable the lookup of values in
Filter By Form. Choose Always to enable the lookup of values in
Filter By Form regardless of your Access Options settings.

On Click through On
Undo

You can set these properties to run a macro, a function, or
an event procedure when the specifi c event described by the
property occurs for this control. See Part 6, “After Completing
Your Application,” for details.

 Setting Control Properties 669

Ch
ap

te
r 1

2

Property Description

Enter Key Behavior Default (the default setting) specifi es that pressing the Enter
key in this control performs the action described in the Move
After Enter setting in the Advanced category in the Access
Options dialog box. The New Line In Field setting specifi es that
pressing Enter creates a new line in the underlying text. This
setting is useful for large text or memo fi elds, especially when
the control is more than one line high and has a vertical scroll
bar defi ned.

ControlTip Text You can enter a custom message that appears as a control tip
when you rest your mouse pointer on the control for a few
seconds. You might fi nd this especially useful for command
buttons to further describe the action that occurs when the
user clicks the button.

Shortcut Menu Bar You can design a custom shortcut menu for your forms and
reports, and you enter the name of your custom menu in this
property. This property exists for backward compatibility with
Access 2003 and earlier.

Help Context ID You can create a custom Help fi le for your application and
identify specifi c topics with a context ID. If you want a
particular topic to appear when a user presses F1 when the
focus is in this control, enter the ID of the topic in this property.
See Chapter 28, “Designing Forms in an Access Project,” for
details.

Auto Tab Choose Yes to cause an automatic tab to the next fi eld when
the user enters a number of characters equal to the fi eld
length. The default is No.

Vertical You can design a control that displays text to run vertically
down the form (narrow width and tall height). When you do
that, you can set Vertical to Yes to turn the text display 90
degrees clockwise. The default is No.

Allow AutoCorrect Specify Yes (the default) to enable autocorrection as you type
text, similar to the AutoCorrect feature in Word. You can
customize AutoCorrect options by clicking the AutoCorrect
Options button in the Proofi ng category in the Access Options
dialog box. Specify No to turn off this feature.

IME Hold, IME Mode,
IME Sentence Mode

These properties determine how Kanji characters are processed
on a Japanese language system.

Tag You can use this property to store additional descriptive
information about the control. You can write Visual Basic code
to examine and set this property or take a specifi c action based
on the property setting. The user cannot see the contents of
the Tag property.

Chapter 12

670 Chapter 12 Customizing a Form
Be Careful When Setting Control Validation Rules
Two properties that deserve special mention are Validation Rule and Validation Text. As

you know, you can specify these properties for most fi elds in your table. When you build

a form that is bound to data from your table, the validation rules in the table always

apply. However, you can also specify a validation rule for many bound controls on your

form. You might want to do this if, on this particular form, you want a more restrictive

rule to apply.

However, you can get in trouble if you specify a rule that confl icts with the rule in the

underlying table. For example, in the HousingDataCopy.accdb sample database, you

can fi nd a validation rule on the BirthDate fi eld in the tblEmployees table that disallows

entering a birth date for someone who is younger than 18 years old. The validation rule

is as follows:

<=(Date()–(365*18))

What do you suppose happens if you subsequently enter a Validation Rule property

for the BirthDate text box control on your form that requires the person to be 18 or

younger? You can try it by opening your employees form in Design view, clicking the

BirthDate text box, and entering the following in the Validation Rule property in the

property sheet:

>(Date()–(365*18))

So that you can determine which validation rule is preventing you from changing the

data, set the Validation Text property to something like “Violating the control validation

rule.” Now, switch to Form view, and try to type a value that you know violates the table

rule, such as 1/1/2007. When you try to tab out of the fi eld, you should see the message

from the table: “You cannot enter an employee who is younger than 18 years old.” Now,

try to enter a date for an older person, such as 1/1/1969, and press Tab to move out of

the control. You should see the validation text that you just entered for the control. The

bottom line is you have set up the rules so that no value is valid when you try to edit with

this form. (You’ll have to press Esc to clear your edit to be able to close the form.)

Setting Form Properties
In addition to the controls on a form, the form itself has a number of properties that you
can use to control its appearance and how it works.

Allowing Different Views
When you build a form from scratch (such as the employees form you’ve been working
on in this chapter), the Default View property of the form is Single Form. This is the
view you’ll see fi rst when you open the form. With the Single Form setting, you can see
only one record at a time, and you have to use the Record Number box, the Previous
Record and Next Record arrow buttons to the left and right of the Record Number box,
or the Go To command in the Find group on the Home tab to move to another record.

Be Careful When Setting Control Validation Rules
Two properties that deserve special mention are Validation Rule and Validation Text. As

you know, you can specify these properties for most fi elds in your table. When you build

a form that is bound to data from your table, the validation rules in the table always

apply. However, you can also specify a validation rule for many bound controls on your

form. You might want to do this if, on this particular form, you want a more restrictive

rule to apply.

However, you can get in trouble if you specify a rule that confl icts with the rule in the

underlying table. For example, in the HousingDataCopy.accdb sample database, you

can fi nd a validation rule on the BirthDate fi eld in the tblEmployees table that disallows

entering a birth date for someone who is younger than 18 years old. The validation rule

is as follows:

<=(Date()–(365*18))

What do you suppose happens if you subsequently enter a Validation Rule property

for the BirthDate text box control on your form that requires the person to be 18 or

younger? You can try it by opening your employees form in Design view, clicking the

BirthDate text box, and entering the following in the Validation Rule property in the

property sheet:

>(Date()–(365*18))

So that you can determine which validation rule is preventing you from changing the

data, set the Validation Text property to something like “Violating the control validation

rule.” Now, switch to Form view, and try to type a value that you know violates the table

rule, such as 1/1/2007. When you try to tab out of the fi eld, you should see the message

from the table: “You cannot enter an employee who is younger than 18 years old.” Now,

try to enter a date for an older person, such as 1/1/1969, and press Tab to move out of

the control. You should see the validation text that you just entered for the control. The

bottom line is you have set up the rules so that no value is valid when you try to edit with

this form. (You’ll have to press Esc to clear your edit to be able to close the form.)

 Setting Form Properties 671

Ch
ap

te
r 1

2

If you set the Default View property of the form to Continuous Forms, you can see
multiple records on a short form, and you can use the scroll bar on the right side of the
form to scroll through the records. If you set the Default View property of the form to
Split Form, you can see your employee records in Datasheet view at the top of the Form
window. At the bottom of the Form window, you can see one record at a time displayed in
the form controls you’ve been designing. Because one record’s data in the tblEmployees
table fi lls your employees form, the Single Form setting is probably the best choice.

Another set of properties lets you control whether a user can change to Form view,
Datasheet view, PivotTable view, PivotChart view, or Layout view. These properties are
Allow Form View, Allow Datasheet View, Allow PivotTable View, Allow PivotChart View,
and Allow Layout View. The default setting for all these properties is No except Form
View and Layout View, meaning that a user cannot use the View button on the Ribbon
to switch to Datasheet, PivotTable, or PivotChart view. (Users also cannot switch to
these views if they right-click the form tab when their Document Windows Options
setting is set to Tabbed Documents). If you’re designing a form to be used in an applica-
tion, you will usually want to eliminate some of the views. For your employees form, set
all but the Allow Form View property to No; if you click the arrow in the Views group,
the Layout View option should not appear.

You can make it more diffi cult to enter Design and Layout views by designing a custom

Ribbon for all your forms. See Chapter 24, “The FInishing Touches,” for details. You can

completely prevent a user from opening a form in Design view or switching to Design

view only if you give your users an execute-only copy of your application (see Chapter

25, “Distributing Your Application”). You can prevent users from opening a form in Layout

view or switching to Layout view by clearing the Enable Layout View For This Database

check box in the Current Database category in the Access Options dialog box. This set-

ting affects all forms and reports in your database.

Setting Navigation Options
Because the employees form you’ve been designing displays one record at a time, it is
not useful to display the row selector on the left side of the form. You’ve also designed
the form to show all the data in a single window, so a scroll bar along the right side of
the window isn’t necessary. You also don’t need a horizontal scroll bar. You probably
should keep the Record Number box at the bottom of the form, however. To make these
changes, set the form’s Record Selectors property on the property sheet to No, the Scroll
Bars property to Neither, and the Navigation Buttons property to Yes. Your form should
look something like the one shown in Figure 12-48.

SIDE OUT Keeping Users Out of Design and Layout Views

You can make it more diffi cult to enter Design and Layout views by designing a custom

Ribbon for all your forms. See Chapter 24, “The FInishing Touches,” for details. You can

completely prevent a user from opening a form in Design view or switching to Design

view only if you give your users an execute-only copy of your application (see Chapter

25, “Distributing Your Application”). You can prevent users from opening a form in Layout

view or switching to Layout view by clearing the Enable Layout View For This Database

check box in the Current Database category in the Access Options dialog box. This set-

ting affects all forms and reports in your database.d

Chapter 12

672 Chapter 12 Customizing a Form
Figure 12-48 The employees form now has views restricted and does not have a record selector or
scroll bars.

Defi ning a Pop-Up and/or Modal Form
You might occasionally want to design a form that stays on top of all other forms even
when it doesn’t have the focus. Notice that the undocked property sheet and fi eld list
in Design view both have this characteristic. These are called pop-up forms. You can
make your employees form a pop-up form by setting the form’s Pop Up property to
Yes. Figure 12-49 shows the employees form as a pop-up form on top of the Navigation
Pane, which has the focus. Note that the form can “fl oat” on top of other forms or win-
dows, and it can also be moved on top of the Ribbon. A form that isn’t a pop-up form
cannot leave the Access workspace below the Ribbon. You might also notice that when
you change the employees form’s Pop Up property to Yes, the form no longer has the
tab across the top. Even though the Document Windows Options setting is still set to
Tabbed Documents for this database, this form now looks like we are using the Over-
lapping Windows setting.

CAUTION!
If you play with the frmXmplEmployee5 form to do this, be sure to set the form’s Pop Up

property back to No or don’t save your design changes when you close the form.

C U O !

 Setting Form Properties 673

Ch
ap

te
r 1

2

As you’ll learn in Part 4, “Automating an Access Application,” it’s sometimes useful to
create forms that ask the user for information that’s needed in order to perform the next
task. Forms have a Modal property that you can set to Yes to “lock” the user into the
form when it’s open. The user must make a choice in the form or close the form in order
to go on to other tasks. When a modal form is open, you can switch to another applica-
tion, but you can’t select any other form or Ribbon button in Access until you dismiss
the modal form. You’ve probably noticed that most dialog boxes, such as the various
wizards in Access, are modal forms. Modal isn’t a good choice for your employees form,
but you’ll use the Modal property later to help control application fl ow.

Figure 12-49 The employees form as a pop-up form fl oats on top of the Navigation Pane and
the Ribbon.

Controlling Edits, Deletions, Additions, and Filtering
You can set several properties on forms to control whether data in the form can be
updated or whether data in the underlying tables can change. You can also prevent or
allow user-applied fi lters on the form. These properties and their settings are shown in
Table 12-9.

Chapter 12

674 Chapter 12 Customizing a Form
Table 12-9 Form Properties for Controlling Editing and Filtering

Property Description

Filter Contains the latest criteria applied as a fi lter on this form. Forms
also have a FilterOn property that you can’t see in the Form
window in Design view. When FilterOn is True, the data displayed
in the form is fi ltered by the criteria string found in the Filter
property. On a new form, the Filter property is empty.

Filter On Load You can defi ne criteria in the Filter property and then set Filter On
Load to Yes to apply the fi lter when the form opens. The default
setting is No.

Order By Contains the latest sorting criteria applied to this form. Forms
also have an OrderByOn property that you can’t see in the Form
window in Design view. When OrderByOn is True, the data
displayed in the form is sorted by the criteria string found in the
Order By property. On a new form, the Order By property is empty.

Order By On Load You can defi ne sorting criteria in the Order By property and then
set Order By On Load to Yes to apply the sort when the form
opens. The default setting is Yes.

Data Entry Determines whether the form opens a blank record in which you
can insert new data. Access won’t retrieve rows from the form’s
recordset. The valid settings are Yes and No, and the default
setting is No. Setting Data Entry to Yes is effective only when Allow
Additions is set to Yes.

Allow Additions Determines whether a user can add records using this form. The
valid settings are Yes and No. The default setting is Yes.

Allow Deletions Determines whether a user can delete records in this form. The
valid settings are Yes and No. The default setting is Yes.

Allow Edits Determines whether a user can change control values in this form.
The valid settings are Yes and No. The default setting is Yes. Note
that when you set Allow Edits to No, you cannot change the value
of any control on the form, including unbound controls.

Allow Filters Determines whether a user can see selected records by applying
fi ltering and sorting criteria and whether the user can see all
records by clicking the Toggle Filter command in the Sort & Filter
group. If you set the Data Entry property to Yes and set the Allow
Filters property to No, the user can only enter new data and
cannot change the form to view other existing records. The valid
settings for the Allow Filters property are Yes and No. The default
setting is Yes.

 Setting Form Properties 675

Ch
ap

te
r 1

2

Defi ning Window Controls
In some cases, you might want to prevent the user from opening the form’s control
menu (clicking the control menu button in the upper-left corner of a window displays
a shortcut menu containing the Restore, Move, Size, Minimize, Maximize, Close, and
Next commands) or from using the Minimize and Maximize buttons. (This applies only
if you have your Document Windows Options setting set to Overlapping Windows. If
you have Tabbed Documents selected, you see only a Close button on the right side.)
If you want to perform special processing before a form closes (such as clearing the
application status before your main switchboard closes), you might want to provide
a command button to do the processing and then close the form with a Visual Basic
command. (See Part 4 for details about writing a command to close a form.) You can
set the form’s Control Box property to No to remove the control menu button from the
form window and the Close button from the upper-right corner. This also removes the
 Minimize and Maximize buttons.

You can set the form’s Close Button property to No to remove the Close button but
leave the control menu button (with Close disabled on the control menu). You can set
the form’s Min Max Buttons property to Both Enabled, None, Min Enabled, or Max
Enabled. If you disable a Minimize or Maximize button, the related command on the
form’s control menu becomes disabled.

CAUTION!
If you are using overlapping windows, you can set a form’s Control Box property to No

to remove all control features from the form’s title bar. This means that both the control

menu button (which contains the Close command) and the form’s Close button (at the

right end of the title bar) will not appear. If you also set the form’s Modal property to Yes,

you should always provide an alternative way to close a modal form, such as a command

button that executes a macro or Visual Basic command to close the form. Otherwise, the

only way to close the form is to use the Windows Ctrl+F4 key combination. See Part 4 for

details about writing a command to close a form.

Setting the Border Style
In most cases, you’ll want to create forms with a regular border—one that allows you
to size the window and move it around if you have the Document Windows Options
setting set to Overlapping Windows. Forms have a Border Style property that lets you
defi ne the look of the border and whether the window can be sized or moved. The Bor-
der Style property settings are shown in Table 12-10.

CAUTION!

Chapter 12

676 Chapter 12 Customizing a Form
Table 12-10 Settings for the Border Style Property

Setting Description

None The form has no borders, control menu button, title bar, Close button,
or Minimize and Maximize buttons. You cannot resize or move the
form when it is open. You can select the form and press Ctrl+F4 to
close it unless the form’s Pop Up property is set to Yes. You should
write Visual Basic code to provide an alternative way to close this type
of form.

Thin The form has a thin border, signifying that the form cannot be resized.

Sizable This is the default setting. The form can be resized.

Dialog If the Pop Up property is set to Yes, the form’s border is a thick line (like
that of a true Windows dialog box), signifying that the form cannot be
resized. If the Pop Up property is set to No, the Dialog setting is the
same as the Thin setting.

 Understanding Other Form Properties
Table 12-11 describes form settings not yet discussed and explains their usage. The
table lists the properties in the sequence you will fi nd them on the All tab in the prop-
erty sheet.

 Table 12-11 Other Form Properties

Property Description

Display On
SharePoint Site

The default setting, Do Not Display, specifi es that if this database
is upsized to a Microsoft Windows SharePoint Services (version 3)
site, Access will not create a view on the Windows SharePoint
Services Version 3 site of this form. The Follow Table Setting
option causes Access to honor the setting specifi ed for the
underlying table.

Picture Enter the path and fi le name of a graphic fi le to use as the
background of the form. You can click the Build button next to the
property to locate the picture you want. You might fi nd this useful
to display an image such as a company logo on the background of
your forms.

Picture Tiling The default setting, No, places one copy of the picture on the
form. Choose Yes if you want multiple copies “tiled” on the form.
When you choose Yes, you must set Picture Alignment to Clip or
Zoom, and the picture should be smaller than the form design or
form window. Setting Picture Tiling to Yes is useful if your picture
is a small pattern bitmap.

Picture Alignment This property applies only when Picture Size Mode is Clip or
Zoom. The default setting, Center, centers the picture in the form
window area. Form Center centers the picture in the form design
area. You can also specify that the picture align in the top left, top
right, bottom left, or bottom right of the form.

 Setting Form Properties 677

Ch
ap

te
r 1

2

Property Description

Picture Type Choose Embedded (the default) to store a copy of the picture in
your form design. Use Linked to save space in your database, but
the form must then always load the picture from the specifi ed
picture path when it opens; and if you move the picture to a
different location, it might not display.

Picture Size Mode Clip (the default) specifi es that the picture appears in its original
resolution. If the form is larger than the picture, the picture
will not cover the entire form area. If the form is smaller than
the picture, you’ll see only part of the picture. Use Stretch to
stretch the picture to the dimensions of the form, but the picture
might appear distorted. Use Zoom to stretch the picture to the
dimensions of the form without distorting it; but if the aspect ratio
of the picture does not match the display space of the form, the
picture won’t cover the entire form background.

Width Specifi es the width of the form in inches or centimeters. Access
automatically updates this property when you drag the right edge
of the design area wider or narrower in Design view or Layout
view. You cannot set this property to nothing (blank).

Auto Center Choose No (the default) to open the form on the screen wherever
it was placed when you last saved its defi nition from Design view,
Layout view, or Form view. Choose Yes to automatically center the
form in the Access workspace when you open it. This applies only
if you are using a multiple-document interface.

Auto Resize The default Yes setting automatically resizes the form window to
its design height and width when you open the form. Choose No
if you want to set a specifi c window size. This applies only if you
are using a multiple-document interface.

Fit To Screen The default setting, No, tells Access not to reduce the width of the
form if the form window size is reduced. Choose Yes if you want
Access to automatically reduce the width of the form to fi t within
the available screen space. This applies only if you are using a
multiple-document interface.

Navigation Caption You can use this property to set descriptive text to be used to the
left of the form’s navigation buttons. If left blank, Access uses the
word Record.

Dividing Lines When you design your form with a Header or a Footer section, Yes
(the default) specifi es that you will see a horizontal line separating
each section. No removes the line(s).

Moveable The default setting, Yes, allows the user to move the form in the
Access window if using a multiple-document interface. Set this
property to No to lock the form on the screen where you last
saved it.

Chapter 12

678 Chapter 12 Customizing a Form
Property Description

Split Form Size You can use this setting to adjust the size of the form and
datasheet if the form is displayed in Split Form view. If you use a
larger setting here, Access displays more of the form and less of
the datasheet. The default setting, Auto, tells Access to reset the
form and datasheet size.

Split Form
Orientation

The default setting, Datasheet On Top, displays the datasheet
portion of a form in Split Form view at the top of the form
window. You can also choose to display the datasheet potion in
different positions using the other three options—Datasheet On
Bottom, Datasheet On Left, or Datasheet On Right.

Split Form Splitter
Bar

The default setting, Yes, displays a separator bar between the form
and datasheet potions of a form in Split Form view. Choose No to
hide the separator bar. When the splitter bar is hidden, the user
cannot change the size of the two portions.

Split Form
Datasheet

The default setting, Allow Edits, allows you to make changes to the
data in the datasheet potion of a form in Split Form view. Choose
Read Only to disallow any edits of the data in the datasheet
portion.

Split Form Printing The default setting, Form Only, specifi es that Access prints only
the form portion of a form in Split Form view if the user decides to
print the form. Choose Datasheet Only to have Access print only
the contents of the datasheet portion.

Save Splitter Bar
Position

The default setting, Yes, specifi es that Access attempts to save the
splitter bar position when you close a form in Split Form view. You
can move the splitter bar to display more or less of either the form
or datasheet portion of the form, but you cannot do this when the
Split Form Splitter Bar property is set to No. If this property is set
to Yes when you close the form, Access prompts you to save the
changes to the form. If you choose No, Access does not save the
new location. Set this property to No to discard any changes to
the splitter bar location upon closing the form.

Subdatasheet
Expanded and
Subdatasheet
Height

These properties are identical to those that you can defi ne for
tables and queries. Your form must be in Datasheet view and must
have a subform that is also in Datasheet view. See Chapter 13 for
details.

Layout for Print The default setting, No, indicates that printer fonts installed on
your computer will not be available in any font property settings,
but screen fonts and TrueType fonts will be available. Choosing Yes
disables screen fonts but makes printer fonts and TrueType fonts
available.

Orientation The default in most versions of Access 2007 is Left-to-Right. In
versions that support a language that is normally read right to left,
the default is Right-to-Left. When you use Right-to-Left, captions
appear right-justifi ed, the order of characters in controls is right to
left, and the tab sequence proceeds right to left.

 Setting Form Properties 679

Ch
ap

te
r 1

2

Property Description

Recordset Type The default setting, Dynaset, specifi es that all controls bound
to fi elds in the record source will be updatable as long as the
underlying fi eld would also be updatable. If your form is bound to
a query, see “Limitations on Using Select Queries to Update Data”
on page 468. Dynaset (Inconsistent Updates) specifi es that all fi elds
(other than fi elds resulting from expressions or AutoNumber fi elds)
can be updated, even if the update would break a link between
related tables. (We do not recommend this option because it
can allow a user to attempt to make a change that would violate
integrity rules.) Snapshot specifi es that the data is read-only and
cannot be updated.

Fetch Defaults Choose Yes (the default) to have the form fetch the default values
from the fi eld defi nitions when you move to a new row. Set this
property to No to use only the Default Value settings you have
specifi ed for controls.

On Current
through Before
Screen Tip

You can set these properties to run a macro, a function, or
an event procedure when the specifi c event described by the
property occurs for this form. See Part 4 for details.

Cycle Use the default setting, All Records, to tab to the next record when
you press the Tab key in the last control in the tab order. Choose
Current Record to disallow tabbing from one record to another.
Choose Current Page on a multipage form to disallow tabbing
onto the next or previous page—you must use Page Up or Page
Down to move between pages. When you set Current Record or
Current Page, you must use the navigation buttons or Ribbon
commands to move to other records.

Record Locks No Locks (the default) specifi es that Access will not lock any edited
row until it needs to write the row back to the table. This is the
most effi cient choice for most applications. Edited Record specifi es
that Access apply a lock to the row the instant you begin typing in
the record. This can lock out other users in a shared environment.
All Records (not recommended) locks every record in the record
source as soon as you open the form.

Ribbon Name You can design a custom Ribbon to display for your forms and
reports, and you can enter the name of your custom Ribbon in this
property. See Chapter 24 for more details.

Toolbar, Menu Bar,
and Shortcut Menu
Bar

Using Access 2000, 2002, or 2003 in an MDB format database, you
can design a custom menu bar, toolbar, and shortcut menu for
your forms and reports, and you enter the name of your custom
menus or toolbars in these properties. These properties are
supported in Access 2007 for backward compatibility with earlier
versions.

Shortcut Menu The default setting, Yes, indicates shortcut menus will be available
for the form and all controls on the form. Choose No to disable
shortcut menus.

Chapter 12

680 Chapter 12 Customizing a Form
Property Description

Help File When you create a custom help fi le for your application, enter the
path and fi le name in this property. See Chapter 24 for details.

Help Context ID You can create a custom help fi le for your application and identify
specifi c topics with a context ID. If you want a particular topic to
appear when a user presses F1 when using this form, enter the ID
of the topic in this property. If the focus is in a control that also
has a Help Context ID property defi ned, the topic for that control
is displayed. See Chapter 24 for details.

Has Module If you create Visual Basic event procedures for this form, Access
automatically sets this property to Yes. If you change this property
from Yes to No, Access warns you that doing so will delete all your
code and gives you a chance to cancel the change. See Part 4 for
details.

Fast Laser Printing The default setting, Yes, specifi es that Access will use laser printer
line fonts to draw lines and rectangles if you print the form on a
printer that supports this option. Choose No to send all lines to
your printer as graphics.

Tag You can use this property to store additional descriptive
information about the form. You can write Visual Basic code to
examine and set this property or take a specifi c action based on
the property setting. The user cannot see the contents of the Tag
property.

Palette Source Enter the name of a graphic fi le or Windows palette fi le that
provides a color palette to display this form. You might need to
set this property if you have also set the Picture property so that
the colors of the background picture display properly. The default
setting, (Default), uses your current Windows palette.

Setting Form and Control Defaults
When you’re building an application, you should establish a standard design for all
your forms and the controls on your forms. Although you can use the AutoFormat tem-
plates, you might want to create a standard design that is different.

Changing Control Defaults
You can use the Set Control Defaults button in the Controls group on the Design tab
to change the defaults for the various controls on your form. If you want to change the
default property settings for all new controls of a particular type, select a control of that
type, set the control’s properties to the desired default values, and then click the Set
Control Defaults button in the Controls group on the Design tab. The settings of the
currently selected control will become the default settings for any subsequent defi ni-
tions of that type of control on your form.

 Setting Form and Control Defaults 681

Ch
ap

te
r 1

2

For example, you might want all new labels to show blue text on a white background.
To make this change, place a label on your form, and set the label’s Fore Color property
to blue and its Back Color property to white using the Font Color and Fill/Back Color
buttons in the Font group on the Design tab. Click the Set Control Defaults button in
the Controls group on the Design tab while this label is selected. Any new labels you
place on the form will have the new default settings.

Working with AutoFormat
After you defi ne control defaults that give you the “look” you want for your application,
you can also set these defaults as an AutoFormat that you can use in the Form Wizard.
To create an AutoFormat defi nition, open the form that has the control defaults set the
way you want them, click the arrow on the AutoFormat button in the AutoFormat group
on the Arrange tab, and then click the AutoFormat Wizard button beneath the gallery
of AutoFormats. Click the Customize button in the AutoFormat dialog box to open
the Customize AutoFormat dialog box shown in Figure 12-50. Select the Create A New
AutoFormat option to save a format that matches the form you currently have open, and
then click OK. In the next dialog box, type a name for your new format, and then click
OK. Your new format now appears in the list of form AutoFormats. As you saw in Chap-
ter 11, you can select any of the form AutoFormats to dictate the look of a form created
by the Form Wizard.

Figure 12-50 You can create your own custom AutoFormat defi nitions.

If you have previously defi ned an AutoFormat, you can update it or delete it using the
AutoFormat dialog box. You can also update or delete any of the built-in formats.

Chapter 12

682 Chapter 12 Customizing a Form
Defi ning a Template Form
You can also create a special form to defi ne new default properties for all your controls.
To do this, open a new blank form and place on it one of each type of control for which
you want to defi ne default properties. Modify the properties of the controls to your lik-
ing, use these controls to reset the control defaults for the form (by clicking the Set Con-
trol Defaults button in the Controls group on the Design tab for each control), and save
the form with the name Normal. The Normal form becomes the template form for the
current database. Any new control you place on any new form created after you defi ne
your template form (except forms for which you’ve already changed the default for one
or more controls) will use the default property settings you defi ned for that control type
on the Normal form. Note that defi ning a template form does not affect any existing
forms. Also, you can revert to the standard settings by deleting the Normal form from
your database.

To defi ne a name other than Normal for your default form and report templates, click
the Microsoft Offi ce Button, click Access Options, and then click the Object Designers
category. Enter the new name in the Form Template text box in the Forms/Reports sec-
tion. Then save your template under the new name you specifi ed in the Object Design-
ers category. Note that this new setting becomes the default for all databases on your
computer, but if Access doesn’t fi nd a form in your database with the name you speci-
fi ed, it uses the standard default settings instead.

If you want to see how this works in the HousingDataCopy.accdb sample database,
click the Microsoft Offi ce Button, click Access Options, and then click the Object
Designers category. In the Forms/Reports section, enter zsfrmTemplate in the Form
Template box, and click OK. Next, click the Blank Form button in the Forms group on
the Create tab to create a blank form. Your new form should have a header and footer
and the Trek background. Try dropping a few controls onto the form. Although we
started with the Trek template, we modifi ed the look of labels, text boxes, combo boxes,
list boxes, and command buttons in the template form to be different. Figure 12-51
shows you our template in Design view. Note that your new form not only inherits con-
trol properties but also inherits the height and width of each of the sections from the
template.

CAUTION!
Be sure to change your default template name back to Normal before going any further.

This setting affects all your databases but won’t hurt anything unless you happen to have

a form named zsfrmTemplate in some of your databases.

C U O !

 Setting Form and Control Defaults 683

Ch
ap

te
r 1

2

Figure 12-51 This is the zsfrmTemplate sample template form in the HousingDataCopy.accdb
sample database.

Now you should be comfortable with designing forms and adding special touches to
make your forms more attractive and usable. In the next chapter, you’ll learn advanced
form design techniques: using multiple-table queries in forms, building forms within
forms, and working with ActiveX controls, PivotTables, and PivotCharts.

CHAPTER 13

Advanced Form Design
In the previous two chapters, you learned how to design and build a form that works
with data from a single table, and you saw how to display data from another table by

using a combo box or a list box. You also learned various techniques to enhance the
appearance of your forms, and you explored control and form properties you can set to
specify how a form looks and works.

In this chapter, you’ll learn how to design a form that consolidates information from
multiple tables. You’ll fi nd out how to

O Create a form based on a query that joins multiple tables

O Embed a subform in a main form so that you can work with related data from two
tables or queries at the same time

O Use an option group to display and edit information

O Defi ne conditional formatting of a control based on the data values in the form

O Use the tab control to handle multiple subforms within one area on a form

O Create a form that spreads many data fi elds across multiple pages

O Use an ActiveX control on your forms

O Design a form in PivotTable or PivotChart view and embed a linked PivotChart
form in another form

Basing a Form on a Multiple-Table Query 686

Creating and Embedding Subforms 692

Displaying Values in an Option Group 714

Using Conditional Formatting . 716

Working with the Tab Control . 719

Creating Multiple-Page Forms . 723

Introducing ActiveX Controls—
The Calendar Control . 726

Working with PivotChart Forms 730
 685

Chapter 13

686 Chapter 13 Advanced Form Design
Note
The examples in this chapter are based on the tables and data in Housing DataCopy.

accdb and ContactsDataCopy.accdb on the companion CD included with this book.

These databases are copies of the data from the Housing Reservations and Conrad

 Systems Contacts application samples, respectively, and they contain the sample queries

and forms used in this chapter. The results you see from the samples you build in this

chapter might not exactly match what you see in this book if you have changed the sam-

ple data in the fi les. Also, all the screen images in this chapter were taken on a Microsoft

Windows Vista operating system with the display theme set to Blue, and Use Windows-

Themed Controls On Forms has been enabled in the Current Database category in the

Access Options dialog box for the sample databases.

Basing a Form on a Multiple-Table Query
When you bring together data from multiple tables using select queries, the result of
that query is called a recordset. A recordset contains all the information you need, but
it’s in the unadorned Datasheet view format. Forms enable you to present this data in
a more attractive and meaningful way. And in the same way that you can update data
with queries, you can also update data using a form that is based on a query.

Creating a Many-to-One Form
It’s easy to design a form that allows you to view and update the data from a single
table. Although you can include selected fi elds from related tables using a list box or a
combo box, what if you want to see more information from the related tables? The best
way to do this is to design a query based on two (or more) related tables and use that
query as the basis of your form.

When you create a query with two or more tables, you’re usually working with one-to-
many relationships among the tables. As you learned earlier, Microsoft Offi ce Access
2007 lets you update any data in the table that is on the many side of the relationship
and any nonkey fi elds on the one side of the relationship. This means that when you
base a form on a query, you can update all the fi elds in the form that come from the
many table and most of the fi elds from the one side. Because the primary purpose of the
form is to search and update records on the many side of the relationship while review-
ing information on the one side, this is called a many-to-one form.

In Chapter 8, “Building Complex Queries,” you learned how to build a multiple-table
query that displays information from several tables in the HousingDataCopy.accdb
sample database. Later, you explored the fundamentals of form construction by creat-
ing simple forms to display company and product data in the ContactsDataCopy.accdb
sample database.

In Chapter 12, “Customizing a Form,” you built and enhanced a simple form to display
employee information from the housing database. (See Figure 12-42 on page 650.)

Note
The examples in this chapter are based on the tables and data in Housing DataCopy.

accdb and ContactsDataCopy.accdb on the companion CD included with this book.

These databases are copies of the data from the Housing Reservations and Conrad

Systems Contacts application samples, respectively, and they contain the sample queries

and forms used in this chapter. The results you see from the samples you build in this

chapter might not exactly match what you see in this book if you have changed the sam-

ple data in the fi les. Also, all the screen images in this chapter were taken on a Microsoft

Windows Vista operating system with the display theme set to Blue, and Use Windows-

Themed Controls On Forms has been enabled in the Current Database category in the

Access Options dialog box for the sample databases.

 Basing a Form on a Multiple-Table Query 687

Ch
ap

te
r 1

3

You could have used a combo box to display a department name instead of a number
in your employees form. But what if you want to see the additional details about the
department when you view an employee record? To do this, you need to base your
employees form on a query that joins multiple tables.

Designing a Many-to-One Query
To build the query you need, follow these steps:

1. Open the HousingDataCopy.accdb sample database, and on the Create tab, in the
Other group, click the Query Design button to open a new Query window in the
Design view.

2. Add the tblDepartments table and two copies of the tblEmployees table using
the Show Table dialog box. (You need the second copy to fetch the department
manager name.) Close the Show Table dialog box after you add the tables to the
Query window.

3. Remove the extra relationship line between EmployeeNumber in the fi rst copy of
tblEmployees and ManagerNumber in the tblDepartments table.

4. Right-click the second copy of tblEmployees (the title bar of the fi eld list displays
tblEmployees_1), and click Properties on the shortcut menu, or click the Property
Sheet button in the Show/Hide group on the Design tab. In the Property Sheet
window, give the fi eld list an alias name of Managers to make the purpose of this
fi eld list clear, and then close the Property Sheet window.

5. Click the EmployeeNumber fi eld in the Managers fi eld list, and drag and drop it
on ManagerNumber in the tblDepartments fi eld list. This link establishes who the
department manager is.

6. Drag the special “all fi elds” indicator (*) from the tblEmployees fi eld list to the
design grid.

7. Create an expression, Manager: Managers.LastName & ", " & Managers.FirstName,
in the next empty column in the design grid to display the department manager
name.

8. From the tblDepartments table, drag DeptLocation, DeptAddress, DeptCity,
DeptStateOrProvince, DeptPostalCode, and DeptCountry to the query design
grid. Do not include the DepartmentID fi eld from tblDepartments; you want
to be able to update the DepartmentID fi eld, but only in the tblEmployees
table. If you include the DepartmentID fi eld from the tblDepartments table,
it might confuse you later as you design the form. You’ll use a combo box on
DepartmentID on the form to display the department name. Save your query as
qryEmployeesDepartmentManager, and close the query.

You can fi nd a query already built for this purpose (named qryXmplEmployeesDepart-
mentManager) in the sample database, as shown in Figure 13-1.

Chapter 13

688 Chapter 13 Advanced Form Design
Figure 13-1 The qryXmplEmployeesDepartmentManager query serves as the record source for
your form.

Designing a Many-to-One Form
Now that you have the query you need, fi nd the query defi nition in the Navigation
Pane, and create a new form based on the query. You can use the Form Wizard to
quickly build a starting point for your form. Select the query in the Navigation Pane,
click the Create tab, and in the Forms group, click the More Forms button. Click Form
Wizard to get started.

You want to include all the fi elds from the query in this form, so click the double right
arrow to move all the fi elds from the Available Fields list to the Selected Fields list. Click
Next to go to the second page of the wizard. Select a columnar layout on the next page,
and select the style you want on the page that follows. We started with the Trek style for
all forms in the Housing Reservations sample database, as shown in Figure 13-2.

 Basing a Form on a Multiple-Table Query 689

Ch
ap

te
r 1

3

Figure 13-2 Select a form style on the third page of the Form Wizard.

Give your form a title of Employees on the last page, and click Finish. When the wizard
fi nishes, you should see a form similar to that shown in Figure 13-3.

Figure 13-3 The Employees form is a many-to-one form to display data from multiple tables.

Chapter 13

690 Chapter 13 Advanced Form Design
Note
In the initial release of Offi ce Access 2007, the Form Wizard fails to apply the defi ned

background image for the style you select when you create a Columnar, Datasheet, or

Justifi ed form. Microsoft is aware of this issue and is looking into it. Figure 13-3 shows

the form after we reapplied the Trek style using the AutoFormat command.

This form could use some polishing, but the wizard has placed the fi elds you chose
on the form for you. To be able to see the department name, instead of Department ID,
switch to Design view, and perform the following steps:

1. Right-click the DepartmentID text box, click Change To, and then click Combo.
This converts the text box to a combo box.

2. Open the property sheet, and set Row Source to tblDepartments, Column Count
to 2 (the fi rst two fi elds of tblDepartments are DepartmentID and Department),
and column widths to 0";1.5" to hide the DepartmentID fi eld and display the
department name.

Switch back to Form view, and the result should look like Figure 13-4. You can fi nd this
form saved as frmXmplEmployee6 in the sample database.

Figure 13-4 The DepartmentID control displays the related department name after you changed it
to a combo box.

Note
In the initial release of Offi ce Access 2007, the Form Wizard fails to apply the defi ned

background image for the style you select when you create a Columnar, Datasheet, or

Justifi ed form. Microsoft is aware of this issue and is looking into it. Figure 13-3 shows

the form after we reapplied the Trek style using the AutoFormat command.

 Basing a Form on a Multiple-Table Query 691

Ch
ap

te
r 1

3

Try changing the department in any record to something else, and watch what hap-
pens. You should see the corresponding manager name and department location infor-
mation pop into view, as shown in Figure 13-5. Because you haven’t set the Locked
property for any of the fi elds, you can also update the location information for the dis-
played department. However, if you do this, the new location information appears for
all employees assigned to that department.

Changing the department changes the related manager
 and location information.

Figure 13-5 If you change the Department fi eld for the employee, new related information
is displayed automatically on this many-to-one form.

Chapter 13

692 Chapter 13 Advanced Form Design

Access 2007 provides an option to help your forms look more consistent with Windows

Vista and Windows XP. To enable this feature, click the Microsoft Offi ce Button, click

Access Options, and in the Current Database category, select the Use Windows-Themed

Controls On Forms check box (displayed under Application Options). You can set this

option for each individual database. When you do this, Access uses the Windows Vista

or Windows XP theme for your command buttons. It also applies the Windows theme

for label, text box, option group, option button, check box, combo box, list box, image,

unbound object frame, bound object frame, subform, and rectangle controls. All these

controls appear fl at when all the following conditions are true:

O Special Effect is Sunken or Etched, or Special Effect is Flat and Border Style is not

Transparent.

O Border Style is Solid, or Border Style is Transparent and Special Effect is not Flat.

O Border Color is #000000.

O Border Width is Hairline, 1, or 2.

You can selectively restore the default look for controls by creating a template form in

your database. (See the previous chapter for details about creating a template form.)

However, the Form Wizard does not honor these settings unless you add your template

form as a custom style and instruct the wizard to use that style. The only other solution

is to selectively change one of the previously mentioned settings (for example, set Back

Color to #010000 instead of #000000) for controls that you do not want themed.

Creating and Embedding Subforms
If you want to show data from several tables and be able to update the data in more
than one of the tables, you probably need to use something more complex than a stan-
dard form. In the Conrad Systems Contacts database, the main contact information is
in the tblContacts table. Contacts can have multiple contact events and might be associ-
ated with more than one company or organization. The information about companies is
in the tblCompanies table.

Because any one contact might belong to several companies or organizations and
each company probably has many contacts, the tblContacts table is related to the
 tbl Companies table in a many-to-many relationship. See Chapter 4, “Creating Your
Database and Tables,” for a review of relationship types. The tblCompanyContacts table
provides the link between companies and contacts.

Similarly, a particular contact within a company might own one or more products, and
a product should be owned by multiple contacts. Because any one contact might have
purchased many different products and any one product might be owned by multiple
contacts, the tblCompanyContacts table is related to the tblProducts table in a many-

SIDE OUT Understanding Windows-Themed Controls

Access 2007 provides an option to help your forms look more consistent with Windows

Vista and Windows XP. To enable this feature, click the Microsoft Offi ce Button, click

Access Options, and in the Current Database category, select the Use Windows-Themed

Controls On Forms check box (displayed under Application Options). You can set this

option for each individual database. When you do this, Access uses the Windows Vista

or Windows XP theme for your command buttons. It also applies the Windows theme

for label, text box, option group, option button, check box, combo box, list box, image,

unbound object frame, bound object frame, subform, and rectangle controls. All these

controls appear fl at when all the following conditions are true:

O Special Effect is Sunken or Etched, or Special Effect is Flat and Border Style is not

Transparent.

O Border Style is Solid, or Border Style is Transparent and Special Effect is not Flat.

O Border Color is #000000.

O Border Width is Hairline, 1, or 2.

You can selectively restore the default look for controls by creating a template form in

your database. (See the previous chapter for details about creating a template form.)

However, the Form Wizard does not honor these settings unless you add your template

form as a custom style and instruct the wizard to use that style. The only other solution

is to selectively change one of the previously mentioned settings (for example, set Back

Color to #010000 instead of #000000) for controls that you do not want themed.

 Creating and Embedding Subforms 693

Ch
ap

te
r 1

3

to-many relationship. The tblContactProducts table establishes the necessary link
between the contacts and the products owned. Figure 13-6 shows the relationships.

Figure 13-6 The Relationships window in the Conrad Systems Contacts application shows the rela-
tionships between companies, contacts, and products.

When you are viewing information about a particular contact, you also might want to
see and edit the related company information and the product detail information. You
could create a complex query that brings together the desired information from all fi ve
tables and use a single form to display the data, similar to the many-to-one employees
form you built in the previous section. However, the focus would be on the contact
products (the lowest table in the one-to-many relationship chain), so you would be able
to see in a single form row only one product per row. You could design a form that has
its Default View property set to Continuous Forms, but you would see the information
from tblContacts and tblCompanyContacts repeated over and over.

Subforms can help solve this problem. You can create a main form that displays the
contact’s information and embed in it a subform that displays all the related rows from
tblCompanyContacts. To see the related product information, you could then build a
subform within the form that displays the tblCompanyContacts data to show the prod-
uct information from tblContactProducts.

Specifying the Subform Source
You can embed up to 10 levels of subforms within another form (a form that has a
subform that also has a subform, and so on). It’s best to start by designing the inner-
most form and working outward because you must design and save an inner form
before you can embed it in an outer one. In this exercise, you need to build a form on

Chapter 13

694 Chapter 13 Advanced Form Design
 tblContactProducts, embed that in a form that shows data from tblCompanyContacts,
and then fi nally embed that form and subform in a form to display contact information.
But fi rst, you must create the record sources for these subforms. Begin by designing the
data source for the fi rst subform.

In the example described previously, you want to create or update rows in the
 tblContactProducts table to create, modify, or delete links between company contact
records in the tblCompanyContacts table and products in the tblProducts table. You
could certainly base the subform directly on the tblContactProducts table and display
the product name via a combo box on the form that looks up the name based on the
value in the ProductID fi eld. However, the user might fi nd it useful to have the current
list price for the product displayed to be sure the product isn’t being sold at the wrong
price. To do that, you need a query linking tblContactProducts and tblProducts.

Begin by opening the ContactsDataCopy.accdb sample database, and then start a
new query in Design view. In the Show Table dialog box, add the fi eld lists for the
 tblContactProducts and tblProducts tables to the Query window, and then click
Close. You want to be able to update all the fi elds in the tblContactProducts table, so
copy them to the design grid. You can do so by using the all fi elds indicator (*). Add
the ProductName, CategoryDescription, UnitPrice, and TrialVersion fi elds from the
 tblProducts table.

Your query should look similar to the one shown in Figure 13-7. (This query is saved as
qxmplContactProducts in the sample database.) Notice that the tblProducts table has a
one-to-many relationship with the tblContactProducts table. This means that you can
update any fi eld in the tblContactProducts table (including all three primary key fi elds,
as long as you don’t create a duplicate row) because the tblContactProducts table is on
the many side of the relationship. Save and close the query so that you can use it as you
design the subform. You can save your query as qryContactProductsSub, as shown in
Figure 13-7, or use the sample query.

Next, you need a query for the form to display the information from tblCompany-
Contacts. You’ll embed a subform to display contact products in this form and ulti-
mately embed this form in the outermost form to display contact data. Again, you could
use the tblCompanyContacts table as the record source for this form, but you might
want to display additional information such as company name and department name
from the related tblCompanies table. You also want to restrict the rows displayed to the
one row for each contact that defi nes the default company for the contact.

 Creating and Embedding Subforms 695

Ch
ap

te
r 1

3

Figure 13-7 You can use this query to update the tblContactProducts table from a subform while
displaying related information from the tblProducts table.

Start a new query on the tblCompanyContacts table. Add the tblCompanies table to
the design grid. You should see a link between the two tables on the CompanyID fi eld
in each. Close the Show Table dialog box after you add the two tables. In the design
grid, include the CompanyID, ContactID, Position, and DefaultForContact fi elds from
tblCompanyContacts. Under the DefaultForContact fi eld, enter a criterion of True to
restrict the output to the records that defi ne the default company for each contact. Add
the CompanyName and Department fi elds from the tblCompanies table.

Your query should look like the one shown in Figure 13-8. (This query is saved as
 qxmplContactCompaniesDefault in the sample database.) Notice that the tblCompanies
table has a one-to-many relationship with the tblCompanyContacts table. This means
that you can update any fi eld in the tblCompanyContacts table (including the primary
key fi elds, as long as you don’t create a duplicate row) because the tblCompanyContacts
table is on the many side of the relationship. Save the query so that you can use it as you
design your form. You can save your query as qryContactCompaniesDefault, as shown
in Figure 13-8, or use the sample query.

Chapter 13

696 Chapter 13 Advanced Form Design
Figure 13-8 You can use this query to update the tblCompanyContacts table from a subform while
displaying related information from the tblCompanies table.

You’re now ready to start building the forms and subforms.

Designing the Innermost Subform
For the innermost subform, you’ll end up displaying the single ProductID fi eld bound
to a combo box that shows the product name. After you choose a ProductID, you want
to show the user the product category, name, and list price—but in controls that can’t be
updated. (You don’t want a user to be able to accidentally change product names and
list prices via this form!) Of course, you need the DateSold and SoldPrice fi elds from
tblContactProducts so that you can update these fi elds.

For this purpose, you could use a form in either Datasheet or Continuous Forms view.
It’s simple to build a subform designed to be used in Datasheet view because you need
to include only the fi elds you want to display in the Detail section of the form, without
any regard to alignment or placement. Access takes care of ordering, sizing, and provid-
ing column headers in the datasheet. However, we like to use Continuous Forms view
because that view lets you control the size of the columns—in Datasheet view, a user
can resize the columns, including shrinking a column so that it’s no longer visible.
Furthermore, if the subform is in Single Form view or Continuous Forms view, the Size
To Fit command will make the subform control on the outer form the right size. If the
subform is in Datasheet view, however, the Size To Fit command will size the control to
the size of the subform in Form view, not to an even number of datasheet rows wide or
high. Also, the user is free to resize the row height and column width in Datasheet view,
so how you size the subform control in Design view is only a guess.

 Creating and Embedding Subforms 697

Ch
ap

te
r 1

3

It turns out that the Form Wizard does a good job assembling this fi rst subform for
you. Click the Navigation Pane menu, click Object Type under Navigate To Category,
and then click Queries under Filter By Group. Select either the qryContactProducts Sub
query you built or the sample qxmplContactProducts query in the Navigation Pane.
Click More Forms in the Forms group on the Create tab, and then click Form Wizard to
start the wizard. You’re going to ask the wizard to create a tabular form, which displays
the fi elds you select in the order you select them in Continuous Forms view.

You don’t need the CompanyID and ContactID fi elds—as you’ll learn later, the form in
which you’ll embed this subform will supply these values via special properties you’ll
set in the subform control. First, click the ProductID fi eld to select it, and click the
single right arrow to move it to the Selected Fields list. Choose the additional fi elds
you need in this order: CategoryDescription, ProductName, UnitPrice, DateSold, and
 SoldPrice. (If we had planned ahead, we could have placed the fi elds in this sequence
in the query we’re using as the record source.) Click Next to go to the next page in the
wizard, as shown in Figure 13-9.

Figure 13-9 When you use the Form Wizard to build a form on a query using two tables, the wiz-
ard offers data layout choices.

Although you won’t take advantage of the wizard features shown on this page this time,
it’s interesting to note the options if you click the By tblProducts option. The wizard
offers to build a form on tblProducts and a subform on tblContactProducts or to build
two separate forms that are linked with a command button. In this case, you want to
build a single continuous form, so click By tblContactProducts, and then click Next
to go to the next page. Choose the Tabular layout and the None style on the next two
pages. On the fi nal page, give your new form a name such as fsubContactProducts,
select the Modify The Form’s Design option, and click Finish. Your result should look
like Figure 13-10.

Chapter 13

698 Chapter 13 Advanced Form Design
Figure 13-10 The Form Wizard created a continuous form to edit contact product information.

You could probably use this form as is, but we’ll clean it up using the techniques in
Design view and Layout view you learned in previous chapters. Perform the following
steps to perfect the design:

1. Switch to Layout view, and delete the title label that Access created in the Form
Header section.

2. Because you’ve deleted the title, you can now move all the labels closer to the top
of the form. Click the fi rst label, Product; rest your mouse pointer on the middle
of the label until it becomes double-sided crosshairs; and then drag the label up
near the top of the form. You’ll notice that Access moves all the other labels as
well because these controls are in a tabular control layout.

3. Select all the labels, and click the Bold button in the Font group on the Format tab
to make the captions more readable. You’ll notice that Access adjusts the width of
all the controls to make room for the larger text.

4. All the controls are set to the Calibri font with a font size of 11. This font and size
is too big for our needs, so let’s change the font and reduce the size. To select all
the labels and text boxes, click the Product label, move your mouse pointer to
the top edge until it becomes a down arrow, click the mouse once, hold down
the Shift key, and repeat the process with all the labels until all the controls are
selected. Next, select the MS Sans Serif font from the Font list, and select 8 from
the Font Size list in the Font group on the Format tab.

5. You can move the ProductID label and text box a little closer to the left edge of the
form. Click the Product label, and move your mouse pointer to the middle of the
left edge of the control until it becomes a double-sided arrow. Next, drag the left
edge of the control closer to the left edge of the form. The ProductID controls are
now wider than they were, so you can reduce their width by dragging the right
edge of the label control to the left. (When you reduce the width, make sure you
can still see the caption in the label.) Access moves all the other controls closer to
the left side of the form after you reduce the width of the ProductID controls.

6. Now that you’ve reduced the font size, you could reduce the CategoryDescription
controls (the Product Type column) in width. Click the Product Type label, and
drag the right edge of the control closer to the left edge of the form. Because
you’re looking at the form in Layout view, you can easily scroll through the
records to make sure you’ve allowed adequate space in the CategoryDescription.

 Creating and Embedding Subforms 699

Ch
ap

te
r 1

3

7. The ProductName text box control does not need to be quite so wide. Click the
Product Name label, and drag the right edge of the control closer to the left edge
of the form. Make sure you can still see all the data in this control by scrolling
through a few of the records. Also, the Form Wizard initially created this text box
to be two lines high, but this is unnecessary now. Click the fi rst ProductName
text box, move your mouse pointer to the bottom edge of the control until it
becomes a double-sided arrow, and then drag the bottom edge up closer until the
control is only one line high. Access changes the height of all the text box controls
but still leaves a gap below the controls. (We’ll fi x this in a minute.) To make sure
you’ve sized the text box exactly one line high, you can double-click the edge
of the text box or click the Size To Fit command in the Position group on the
Arrange tab.

8. The two price text box controls are wider than necessary, so you should reduce
the width of these controls as well. Click the UnitPrice label (the fi rst price label),
hold down the Shift key and select the SoldPrice label (the second price label),
and reduce their width by dragging the right edge of either control closer to the
left side of the form. Notice that Access resizes the text box controls for you. Also,
because you resized the controls together, they both remain the same width.

9. Now that you’ve used Layout view to help resize the controls, switch to Design
view to make the remaining changes. Click anywhere in the Detail section away
from any controls to be sure no controls are selected. Right-click the ProductID
text box control, click Change To on the menu, and then click Combo Box to
convert the text box to a combo box. Open the Property Sheet window, and set
Row Source to tblProducts, Column Count to 2, Column Widths to 0.25"; 1.5",
and List Width to 2". Access increased the height of the other controls when
you changed ProductID to a combo box. To make them all the same height,
click the ProductID combo box, hold down the Shift key, and then click the
CategoryDescription text box. Next, click the Size To Shortest or the Size To Fit
button in the Size group on the Arrange tab.

10. You need to lock the three fi elds from tblProducts so that they cannot be updated
via this form. Click the CategoryDescription text box control, and hold down the
Shift key while you click the ProductName text box control and the UnitPrice
text box control to add them to the selection. In the Property Sheet window, set
Locked to Yes.

11. Because Access originally made the ProductName text box control a two-line
control, it will display a vertical scroll bar when you switch to Form view. You
sized the control in Layout view to be wide enough to display all product names,
so you don’t need the scroll bar. Click the ProductName text box, go to the
Property Sheet window, and set the Scroll Bars property to None to ensure that
this control does not display a scroll bar.

12. Open the form footer by dragging down its bottom edge. Click the Text Box tool
in the Controls group on the Design tab, and drop a text box in the Form Footer
section under the SoldPrice text box control. Make your new control the same
size as the SoldPrice control, and line them up using the Align Left or Align Right

Chapter 13

700 Chapter 13 Advanced Form Design
button in the Control Alignment group on the Arrange tab that you learned about
in the previous chapter. Click the attached label, set its font to Bold, and in the
Property Sheet window type Total: in the Caption property. Now move the label
closer to the new text box. Click the new text box, and in the Property Sheet
window set Control Source to =Sum([SoldPrice]), Format to Currency, Enabled to
No, and Locked to Yes. Finally, select both the new label and text box controls,
and change the font to MS Sans Serif and font size to 8.

All you have left to do is to shrink the bottom of the Detail section to eliminate the
extra space below the row of controls, reduce the width of the form, select the form,
set the form’s Scroll Bars property in the Property Sheet window to Vertical Only (your
design should horizontally fi t all the fi elds within the subform control on the main
form so that the user won’t need to scroll left and right), and set the Navigation Buttons
property to No. (You can use the vertical scroll bar to move through the multiple rows.)

Because you didn’t choose all the fi elds from the query, the wizard tried to help you out
by creating an SQL statement to fetch only the fi elds you used on the form. You’ll need
all the fi elds for the subform fi ltering to work correctly. So, delete the SQL statement
from the form’s Record Source property, and set the property back to the name of your
query (qryContactProducts). The result of your work should look something like Fig-
ure 13-11.

Figure 13-11 Here is your subform to edit contact products in Design view.

You can switch to the subform’s Form view to check your work. You can see the
 Continuous Forms view in Figure 13-12. Because this form isn’t linked as a subform
yet (which will limit the display to the current order), the totals displayed in the form
footer are the totals for all orders. You can fi nd this form saved as fsubXmplContact-
Products in the sample database.

 Creating and Embedding Subforms 701

Ch
ap

te
r 1

3

Figure 13-12 This is your contact products subform displayed in Continuous Forms view.

If you’ll be using a subform in Datasheet view when it’s embedded in another form, you

have to switch to Datasheet view to adjust how the datasheet looks and then save the

subform from Datasheet view to preserve the look you want. You must also use the Data-

sheet view of the form to make adjustments to fonts and row height. The font in Data-

sheet view is independent of any font defi ned for the controls in Form view.

Also, if you build a tabular form such as the one shown in Figure 13-12 and then decide

to use it as a subform in Datasheet view, you will see the fi eld names as the column head-

ings rather than the captions. In Datasheet view, columns display the defi ned caption for

the fi eld only when the bound control has an attached label. In a tabular form, the labels

are detached from their respective controls and displayed in a separate section of the

form design.

Designing the First Level Subform
You can now move on to the form to display the company contact information and act
as a link between contacts and contact products. The purpose of the fi nal form will be
to view contacts and edit their contact products, so you don’t need to have anything
fancy in the middle or allow any updates. To begin, click the Form Design button in
the Forms group on the Create tab. Access opens a blank form grid in Design view.

SIDE OUT Using a Subform in Datasheet View

If you’ll be using a subform in Datasheet view when it’s embedded in another form, you

have to switch to Datasheet view to adjust how the datasheet looks and then save the

subform from Datasheet view to preserve the look you want. You must also use the Data-

sheet view of the form to make adjustments to fonts and row height. The font in Data-

sheet view is independent of any font defi ned for the controls in Form view.

Also, if you build a tabular form such as the one shown in Figure 13-12 and then decide

to use it as a subform in Datasheet view, you will see the fi eld names as the column head-

ings rather than the captions. In Datasheet view, columns display the defi ned caption for

the fi eld only when the bound control has an attached label. In a tabular form, the labels

are detached from their respective controls and displayed in a separate section of the

form design.

Chapter 13

702 Chapter 13 Advanced Form Design
Open the Property Sheet window, and select in the Record Source property either the
query you built earlier (qryContactCompaniesDefault) or the sample query we provided
(qxmplContactCompaniesDefault).

To make this form easy to build, set some control defaults fi rst. Click the Label button
in the Controls group on the Design tab, and click the Bold button in the Font group on
the Design tab to give all your labels a default bold font. Click the Text Box button, and
change Special Effect to Flat, Label Align to Right, and Label X (the offset of the label to
the right) to –.05".

Open the Field List window by clicking the Add Existing Fields button in the Tools
group on the Design tab, and then click the Show Only Fields In The Current Record
Source link (if necessary). Click the CompanyID fi eld to select it, and hold down the
Ctrl key while you click the CompanyName and Department fi elds to add them to the
selection. Drag and drop these fi elds together onto your form about 2 inches from the
left edge and near the top of the Detail section. Drag and drop the Position fi eld onto
the form directly below Department. If you have Snap To Grid turned on, it should be
easy to line up the controls. Otherwise, select all the text box controls, and use the
Align buttons in the Control Alignment group on the Arrange tab to line them up. Set
the Locked property of all text box controls to Yes. Select the label control attached to
the CompanyID text box, and change the caption from Company / Org.: to Company
ID:. At this stage, your design should look like Figure 13-13.

Figure 13-13 Your form to display company contact information is now beginning to take shape.

 Creating and Embedding Subforms 703

Ch
ap

te
r 1

3

Embedding a Subform
You can use a couple of techniques to embed a subform in your outer form. First, you
can cancel the selection of the Use Control Wizards button in the Controls group on
the Design tab, select the Subform/Subreport tool in the Controls group, and then click
the upper-left corner of the outer form’s empty area and drag the mouse pointer to cre-
ate a subform control. (If you leave the Use Control Wizards button selected, Access
starts a wizard to help you build the subform when you place a subform control on your
outer form. Because you already built the subform, you don’t need the wizard’s help.)
After you have the subform control in place, set its Source Object property to point to
the subform you built (or use the sample fsubXmplContactProducts).

A better way to embed the subform is to expand the Navigation Pane, fi nd the form
you want to embed as a subform, and then drag it from the Navigation Pane and drop
it onto your form. To do this, expand the Navigation Pane if you collapsed it, open the
Navigation Pane menu, click Object Type under Navigate To Category, and then click
Forms under Filter By Group to display the list of forms in the database. Click the sub-
form you built in the previous section (or the fsubXmplContactProducts form that we
supplied), and drag and drop it onto your form at the left edge below the Position label
and text box. Figure 13-14 shows this action in progress.

Figure 13-14 You can drag and drop one form from the Navigation Pane onto the Design view of
another form to create a subform.

Adding a subform in this way has the advantages that your new subform control will be
sized correctly horizontally, will have a height to display at least one row, and will have
some of its other properties automatically set. If the form you are designing has a table
as its record source and Access can fi nd related fi elds of the same name in the record

Chapter 13

704 Chapter 13 Advanced Form Design
source of the subform you’re adding, then Access automatically defi nes the link proper-
ties as well. You’ll have to set these properties yourself later in this exercise.

You don’t need the label that Access added to your subform control, so you can select it
and delete it. Click the subform control to select it (if you click more than once, you’ll
select an object on the form inside the subform control), drag the sizing handle in the
middle of the bottom of the control so that it is about 2 inches high, and then click the
Size To Fit button in the Size group on the Arrange tab to correctly size the control to
display multiple rows. Move up the bottom of the Detail section of the outer form if
necessary so that there’s only a small margin below the bottom of the resized subform
control. Your form should look something like Figure 13-15.

Figure 13-15 The contact products subform, embedded in your form, displays the products owned
by a company contact.

Sizing a subform that you display in Form view is quite simple. You might need to do

this if you create the subform control directly on the form. Select the subform control,

and then click Size To Fit in the Size group on the Arrange tab. In this case, you’re using a

subform in Continuous Forms view, so Access will size the subform control to the correct

width and to the nearest vertical height to fully display rows in the Detail section. Note

that if your subform default view is Datasheet view, using the Size To Fit button won’t

work unless the form’s Design view is exactly the same size as the datasheet. You have to

switch in and out of Form view and manually adjust the size of the subform control.

SIDE OUT Sizing a Subform Control

Sizing a subform that you display in Form view is quite simple. You might need to do

this if you create the subform control directly on the form. Select the subform control,

and then click Size To Fit in the Size group on the Arrange tab. In this case, you’re using a

subform in Continuous Forms view, so Access will size the subform control to the correct

width and to the nearest vertical height to fully display rows in the Detail section. Note

that if your subform default view is Datasheet view, using the Size To Fit button won’t

work unless the form’s Design view is exactly the same size as the datasheet. You have to

switch in and out of Form view and manually adjust the size of the subform control.

 Creating and Embedding Subforms 705

Ch
ap

te
r 1

3

You must set a couple of key properties to fi nish this work. If you remember from Figure
13-6, the tblCompanyContacts table is related to the tblContactProducts table on both
the CompanyID and the ContactID fi elds. When you view records in an outer form and
you want Access to fi lter the rows in the subform to show only related information,
you must make sure that Access knows the fi eld(s) that link the two sets of data. With
the subform control selected, open the Property Sheet window, and set the Link Child
Fields and Link Master Fields properties as shown in Figure 13-16.

Figure 13-16 Set the link fi eld properties of the subform control to tell Access how the data in the
outer form is related to the data in the inner form.

The Link Child Fields property refers to the “child” form—the one in the subform. You
must enter the names of the fi elds in the record source of the form inside the subform
that should be fi ltered based on what row you have displayed in the outer form, sepa-
rated by semicolons. Likewise, the Link Master Fields property should contain the
name(s) of the related fi eld(s) on the outer form. In most cases, both properties will con-
tain only one fi eld name, but the names might not be the same. In this case, you know it
takes two fi elds to correctly relate the rows. Switch to Form view, and your form should
look like Figure 13-17. As you move from record to record in the outer form, Access
uses the values it fi nds in the fi eld(s) defi ned in Link Master Fields as a fi lter against the
fi elds in the subform defi ned in Link Child Fields.

We don’t know yet which contact owns these products because we haven’t built the
fi nal outer form yet to display contact information. You should return to Design view
and make some adjustments to the length of the CompanyName, Department, and
Position text boxes. You should also set the form’s Scroll Bars property to Neither and
the Record Selectors property to No. You really don’t want users adding and deleting
records in this outer form, so set Allow Additions and Allow Deletions to No. Save your
form as fsubCompanyContactProducts. (Note that if you made any changes to the form
inside the subform control, Access will also ask you whether you want to save that
form, too.) You can also fi nd this form saved as fsubXmplCompanyContactProducts in
the sample database.

Chapter 13

706 Chapter 13 Advanced Form Design
Figure 13-17 You now have a form to display company contact information with a subform that
displays the related products owned.

If the record source of the outer form is a single table, Access automatically sets the Link

Master Fields and Link Child Fields properties for you when it can fi nd a related fi eld in

the table or query that you defi ne as the record source of the form within the subform

control. It does this when you either drag the subform to the main form or set the Source

Object property of the subform control.

Specifying the Main Form Source
Now it’s time to create the main form. You need a table or a query as the source of the
form. You want to be able to view (and perhaps update) the contacts who own the prod-
ucts shown in the form and subform you’ve built thus far, so your row source should
include the tblContacts table. You don’t need any other related tables, but you might
want to use a query so that you can sort the contacts by name.

Start a new query on the tblContacts table, and include all the fi elds in the design grid.
Add criteria to sort in ascending order under LastName and FirstName. (You’ll recall
from Chapter 7, “Creating and Working with Simple Queries,” that the sequence of
fi elds in the design grid is important for sorting, so be sure that LastName is before
FirstName in the query design grid.) Save your query as qryContactsSorted. Your query
should look something like that shown in Figure 13-18. You can fi nd this query saved
as qxmplContactsSorted in the sample database.

SIDE OUT Access Might Create the Link for You

If the record source of the outer form is a single table, Access automatically sets the Link

Master Fields and Link Child Fields properties for you when it can fi nd a related fi eld in

the table or query that you defi ne as the record source of the form within the subform

control. It does this when you either drag the subform to the main form or set the Source

Object property of the subform control.

 Creating and Embedding Subforms 707

Ch
ap

te
r 1

3

Figure 13-18 This query sorts the contact records to be used in a form.

Creating the Main Form
Building the form for the tblContacts table is fairly straightforward. In fact, you can use
the Form Wizard to build the basic columnar format form from the query you just cre-
ated. We recommend that you build this form from scratch as you did to build the form
for company contacts because there are only a few fi elds you need to include, and you
want to place them differently than the wizard would. To begin, click the Form Design
button in the Forms group on the Create tab. Access opens a blank form grid in Design
view. Open the Property Sheet window, and select in the Record Source property
either the query you just built (qryContactsSorted) or the sample query we provided
(qxmplContactsSorted).

As you did with the company contacts form, set some control defaults fi rst. Click the
Label button in the Controls group on the Design tab, and click the Bold button in the
Font group to give all your labels a default bold font. Click the Text Box button, and
change Label Align to Right and Label X (the offset of the label to the right) to –0.05". If
you have Use Windows-Themed Controls On Forms enabled, also make sure that Bor-
der Color is set to #010000 and Special Effect is set to Sunken—your new form should
have inherited these values from the Normal form we have saved in the database. Click
the Combo Box button, and make the same adjustments to the default Label Align,
Label X, Border Color, and Special Effect properties.

Disable Use Control Wizards in the Controls group on the Design tab, open the
Field List window, click the ContactType fi eld, and with the combo box control still
selected, drag and drop the fi eld about 1 inch from the left margin near the top of
the design area. One at a time, add the Title, LastName, and Suffi x fi elds in a column
under ContactType. In a row aligned with the LastName text box, drag and drop the

Chapter 13

708 Chapter 13 Advanced Form Design
 FirstName fi eld to about 3 inches out and the MiddleInit fi eld to about 5 inches out.
(Access expands the width of the design area when you do this.) You can shrink the
MiddleInit text box to about a half-inch wide. Click the ContactType control, and in
the Property Sheet window change the Column Widths property to 1.25";0". By default
Access set this control to display two columns, but you need to display only the fi rst
column. Now change the List Width property to 1.5" to shorten the column display
when you open the list in Form view, and change the Column Heads property to No.

The sample design shown in Figure 13-19 has a space at the bottom of the Detail sec-
tion where you can place the subform to display company contact and product data.
You can fi nd this main form saved as frmXmplContacts1 in the sample database.

Figure 13-19 This is the start of your main form with space for a subform.

Now you’re ready to add the subform. This time, click the Subform/Subreport button
in the Controls group on the Design tab (make sure the Use Control Wizards button
is still turned off), and draw the control starting near the left edge under the Suffi x
combo box and extending to fi ll the blank area. Select the label control that came with
the subform, and delete it. Select the subform control, open the Property Sheet window,
and select the fsubCompanyContactProducts form you created earlier (or our sample
 fsubXmplCompanyContactProducts form) from the list in the Source Object property.
Enter ContactID in the Link Child Fields and Link Master Fields properties. Finally,
double-click one of the subform control sizing handles, or click the Size To Fit button
in the Size group on the Arrange tab to properly size the subform control. Your result
should look something like Figure 13-20. Save your form as frmContactsProducts. You
can fi nd this form saved as frmXmplContactsProducts in the sample database.

 Creating and Embedding Subforms 709

Ch
ap

te
r 1

3

Figure 13-20 The new subform is embedded in the form to edit contacts.

In this case, the ContactID fi eld from tblContacts on the outer form is the link to
the related rows on the subform. If you recall, the combination of CompanyID and
 ContactID forms the link between the forms on the second and third level.

Access 2000 introduced a feature that allows you to directly edit your subform after you

have defi ned it as the source for your subform control. As you can see in Figure 13-20,

the design of the fsubCompanyContactProducts form is visible in the subform control

on the outermost form. Likewise, the design of the fsubContactProducts form is visible

inside that. You can click any control in the inner forms and change its size or adjust its

properties using the property sheet or the contextual Ribbon tabs under Form Design

Tools and Form Layout Tools. You might need to temporarily expand the size of the sub-

form control in order to work with the inner form easily. However, you cannot click the

Microsoft Offi ce Button and then click Save As to save your changes to a different form

defi nition. If you want to edit the form inside a subform control in its own window, right-

click the subform control, and then click Subform In New Window.

SIDE OUT Editing the Form Inside a Subform Control

Access 2000 introduced a feature that allows you to directly edit your subform after you

have defi ned it as the source for your subform control. As you can see in Figure 13-20,

the design of the fsubCompanyContactProducts form is visible in the subform control

on the outermost form. Likewise, the design of the fsubContactProducts form is visible

inside that. You can click any control in the inner forms and change its size or adjust its

properties using the property sheet or the contextual Ribbon tabs under Form Design

Tools and Form Layout Tools. You might need to temporarily expand the size of the sub-

form control in order to work with the inner form easily. However, you cannot click the

Microsoft Offi ce Button and then click Save As to save your changes to a different form

defi nition. If you want to edit the form inside a subform control in its own window, right-

click the subform control, and then click Subform In New Window.

Chapter 13

710 Chapter 13 Advanced Form Design
Switch to Form View to see the completed form, as shown in Figure 13-21. Because you
properly set the linking fi eld information for the subform controls, you can see the com-
panies for each contact and the products for each company and contact in the subforms
as you move from one contact to another. Note that the inner set of navigation buttons
is for the fi rst subform. Use the scroll bar in the innermost subform to move through
the product detail records. Also, because you locked the controls in the fi rst subform
(the company contact information), you cannot edit the controls you see there.

Figure 13-21 You now have a form to edit contacts in a main form and products owned by the
contact in subforms.

Note
If you look at the frmContacts form in the Conrad Systems Contacts application, you’ll

see a products subform on the Products tab that has no intervening company contacts

subform. This form has some Visual Basic procedures that automatically supply the

default company ID for the contact and disallow adding a product if the contact doesn’t

have a default company defi ned. You can see how this code works in Chapter 20, “Auto-

mating Your Application with Visual Basic.”

Creating a Subdatasheet Subform
In Chapter 7, you learned how to defi ne a subdatasheet for a query. You can do the same
thing with forms as long as the forms are saved to be displayed in Datasheet view. The

Note
If you look at the frmContacts form in the Conrad Systems Contacts application, you’ll

see a products subform on the Products tab that has no intervening company contacts

subform. This form has some Visual Basic procedures that automatically supply the

default company ID for the contact and disallow adding a product if the contact doesn’t

have a default company defi ned. You can see how this code works in Chapter 20, “Auto-

mating Your Application with Visual Basic.”

 Creating and Embedding Subforms 711

Ch
ap

te
r 1

3

best way to see how this works is to create modifi ed versions of the three forms you
just built.

Start by opening your fsubContactProducts form (or the sample fsubXmplContact-
Products form) in Design view. Change the Default View property of the form to
Datasheet, change the Allow Datasheet View property to Yes, and save the form as
 fsubContactProductsDS. (Click the Microsoft Offi ce Button, click Save As, and then
click Save Object As. Type the new object name, and then click OK.) Switch to Data-
sheet view, and your form now looks like Figure 13-22.

Figure 13-22 The contact products subform was changed to be displayed in Datasheet view.

Notice that several of the columns are much wider than they need to be. If you scroll
down to the bottom, you don’t see the subtotal that’s in the form footer anymore. Also,
because the labels for these fi elds are in the form header (see Figure 13-11) and not
attached to their respective controls, you see the actual fi eld names instead of the fi eld
captions. Let’s not worry about the captions for now, but you should adjust the column
widths to be more reasonable. You can do that by double-clicking the dividing line to
the right of each column heading. This auto-sizes the columns to the widest data (or
column caption) displayed. If the data you see isn’t representative of the widest data
you might store, you need to adjust the width by hand. You must save the form again
to preserve this sizing, so click the Save button on the Quick Access Toolbar, and then
close the form. You can fi nd this form saved as fsubXmplContactProductsDS in the
sample database.

Next, open your fsubCompanyContactProducts form (or the fsubXmplCompany-
Contact Products sample form) in Design view. Change the Default View property of the
form to Datasheet. Click the subform control to select it, and change the Source Object

Chapter 13

712 Chapter 13 Advanced Form Design
property to point to the new datasheet subform you just saved—fsubContactProd-
uctsDS. Save the form as fsubCompanyContactProductsDS.

If you like, you can select the form again and change the Subdatasheet Height and Sub-
datasheet Expanded properties. Because both this form and the embedded subform are
set to be displayed in Datasheet view, you can set these properties exactly as you would
for a table or query. You can specify a specifi c height in inches that you want to reserve
for the subdatasheet (the subform inside this form). If you leave the default value of 0",
the subdatasheet opens to display all available rows when you click the plus sign on
any row to expand the subdatasheet for that row. You can also change Subdatasheet
Expanded to Yes to always expand all subdatasheets within the subform when you
open the form (as though you clicked the plus sign on all displayed rows). For now,
leave these properties as they are.

Switch to Datasheet view, and your form should look like Figure 13-23.

Figure 13-23 Your form now displays company contact information in Datasheet view with a sub-
datasheet to display products.

Because the controls on this form have attached labels (see Figure 13-15), the captions
from those labels appear as the column headings. Notice that the subdatasheet form
has its columns sized as you saved them when you designed the subform. You can

 Creating and Embedding Subforms 713

Ch
ap

te
r 1

3

resize the columns in either display and save the form to save the new column width
settings. Keep in mind that your user is also free to resize the column widths. However,
because these are forms, you have more control over what the user can do than you
have in a query. Try to type something in the Company / Organization or Department
column. Because the controls in the underlying form are locked, you won’t be able to
update this information. Close this form now, and save it if you are prompted.

To fi nish putting this all together, you can now edit your frmContactsProducts form
(or the frmXmplContactsProducts sample form) to use these new datasheet subforms.
Open your form in Design view, click the subform control to select it, and change its
Source Object property to fsubCompanyContactProductsDS. You also need to make the
subform control about 7.75 inches wide because the subform in Datasheet view won’t fi t
in the current window. However, you can also shorten the height of the subform control
to about 1.5 inches.

Save your modifi ed form as frmContactsProductsDS, and switch to Form view. Your
form should now look like Figure 13-24.

Figure 13-24 Your modifi ed form now allows you to edit contacts in a main form and products
owned by the contact in subforms displayed in Datasheet view.

Remember that one of the shortcomings of designing your form this way is you have
to make a “best guess” at the size of the subform window, and your users can modify
the width of the columns in both datasheets as they wish. We personally don’t like
this design very much, but you might fi nd it useful to conserve vertical space in a
subform design when displaying complex data levels. You can fi nd this form saved as
frmXmplContactsProductsDS in the sample database.

Chapter 13

714 Chapter 13 Advanced Form Design
Displaying Values in an Option Group
Whenever you have a fi eld that contains an integer code value, you need to provide
some way for the user to set the value based on what your application knows the code
means, not the number. You could certainly use a combo box or a list box to supply a
descriptive list. However, when the number of different values is small, an option group
might be the ideal solution.

In the Conrad Systems Contacts application, the tblContacts table contains both a
home and a work address. The DefaultAddress fi eld contains an integer code value that
is used by some reports to generate a mailing address. When DefaultAddress is 1, the
application uses the work address; and when DefaultAddress is 2, the home address is
the default. However, a user isn’t likely to always remember that 1 means work and 2
means home. You should provide a way to make these values obvious.

In the ContactsDataCopy.accdb sample fi le, you can fi nd a form called frmXmpl Contacts
that has the basic contact information and the two sets of addresses already laid out.
Figure 13-25 shows you that form in Form view.

Figure 13-25 You can use this form to edit contact name and address information.

You can see that the Default Address fi eld could be confusing on this form. To fi x this,
switch to Design view, and delete the DefaultAddress text box control. Click the Option
Group button in the Controls group on the Design tab to select it, and then open the
fi eld list and drag the Default Address fi eld onto the form under the Suffi x combo box
control. (We set the defaults for the option group control on this form so that it should
fi t nicely under the Suffi x control and be wide enough to add some buttons.)

Next, double-click the Option Button command in the Controls group on the Design
tab to allow you to defi ne multiple buttons without having to go back to the Controls
group to click the button again. When you move your mouse pointer inside the option

 Displaying Values in an Option Group 715

Ch
ap

te
r 1

3

group control, you’ll see the control become highlighted to indicate you’re placing the
button inside the control. Drag one toward the left end of the control (the label will
appear to the right of the button) and a second one to the middle. Figure 13-26 shows
what the form looks like as you add the second button.

Figure 13-26 Add two option button controls inside an option group control.

Click the Select button in the Controls group on the Design tab to turn off the Option
Button tool. Click the fi rst button, and open the Property Sheet window. Near the top of
the list on the All tab, you can see that Access has set the Option Value property of this
button to 1. If you click the other button, you’ll fi nd that its Option Value property is 2.
Because the option group control is bound to the DefaultValue fi eld, the fi rst button will
be highlighted when you’re on a record that has a value of 1 (work address) in this fi eld,
and the second button will be highlighted when the value is 2. If you click a different
button when editing a record, Access changes the value of the underlying fi eld to the
value of the button.

You can actually assign any integer value you like to each option button in a group,
but Access has set these just fi ne for this fi eld. Note that if you assign the same value to
more than one button, they’ll all appear selected when you’re on a record that has that
value.

To make the purpose of these buttons perfectly clear, you need to fi x the attached
labels. Click the label for the fi rst button, and change the Caption property from
Option2 to Work. Set the Caption property for the label attached to the second button
to Home. Switch to Form view to see the results as shown in Figure 13-27. Save this
form as frmContacts2. You can also fi nd this form saved as frmXmplContacts2 in the
sample database.

Chapter 13

716 Chapter 13 Advanced Form Design
Figure 13-27 You can use an option group to set the default address for the contacts.

Using Conditional Formatting
Access 2007 includes a feature that allows you to defi ne dynamic modifi cation of the
formatting of text boxes and combo boxes. You can defi ne an expression that tests the
value in the text box or combo box or any other fi eld available in the form. If the expres-
sion is true, Access will modify the Bold, Italic, Underline, Back Color, Fore Color,
and Enabled properties for you based on the custom settings you associate with the
 expression.

This feature can be particularly useful for controlling fi eld display in a subform in Con-
tinuous Forms view. For example, you might want to highlight the ProductName fi eld
in the innermost subform shown in Figure 13-21 when the product is a trial version.
Or, you might want to change the font of the address fi elds in the form shown in Figure
13-27 depending on the value of the DefaultAddress fi eld.

For the fi rst example, you can use the fsubCompanyContactProducts subform that you
built earlier (or the fsubXmplCompanyContactProducts sample form you’ll fi nd in the
sample database). To defi ne conditional formatting, fi rst open the form you need to
modify in Design view. Click the subform control, and then click the ProductName fi eld
within the subform to select it. On the Design tab, in the Font group, click the Condi-
tional button to see the Conditional Formatting dialog box.

In the Default Formatting box, you can see the currently defi ned format for the control.
You can use the Bold, Italic, Underline, Fill/Back Color, Font/Fore Color, and Enabled
buttons to modify the default. When you fi rst open this dialog box, Access displays a
single blank Condition 1. In the leftmost list, you can choose Field Value Is to test for a
value in the fi eld, Expression Is to create a logical expression that can test other fi elds
on the form or compare another fi eld with this one, and Field Has Focus to defi ne set-
tings the control will inherit when the user clicks in the control.

 Using Conditional Formatting 717

Ch
ap

te
r 1

3

When you choose Field Value Is, the dialog box displays a second list with logical
comparison options such as Less Than, Equal To, or Greater Than. Choose the logical
comparison you want, and then enter the value or values to compare the fi eld with in
the text boxes on the right.

In this case, you want to set the format of ProductName based on the value of the Trial-
Version fi eld. So, choose Expression Is, and in the expression box enter the following:

[TrialVersion]=True

Set the formatting properties you want the control to have if the test is true by using the
buttons to the right. In this case, set the Fill/Back Color to a bright yellow as shown in
Figure 13-28, and click OK.

Figure 13-28 Defi ne conditional formatting for the ProductName fi eld using the Conditional
 Formatting dialog box.

Switch to Form view to see the result as shown in Figure 13-29, and move to the third
company record. You can fi nd the sample saved as fsubXmplCompany Contact Products2
and the inner subform saved as fsubXmplContactProducts2.

Figure 13-29 You can now see the effect of defi ning conditional formatting for the
ProductName fi eld.

Chapter 13

718 Chapter 13 Advanced Form Design
You can make a similar change to frmContacts2 that you saved earlier, or you can
use the sample frmXmplContacts2 form. Open that form in Design view, click the
 WorkAddress text box control to select it, and hold down the Shift key as you click the
WorkPostalCode, WorkCity, and WorkStateOrProvince controls to add them to the
selection. (Yes, you can set conditional formatting for multiple controls at one time.)
Click the Conditional button in the Font group on the Design tab to see the Conditional
Formatting dialog box.

Choose Expression Is in the leftmost list, and enter [DefaultAddress]=1 in the Condi-
tion fi eld to test whether the default is the work address. Underline and highlight the
text as shown in Figure 13-30, and click OK to close the dialog box and set the condi-
tional formatting for the controls you selected.

Figure 13-30 You can also defi ne conditional formatting for a group of controls.

Click the HomeAddress text box, and hold down the Shift key as you click Home-
PostalCode, HomeCity, and HomeStateOrProvince to add them to the selection. Click
the Conditional button in the Font group again, choose Expression Is in the leftmost
list, enter [DefaultAddress]=2 in the Condition fi eld, and underline and highlight the
text. Click OK to save the change, and save your form as frmContacts3. Switch to Form
view to see the result as shown in Figure 13-31. All the records in the database have
work address as the default, so try changing the Default Address option in one of the
records to Home, and you should see the highlight move to the home address fi elds.
You can also fi nd this form saved as frmXmplContacts3 in the sample database.

 Working with the Tab Control 719

Ch
ap

te
r 1

3

Figure 13-31 The default address fi elds are highlighted and underlined in the contacts form based
on the value of the DefaultAddress fi eld.

To defi ne additional tests, click the Add button at the bottom of the Conditional
 Formatting dialog box. Each time you click this button, Access displays an additional
Condition defi nition row. In the second and subsequent rows, you can choose from
Field Value Is or Expression Is in the leftmost list. (You can check for focus only in the
fi rst test.) For example, you might want to set the background of the product name to
one color if it’s a trial version and use another color for products priced greater than $200.

Working with the Tab Control
As you have just seen, a subform is an excellent way to create a form that lets you edit
information from the one side of a relationship in the main form (contacts) while edit-
ing or viewing data from the many side of a relationship (contact events or contact
products) in the subform window. Building a subform is very simple for a single one-to-
many relationship. But what can you do when you have either multiple relationships or
lots of data you need to deal with on a form and including all this information makes
your form too large to fi t on your screen? Access provides a tab control that lets you
place multiple controls on individual tabs within a form. The controls on a tab can
be as complex as subforms (in the case of the Conrad Systems Contacts database, to
display related companies, events, and products) or as simple as text boxes (which
can display the potentially lengthy information in the Notes fi eld). You can see the
 frmContactsPlain form (the simple copy of the form that doesn’t have all the bells and
whistles of the production form) with the tab that shows contact events selected in Fig-
ure 13-32. You can select the other available tabs to see the detail information for the
contact—the companies associated with the contact (in a subform on that tab) and the
products the contact has purchased (in another subform).

Chapter 13

720 Chapter 13 Advanced Form Design
Figure 13-32 The tab control allows you to place multiple subforms and controls on a tab page,
such as this tab to edit contact events.

Working with the tab control is quite simple. If you like, you can start with a simple
columnar form built by the Form Wizard. Use qxmplContactsSorted as the record
source, and include the ContactType, Title, LastName, FirstName, MiddleInit, and Suf-
fi x fi elds. Switch to Design view, and create some space at the bottom of the form to add
your tab control. You can also start with frmXmplContacts1, which you can fi nd in the
ContactsDataCopy.accdb sample database. To build a control that lets you alternately
see company, contact event, or liner notes information for the current contact, perform
the following steps:

1. On the Design tab, in the Controls group, click the Tab Control button, and drag
an area on the form starting on the left side just under the Suffi x combo box
control and approximately 6.25 inches wide and 2 inches high. Access shows you
a basic tab control with two tabs defi ned. Open the Property Sheet window, and
set the Tab Fixed Width property to 1" so that all the tabs will be the same size
and wide enough to add captions later.

2. While the tab control has the focus, click the Insert Page button in the Controls
group on the Design tab, as shown next. Access will add a third tab to the control.

 Working with the Tab Control 721

Ch
ap

te
r 1

3

3. Access always inserts new tabs at the end of the tab sequence. If you want to place
the new tab in the middle of the tab order, you can select the tab and set its Page
Index property. The Page Index of the fi rst tab is 0, the second is 1, and so on.
Another way to set the tab sequence is to right-click the control and then click
Page Order to see the dialog box shown next. Select a tab, and move it up or down
to get the sequence you want.

4. Click the fi rst tab, open the Property Sheet window (if it’s not already open), and
set the Caption property to Companies.

5. Click the second tab, and set the Caption property to Events.

6. Click the third tab, and set the Caption property to Notes.

7. Click the Companies tab to bring it to the front. Click the Subform/Subreport
button in the Controls group, and set the Auto Label property in the Property
Sheet window to No. Add a subform control to the Companies tab, set its Source
Object property to fsubXmplContactCompanies (the sample database contains
built-in subforms to make this exercise easy), and set the Link Child Fields and
Link Master Fields properties to ContactID. You can also drag the subform from
the Navigation Pane and drop it onto the tab if you like.

Chapter 13

722 Chapter 13 Advanced Form Design
8. Click the Events tab, and add the fsubXmplContactEvents form to that tab as a
subform. Be sure to set the link properties of the subform control to ContactID.

9. Click the Notes tab to bring it to the front. Open the fi eld list, drag the Notes fi eld
onto this tab, and remove the attached label. Expand the Notes text box control
to almost fi ll the tab.

10. Adjust the positioning and size of the controls on each tab. Place each control
very near the upper-left corner of each tab. The actual Top and Left settings will
vary depending on where you placed the tab control. (These settings are relative
to the Detail section of the form, not the tab control.) You can place one where you
want it and then copy the Top and Left settings to the other two controls so that
they exactly line up. It’s important to do this so that the controls don’t appear to
jump around on the tab control as you move from tab to tab. Select each control,
and then click the Size To Fit button in the Control Alignment group on the
Arrange tab.

Your result should look something like Figure 13-33. You can fi nd this form saved as
frmXmplContacts4 in the sample database.

Figure 13-33 Your completed tab control in Design view shows three tabs with various controls.

Note that clicking each tab in Design view reveals the controls you stored on that tab.
Switch to Form view to see the form in action. Table 13-1 lists other useful tab control
property settings.

 Creating Multiple-Page Forms 723

Ch
ap

te
r 1

3

Table 13-1 Useful Tab Control Formatting Properties

Property Settings Usage

Multi Row No (default) If the control has more tabs than will fi t in
a single row, the control displays horizontal
scroll arrows in the upper-right corner of the
tab control to move through all the tabs.

Yes If the control has more tabs than will fi t in a
single row, the control displays multiple rows
of tabs.

Style Tabs (default) The control displays tabs to select the various
pages.

Buttons The control displays buttons (which look like
command buttons but work like the buttons
in an option group) to select the various
pages.

None The control displays neither tabs nor buttons.
Different pages can be displayed from a
Visual Basic procedure or a macro by setting
relative tab numbers in the tab control’s Value
property.

Tab Fixed Height 0 (default) The tab height is based on the font properties
of the tab control or the size of the bitmap
you defi ne as a picture to be displayed on
the tab.

[size in inches] The tab height is fi xed at the value entered.

Tab Fixed Width 0 (default) The tab width is based on the font properties
of the tab control and on the number of
characters in the caption or the size of the
picture on the tab.

[size in inches] The tab width is fi xed at the value entered.

Creating Multiple-Page Forms
As you’ve seen, Access 2007 makes it easy to display a lot of related information about
one subject in a single form, either by using a query as the source of the form or by dis-
playing the related information in a subform. As described in the previous section, if
you have too much information to fi t in a single, screen-sized form, you can use the tab
control. Another way to handle the problem is to split the form into multiple pages.

In Chapter 2, “Exploring the New Look of Access 2007,” you learned about the Docu-
ment Window Options settings in the Access Options dialog box. In previous versions
of Access, all objects opened in their own windows where you could edit, view, or print
them. This multiple-document interface made multiple-page forms a good method
of displaying a lot of information on one form. The ContactsDataCopy.accdb sample

Chapter 13

724 Chapter 13 Advanced Form Design
 database you have been using uses the single-document interface, which shows all open
objects in a series of tabs along the top of the object window to the right of the Naviga-
tion Pane. Unless you know in advance the height of the Access workspace, it’s diffi cult
to design a multiple-page form that works smoothly in the single-document interface.
To see how a multiple-page form works in the multiple-document interface, you should
close the ContactsDataCopy.accdb database and open the Contacts.accdb database that
uses the multiple-document interface.

You can create a form that’s up to 22 logical inches high. If you’re working on a basic
1024-by-768-pixel screen, you cannot see more than about 5.6 logical inches vertically
at one time (if the Ribbon is displayed). If the information you need to make available
in the form won’t fi t in that height, you can split the form into multiple pages by using a
page break control. When you view the form, you can use the Page Up and Page Down
keys to move easily through the pages.

Creating a smoothly working multiple-page form takes some planning. First, you
should plan to make all pages the same height. If the pages aren’t all the same size,
you’ll get choppy movement using the Page Up and Page Down keys. Second, you
should design the form so that the page break control is in a horizontal area by itself.
If the page break control overlaps other controls, your data might be displayed across
the page boundary. You also need to be aware that when you set the form’s Auto Resize
property to Yes, Access sizes the form to the tallest page.

The frmXmplContactsPagesChap13 form in the Contacts.accdb database is a good
example of a multiple-page form. If you open the form in Design view, open the Prop-
erty Sheet window, and select the Detail section of the form, you can see that the height
of this area is exactly 5.8 inches. If you click the page break control, shown at the left
edge of the Detail section in Figure 13-34, you’ll fi nd that it’s set at 2.9 inches from the
top of the page. Because this is exactly half the height of the Detail section, the page
break control splits the section into two equally sized pages.

When you look at this form in Form view (as shown in Figures 13-35 and 13-36) and
use the Page Up and Page Down keys, you’ll see that the form moves smoothly from
page to page. If you switched from Design view to Form view, you must fi rst click the
Size To Fit Form button in the Window group on the Home tab to see the form page up
and down correctly. When you open this form from the Navigation Pane, it sizes cor-
rectly because the form has its Auto Resize property set to Yes.

If you’re in a control on the second page of the form and you press Page Down again,
you’ll move smoothly to the second page of the next record. Note that certain key infor-
mation (such as the contact name) is duplicated on the second page so that it’s always
clear which record you’re editing. If you look at the second page of the form in Design
view, you’ll fi nd a locked text box control at the top of the second page that displays the
contact name again.

 Creating Multiple-Page Forms 725

Ch
ap

te
r 1

3

Page break control

Figure 13-34 The frmXmplContactsPages form includes a page break control that splits the Detail
section exactly in half.

Figure 13-35 This is the fi rst page of the frmXmplContactsPages form.

Chapter 13

726 Chapter 13 Advanced Form Design
Figure 13-36 When you press Page Down, you can see the second page of the
 frmXmplContactsPages form.

A key form property that makes multiple-page forms work is the Cycle property. On this
sample form, the Cycle property is set to Current Page. As you learned in Table 12-11 on
page 676, other options are All Records (the default) and Current Record. If you don’t
set the Cycle property to Current Page, you must place the fi rst and last controls on a
page that can receive the focus exactly on the page boundary. If you don’t do this, you’ll
fi nd that the form scrolls partially down into the subsequent page as you tab from the
last control on one page to the fi rst control on the next page. Because it’s not likely that
you’ll design your form with controls exactly aligned on the page boundary, you must
use some special techniques to properly align form pages if you want to allow tabbing
between pages or records. See “Controlling Tabbing on a Multiple-Page Form” on page
1080 for details. You can now close the Contacts.accdb database.

Introducing ActiveX Controls—The Calendar Control
Although Access 2007 certainly provides a useful collection of controls to help you
design your forms, for some tasks you might need something more complex. Access
supports many ActiveX controls that provide functionality beyond the basic set you
can fi nd in the Controls group. An ActiveX control is a small program that supports the
ActiveX interface to allow Access to see the control’s properties and build a window to
display the control’s user interface.

The 2007 Microsoft Offi ce system installs dozens of ActiveX controls on your computer.
It uses many of these in other applications such as Microsoft Offi ce Outlook 2007
or Microsoft Offi ce Excel 2007. Access 2007 makes some of these controls available
directly in the Controls group through the Insert ActiveX Control button, such as Offi ce
PivotTable, Offi ce Chart, and Offi ce Spreadsheet. These controls are available for forms
you design, but they’re not intended for that purpose. Controls that you can effectively

 Introducing ActiveX Controls—The Calendar Control 727

Ch
ap

te
r 1

3

use in your Access forms include the Calendar control (which presents a calendar to
make it easy to select a date value), the ListView control (which allows you to navigate
data in a tree structure), the ProgressBar control (which allows you to graphically dis-
play progress of a complex task, but you must write code to update the bar), and the
Slider control (with which a user can set a value by moving a slider).

The Conrad Systems Contacts application contains many date/time fi elds, so the
Calendar control might be ideal to provide a graphical way to set a date value. In the
ContactsDataCopy.accdb sample database, open frmXmplContactEvents as shown in
Figure 13-37. This is a simple form to directly edit records from the tblContactEvents
table. In this table, the ContactDateTime fi eld includes both a date and a time, but the
ContactFollowUpDate fi eld has a date value only. The Calendar ActiveX control, which
provides a date value only, might be ideal to use to set this value.

Figure 13-37 You can use this basic form to edit contact events using standard controls.

Note
Access 2007 provides a new feature called the Date Picker that you can activate for text

box controls. If you set the Show Date Picker property of a text box control to For Dates,

Access displays a small calendar icon next to the text box when it contains a date/time

value and the text box has the focus. You can try it out on the frmXmplContactEvents

form by clicking in the Follow-Up Date fi eld and then clicking the icon that appears to

the right of the text box.

Switch to the Design view of this form, delete the ContactFollowUpDate text box con-
trol, and expand the Detail section downward about 2 inches to give yourself some
room to work. Click the ActiveX Controls button in the Controls group on the Design
tab to open the Insert ActiveX Control dialog box that lists all the registered ActiveX
controls on your computer as shown in Figure 13-38. You can use the scroll bar on the
right side to move up or down the list.

Note
Access 2007 provides a new feature called the Date Picker that you can activate for text

box controls. If you set the Show Date Picker property of a text box control to For Dates,

Access displays a small calendar icon next to the text box when it contains a date/time

value and the text box has the focus. You can try it out on the frmXmplContactEvents

form by clicking in the Follow-Up Date fi eld and then clicking the icon that appears to

the right of the text box.

Chapter 13

728 Chapter 13 Advanced Form Design
Figure 13-38 The Insert ActiveX Control dialog box displays all ActiveX controls that are registered
on your computer.

Click the Calendar Control 12.0 item in the list to select that control, and then click
OK. The dialog box closes, and Access places the new control in the upper-left corner of
the Detail section. Click the control and drag it just under the FollowUp check box con-
trol, and then align the Calendar control with the other text boxes. (Tip: If you select
the FollowUp check box control before inserting the calendar, Access places the cal-
endar below that control.) If you want, resize the Calendar control to match the width
of the Notes text box control. Make sure the control is selected, and open the Property
Sheet window. Most ActiveX controls have custom properties that Access recognizes
and shows in the Property Sheet window. Most controls also display these custom
properties in their own dialog boxes. Click the Other tab in the Property Sheet window
to see the list of custom properties available for this control. You can click the Custom
property and then click the Build button next to the property box to open the Calendar
Properties dialog box, as shown in Figure 13-39. (You can’t actually type anything in
the Custom property box—it’s simply a way that Access provides to allow you to easily
open the control’s Custom Properties dialog box.) Another way to open the Custom
Properties dialog box for the Calendar ActiveX control is to right-click the control, click
Calendar Object, and click Properties on the submenu.

You’re going to set this control bound to the ContactFollowUpDate fi eld, so you don’t
need to worry about setting the Month, Day, or Year properties of the control. You
might set these values if you wanted to use the control to provide a date value for some
other purpose. As you can see, you also have options to include the month and year
title, include selectors for the month and year, list the days of the week across the top,
and show or hide horizontal and vertical grids. Click OK to close the Calendar Proper-
ties dialog box.

 Introducing ActiveX Controls—The Calendar Control 729

Ch
ap

te
r 1

3

Figure 13-39 You can set custom properties for the Calendar ActiveX control in the Property Sheet
window and in the control’s Custom Properties dialog box.

This control might look better with some additional contrast, so click the BackColor
property and click the Build button to open the Color Picker to set the color. (If you
know the color code you want, you can also enter it directly in the property.) Choose
Light Gray 2 under Standard Colors (a value of #C0C0C0 or 12632256 decimal). Click
the All tab in the Property Sheet window, and set the Control Source property near the
top of the list to the ContactFollowUpDate fi eld. Now add a label to the form grid for
the calendar, set its caption to Follow-Up Date:, and then align it with the other labels
and with the top of the Calendar control. Switch to Form view, and your form should
now look like Figure 13-40. Notice that when you move through the records, the calen-
dar changes to display the value stored in the record. You can change the calendar date
by clicking one of the date boxes to update the fi eld. You can fi nd this form saved as
frmXmplContactEventsCalendar in the sample database.

Note
The initial release of Access 2007 has a bug that prevents the Build button from being

displayed on any properties that affect color. As a result, you cannot open the Custom

Properties dialog box for these properties, and you can’t pick a color from the Color Pal-

ette window. To match our example, enter the decimal value 12632256 in the BackColor

property.

Note
The initial release of Access 2007 has a bug that prevents the Build button from being

displayed on any properties that affect color. As a result, you cannot open the Custom

Properties dialog box for these properties, and you can’t pick a color from the Color Pal-

ette window. To match our example, enter the decimal value 12632256 in the BackColor

property.

Chapter 13

730 Chapter 13 Advanced Form Design
Figure 13-40 You can see the ActiveX Calendar control in action.

In Chapter 24, “The Finishing Touches,” you’ll learn how to execute the methods of the
ActiveX Calendar control to command it to move to a different year, month, or day.

Working with PivotChart Forms
Even when the main purpose of your application is to enter, store, and organize data
to support an active business function, you probably want to add features that allow
management to analyze the business processes. PivotTables and PivotCharts are ideal
for this purpose. In Chapter 8, you learned how to create the PivotTable and PivotChart
views of a query. Designing the PivotTable or PivotChart view of a form is exactly the
same with some interesting twists:

O You can use any query or table as the record source of the form, but only
fi elds bound to controls on the form are available to design the PivotTable or
PivotChart.

O You can set form properties to control what users can modify in the PivotTable
or PivotChart view, including locking the form so they can’t modify what you
designed at all.

O Because a form has event properties, you can control what the user can modify by
writing a Visual Basic procedure to respond to the event.

O You can embed a form designed in PivotTable or PivotChart view as the subform
of another form and set the Link Child Fields and Link Master Fields properties
to fi lter the table or chart to display information relevant to the record on the
outer form.

 Working with PivotChart Forms 731

Ch
ap

te
r 1

3

Building a PivotChart Form
In the Housing Reservations application, you might want to track room revenue by
month or quarter. In the Conrad Systems Contacts application, charting product sales
or the number of contact events by week or month might be critical for judging how
effectively the business is running.

In most cases, you should start by designing a query that fetches the fi elds you want
to display in your PivotTable or PivotChart. In the Conrad Systems Contacts applica-
tion, you might want to display product sales data by product or by company. The
 ContactsDataCopy.accdb sample fi le has a query that gathers this information,
 qryXmplProductSalesForChart, as shown in Figure 13-41.

Figure 13-41 This sample query selects product sales data by product or by company.

Open the ContactsDataCopy.accdb sample database, select the qryXmplProductSales-
ForChart query in the Navigation Pane, and click the PivotChart button in the Forms
group on the Create tab. Now you can begin to design a chart to show sales by product
by month in PivotChart view. From the chart’s fi eld list (click the Field List button in
the Show/Hide group on the Design tab if you don’t see this window), drag and drop
ProductName onto the Drop Series Fields Here area. Drag and drop SoldPrice onto the
Drop Data Fields Here area—the chart automatically calculates a sum for you. Open the
Date Sold By Month list, drag and drop Months onto the Drop Category Fields Here
area, and then close the fi eld list.

Chapter 13

732 Chapter 13 Advanced Form Design
Click the Axis title on the left, and then click the Property Sheet button in the Tools
group. Click the Format tab, and enter Total Sales in the Caption property box. Click
the General tab, and select Category Axis 1 Title in the Select list. Click the Format
tab again, and change the Caption property to Months. Return to the General tab, and
select Chart Workspace in the Select list. Click the Add Legend button in the Add area
to create a legend on the right side of the chart. Click the Show/Hide tab, clear all the
check boxes in the Let Users View section, and clear the Field Buttons / Drop Zones
and Field List check boxes to remove them from the chart. Your chart should now look
like Figure 13-42.

Figure 13-42 The chart you’re building displays product sales by product and month.

Switch to Design view, and set Allow Edits, Allow Deletions, and Allow Additions all
to No. Finally, change the Shortcut Menu property to No to keep the user from getting
into the chart property settings that way. (You can see how much more control you have
over what the user can do in a form.) Save the form as chtProductSalesByProduct. You
can also fi nd this form saved as chtXmplProductSales in the sample database.

 Working with PivotChart Forms 733

Ch
ap

te
r 1

3

Embedding a Linked PivotChart
To demonstrate how you can link the chart you just built into a form that displays prod-
uct information, you can start with frmXmplProducts3 from Chapter 11, “Building a
Form.” Open that form in Design view. Widen the design area to about 7.5 inches, and
expand the Detail section’s height to about 4.25 inches to give you a space to place the
chart. Drag and drop the form you just created from the Navigation Pane onto the blank
area of the form, and select and delete the attached label.

Notice that Access automatically sizes the subform control to the design height and
width of the form, which is probably not big enough to show the chart very well. Access
doesn’t look at the chart design to determine what height and width might work well to
display the PivotChart view of the subform. (Does this remind you of the sizing prob-
lems you have with a subform in Datasheet view?) Stretch the width and height of the
subform control to fi ll up the blank space you created. Open the Property Sheet win-
dow, and with the subform control selected, set the Locked property to Yes. Verify that
the Link Child Fields and Link Master Fields properties are set to ProductID. (Because
the outer form is based on a table, dragging and dropping the subform should have set
these properties automatically.) Switch to Form view to see the result of your work as
shown in Figure 13-43. You can also fi nd this form saved as frmXmplProductsWith-
Sales in the sample database.

Figure 13-43 This form displays product information with a sales chart in a subform.

Chapter 13

734 Chapter 13 Advanced Form Design
Note
You might be wondering why the scale on the left in Figure 13-43 doesn’t seem to match

what you designed in Figure 13-42. The PivotChart view adjusts its horizontal and vertical

scales to match the size of the display window. If you had designed the subform control

taller, you might have seen the scale match.

This is the last chapter about designing forms for desktop applications. You’ll learn
about how form design is different for Access projects in Chapter 28, “Designing Forms
in an Access Project,” and you’ll learn some additional design techniques that you can
automate with Visual Basic code in Chapter 20.

Note
You might be wondering why the scale on the left in Figure 13-43 doesn’t seem to match

what you designed in Figure 13-42. The PivotChart view adjusts its horizontal and vertical

scales to match the size of the display window. If you had designed the subform control

taller, you might have seen the scale match.

CHAPTER 14

Using Reports

You can certainly format and print tables and queries in Datasheet view, and that
technique is useful for producing printed copies of simple lists of information.

Although you primarily use forms to view and modify data, you can also use forms to
print data—including data from several tables. However, because the primary function
of forms is to allow you to view single records or small groups of related records dis-
played on the screen in an attractive way, forms aren’t the best way to print and summa-
rize large sets of data in your database.

This chapter explains why and when you should use a report instead of another method
of printing data, and it describes the features that reports offer. The examples in this
chapter are based on the Conrad Systems Contacts and Housing Reservations sample
databases. After you learn what you can do with reports, you’ll look at the process of
building reports in the following two chapters.

Note
The examples in this chapter are based on the reports, tables, and data in Contacts-

DataCopy.accdb and Housing.accdb on the companion CD included with this book.

You can fi nd similar reports in the Conrad Systems Contacts sample application, but all

the reports in that sample fi le have custom Ribbons defi ned, so you won’t see the main

Ribbon tabs when you open those reports. The results you see from the samples in this

chapter might not exactly match what you see in this book if you have changed the sam-

ple data in the fi les. Also, all the screen images in this chapter were taken on a Windows

Vista system with the display theme set to Blue. Your results might look different if you

are using a different operating system or a different theme.

Uses of Reports
Reports are the best way to create a printed copy of information that is extracted or cal-
culated from data in your database. Reports have two principal advantages over other
methods of printing data.

O Reports can compare, summarize, subtotal, and total large sets of data.

Note
The examples in this chapter are based on the reports, tables, and data in Contacts-

DataCopy.accdb and Housing.accdb on the companion CD included with this book.

You can fi nd similar reports in the Conrad Systems Contacts sample application, but all

the reports in that sample fi le have custom Ribbons defi ned, so you won’t see the main

Ribbon tabs when you open those reports. The results you see from the samples in this

chapter might not exactly match what you see in this book if you have changed the sam-

ple data in the fi les. Also, all the screen images in this chapter were taken on a Windows

Vista system with the display theme set to Blue. Your results might look different if you

are using a different operating system or a different theme.

Uses of Reports . 735

A Tour of Reports . 736

Printing Reports . 750
 735

A

Chapter 14

736 Chapter 14 Using Reports
O Reports can be created to produce attractive invoices, purchase orders, mailing
labels, presentation materials, and other output you might need in order to effi -
ciently conduct business.

Reports are designed to group data, to present each grouping separately, and to per-
form calculations. They work as follows:

O You can defi ne up to 10 grouping criteria to separate the levels of detail.

O You can defi ne separate headers and footers for each group.

O You can perform complex calculations not only within a group or a set of rows
but also across groups.

O In addition to page headers and footers, you can defi ne a header and a footer for
the entire report.

O You can have your reports respond to events such as opening forms so that you
can view detailed information.

O You can fi lter the report to drill down to more specifi c records before printing.

As with forms, you can embed pictures or charts in any section of a report. You can also
embed subreports or subforms within report sections.

 Tour of Reports
You can explore reports in Microsoft Offi ce Access 2007 by examining the features of
the sample reports in the ContactsDataCopy.accdb sample database. A good place to
start is the rptContactProducts report. Open the database, and go to the Navigation
Pane. Click the Navigation Pane menu, click Object Type under Navigate To Category,
and then click Reports under Filter By Group to display a list of reports available in
the database. Scroll down the list of reports in the Navigation Pane until you see the
rptContactProducts report, as shown in Figure 14-1. Double-click the report name (or
right-click it and click the Open command on the shortcut menu) to see the report in
Print Preview—a view of how the report will look when it’s printed.

Note
All the reports in the sample databases are set to print to the system default printer. The

default printer on your system is probably not the same printer that we used as a default

when we designed the report. Some of the sample reports are designed with margins

other than the default of 1 inch on all sides. If your default printer cannot print as close to

the edge of the paper as the report is designed, Offi ce Access 2007 will adjust the mar-

gins to the minimums for your printer. This means that some reports might not appear

exactly as you see them in this book, and some data might appear on different pages.

Note
All the reports in the sample databases are set to print to the system default printer. The

default printer on your system is probably not the same printer that we used as a default

when we designed the report. Some of the sample reports are designed with margins

other than the default of 1 inch on all sides. If your default printer cannot print as close to

the edge of the paper as the report is designed, Offi ce Access 2007 will adjust the mar-

gins to the minimums for your printer. This means that some reports might not appear

exactly as you see them in this book, and some data might appear on different pages.

 A Tour of Reports 737

Ch
ap

te
r 1

4

Figure 14-1 You can use the object shortcut menu to open a report from the Navigation Pane.

Print Preview—A First Look
The rptContactProducts report is based on the qryRptContactProducts query, which
brings together information from the tblContacts, tblProducts, and tblContactProducts
tables. When the report opens in Print Preview, you’ll see a view of the report in the
Contact Products window, as shown in Figure 14-2. When you open the report from the
Navigation Pane, the report shows information for all contact product sales.

You can expand the window in Print Preview by collapsing the Navigation Pane to see
more of the rptContactProducts report horizontally. Use the vertical and horizontal
scroll bars to position the report so that you can see most of the upper half of the fi rst
page. If you are using a smaller SVGA screen (800×600 pixels), click the arrow below
the Zoom button in the Zoom group on the Ribbon and select 75% to see more of the
report. If your screen resolution is 1024×768 or higher, you should be able to easily view
the report at 100%. You can also use the Zoom control in the lower-right corner of your
window to adjust the zoom level.

Chapter 14

738 Chapter 14 Using Reports
Zoom control

Print Preview Zoom

Figure 14-2 The rptContactProducts report in Print Preview shows sales data gathered from
 several tables.

Checking Out Reports in the Sample Application
You can see all the reports described in this chapter in the Conrad Systems Contacts

application. Start the application by opening the database (Contacts.accdb), opening

frmSplash, and then signing on as either Jeff or John—you don’t need a password. To see

the fi nal version of the Contact Products report, for example, click the Products button

on the main switchboard form, and then click the Print button on the CSD Contacts –

Products form to open the Product Reports dialog box. Select Product Sales By Contact.

Also select the Current Product Only and All Records options, and then click Print. You’ll

see the report in Print Preview for the product that was displayed on the Products form.

You can also explore the reports by clicking the Reports button on the main switchboard.

All reports in the application have custom Ribbons that prevent you from switching to

Design view when running the application. When you’re fi nished looking at the reports

in Contacts.accdb, be sure to go back to the ContactsDataCopy.accdb fi le to follow the

remaining examples in this chapter.

Checking Out Reports in the Sample Application
You can see all the reports described in this chapter in the Conrad Systems Contacts

application. Start the application by opening the database (Contacts.accdb), opening

frmSplash, and then signing on as either Jeff or John—you don’t need a password. To see

the fi nal version of the Contact Products report, for example, click the Products button

on the main switchboard form, and then click the Print button on the CSD Contacts –

Products form to open the Product Reports dialog box. Select Product Sales By Contact.

Also select the Current Product Only and All Records options, and then click Print. You’ll

see the report in Print Preview for the product that was displayed on the Products form.

You can also explore the reports by clicking the Reports button on the main switchboard.

All reports in the application have custom Ribbons that prevent you from switching to

Design view when running the application. When you’re fi nished looking at the reports

in Contacts.accdb, be sure to go back to the ContactsDataCopy.accdb fi le to follow the

remaining examples in this chapter.

 A Tour of Reports 739

Ch
ap

te
r 1

4

TROUBLESHOOTING
Why did the Print Preview tab disappear when I collapsed the
Navigation Pane?
If you open a report in Print Preview, Access 2007 displays only the Print Preview contex-

tual Ribbon tab. If you collapse the Navigation Pane while in this view, Access shifts the

focus to the Navigation Pane, closes the Print Preview tab, and shows the four main Rib-

bon tabs. To show the Print Preview tab again, click on the report tab if you are using the

Tabbed Documents window option, or click on the report itself to put the focus back on

the report and redisplay the Print Preview tab.

To view other pages of the report, use the navigation bar in the lower-left corner of the
window, as shown here.

The four buttons, from left to right, are the First Page button, Previous Page button,
Next Page button, and Last Page button. The Page Number box is in the middle. To
move forward one page at a time, click the Next Page button. You can also click the Page
Number box (or press Alt+F5 to select it), change the number, and press Enter to move
to the exact page you want. Press Esc to exit the Page Number box. As you might guess,
the Previous Page button moves you back one page, and the two outer buttons move
you to the fi rst or the last page of the report. You can also move to the top of the page by
pressing Ctrl+Up Arrow, move to the bottom of the page by pressing Ctrl+Down Arrow,
move to the left edge of the page by pressing Home or Ctrl+Left Arrow, and move to the
right edge of the page by pressing End or Ctrl+Right Arrow. Pressing Ctrl+Home moves
you to the upper-left corner of the page, and pressing Ctrl+End moves you to the lower-
right corner of the page.

Headers, Detail Sections, Footers, and Groups
Although the rptContactProducts report looks simple at fi rst glance, it actually contains
a lot of information. Figure 14-3 shows you the report again with the various sections
of the report marked. You can see a page header that appears at the top of every page.
As you’ll see later when you learn to design reports, you can also defi ne a header for the
entire report and choose whether to print this report header on a page by itself or with
the fi rst page header.

The data in this report is grouped by contact name, and the detail lines are sorted
within contact name by date sold. You can print a heading for each group in your
report, and this report has a heading for each contact. This report could easily be modi-
fi ed, for example, to display the product category in a header line (to group the prod-
ucts by category), followed by the related detail lines.

TROUBLESHOOTING

Chapter 14

740 Chapter 14 Using Reports
Contact Group footer

Page header
Detail lines

 Contact Group header

Figure 14-3 The rptContactProducts report has a subtotal for each contact.

Next Access prints the detail information, one line for each row in the recordset formed
by the query. In the Detail section of a report, you can add unbound controls to calcu-
late a result using any of the columns in the record source.

Below the product detail lines for each contact, you can see the group footer for the con-
tact. You could also calculate percentages for a detail record or for a group by including
a control that provides a summary in the group footer (total for the group) or report
footer (total for the report). To calculate the percentage, you would create an additional
control that divides the detail or group value by the total value in an outer group or
in the report footer. Access can do this because its report writer can look at the detail
data twice—once to calculate any group or grand totals, and a second time to calculate
expressions that reference those totals. If you scroll down to the bottom of the page,
you’ll see a page number, which is in the page footer.

Note
If you’re working with a report that has many pages, it might take a long time to move to

the fi rst or last page or to move back one page. You can press Esc to cancel your move-

ment request. Access 2007 then closes the report.

Note
If you’re working with a report that has many pages, it might take a long time to move to

the fi rst or last page or to move back one page. You can press Esc to cancel your move-

ment request. Access 2007 then closes the report.

 A Tour of Reports 741

Ch
ap

te
r 1

4

A slightly more complex report is rptProductSalesByProduct. Open that report, and go
to the last page. At the end of this report, as shown in Figure 14-4, you can see the quan-
tity and sales totals for the last product in the report, for the last category in the report,
and for all sales in the database (Grand Total). There are two products in the Single
User category, but the fi rst is a demonstration edition that has a zero price, so the total
sales amount of the category matches the total sales amount of the second product. The
grand total is in the report footer.

Report footer
Category Group footer
Product Group footer

 Product Group header

Figure 14-4 The rptProductSalesByProduct report’s grand total calculation is in the report footer.

Subreports
Just as you can embed subforms within forms, you can embed subreports (or subforms)
within reports. Subreports are particularly useful for showing related details or totals
for the records that make up the source rows of your report. In the Conrad Systems
Contacts database, you can bring together information about contacts and products—
either contacts and the products they own or products and the contacts who own them.
You can place detailed data about contacts and products in a subreport and then embed
that subreport in the Detail section of a report that displays company data—much as
you did for the fsubContactProducts form exercise in the previous chapter.

Chapter 14

742 Chapter 14 Using Reports
You can see an example of this use of a subreport in the rptCompanyProducts report
and in the rsubCompanyProducts subreport in the Conrad Systems Contacts data-
base. In the Navigation Pane, right-click on the rsubCompanyProducts subreport, and
then click Design View on the shortcut menu to open the subreport in Design view, as
shown in Figure 14-5. The Report window in Design view is shown in Figure 14-6.

Figure 14-5 Select Design View from the shortcut menu to open rsubCompanyProducts in
Design view.

Figure 14-6 This is the Report window for the rsubCompanyProducts report in Design view.

 A Tour of Reports 743

Ch
ap

te
r 1

4

You can see that this report looks very much like the continuous form you designed
earlier to be a subform. If you look at the Record Source property for the subreport,
you’ll fi nd that it uses the qryRsubCompanyProducts query, which isn’t at all simple.
The query brings together information from the tblProducts, tblContactProducts,
 tblContacts, and tblCompanyContacts tables. This subreport doesn’t display any com-
pany information at all. Switch to Print Preview by clicking the arrow in the Views
group on the Ribbon and clicking Print Preview in the list of available views. You’ll see
a list of various products and the contacts who own them, in date sold order, as shown
in Figure 14-7.

Figure 14-7 Switch to Print Preview for the rsubCompanyProducts report to see a complex list of
sales history.

Close the subreport and open the rptCompanyProducts report in Print Preview, shown
in Figure 14-8. Notice as you move from company to company that the data displayed
in the subreport changes to match the company currently displayed. The data from the
rsubCompanyProducts report now makes sense within the context of a particular com-
pany. Access links the data from each subreport in this example using the Link Master
Fields and Link Child Fields properties of the subreport (which are set to the linking
CompanyID fi eld)—just as with the subforms you created in Chapter 13, “Advanced
Form Design.”

As you’ll see in the next section, when we examine some features of the rptInvoices
report, that report also uses subreports to link information from three related tables to
each row displayed from the tblInvoices table.

Chapter 14

744 Chapter 14 Using Reports
Figure 14-8 The rptCompanyProducts report has an embedded subreport to display each
 company’s purchase history.

Objects in Reports
As with forms, you can embed objects in reports. The objects embedded in or linked
to reports are usually pictures or charts. You can embed a picture or a chart as an
unbound object in the report itself, or you can link a picture or a chart as an object
bound to data in your database.

The rptInvoices report in the Conrad Systems Contacts database has an image object.
When you open the rptInvoices report in Print Preview, you can see the Conrad Sys-
tems logo (a stylized font graphic) embedded in the report title as an unbound bitmap
image object, as shown in Figure 14-9. This object is actually a part of the report design.

Figure 14-9 The rptInvoices report has an unbound bitmap image object (the Conrad Systems
logo) embedded in the report header.

 A Tour of Reports 745

Ch
ap

te
r 1

4

To see an example of how an object prints when it’s stored in a table, open rptContacts,
as shown in Figure 14-10. This picture is a bitmap image object stored in an attachment
fi eld in the tblContacts table—a picture of the contact.

Figure 14-10 The Photo fi eld in the rptContacts report is a bitmap image object stored in an
attachment fi eld.

Note
You might notice that the Notes fi eld in Figure 14-10 doesn’t show all the text. There’s

a special version of this report called rptContactsExpandNotes that fi xes this problem

with Visual Basic code. See Chapter 20, “Automating Your Application with Visual Basic,”

for details.

Report View—A First Look
As you learned in Chapter 3, “Microsoft Offi ce Access 2007 Overview,” Access 2007
includes a new view for reports called Report view. Unlike Print Preview, which pre-
sents static data, you can use Report view to interact with data in the report. You can
explore reports that take advantage of this new view in the Housing.accdb sample
database. A good place to start is the rptEmployeesPlain report. Open the database,

Note
You might notice that the Notes fi eld in Figure 14-10 doesn’t show all the text. There’s

a special version of this report called rptContactsExpandNotes that fi xes this problem

with Visual Basic code. See Chapter 20, “Automating Your Application with Visual Basic,”

for details.

Chapter 14

746 Chapter 14 Using Reports
and go to the Navigation Pane. Click the Navigation Pane menu, and click Object Type
under Navigate To Category, and then click Reports under Filter By Group to display a
list of reports available in the database. Scroll down the list of reports until you see the
 rptEmployeesPlain report, as shown in Figure 14-11. Right-click the report, and click
Open to see the report in Report view.

Figure 14-11 When you click Open on the shortcut menu for the rptEmployeesPlain report, Access
opens it in Report view.

You might be wondering why clicking the Open command for the rptEmployeesPlain

report opens it in Report view, but the same command opens the rptContactProducts

report (discussed earlier) in Print Preview. Access 2007 includes a new report property

called Default View. You can defi ne whether a report opens in Report view or Print

 Preview by using this property. The default setting when you create a new report is

Report view. For the rptEmployeesPlain report we left this property set to Report view, so

when you double-click on the report in the Navigation Pane or click the Open command

on the object shortcut menu, Access opens the report in Report view. We will discuss this

new property further in Chapter 16, “Advanced Report Design.”

SIDE OUT Understanding the Open Command for Reports

You might be wondering why clicking the Open command for the rptEmployeesPlain

report opens it in Report view, but the same command opens the rptContactProducts

report (discussed earlier) in Print Preview. Access 2007 includes a new report property

called Default View. You can defi ne whether a report opens in Report view or Print

Preview by using this property. The default setting when you create a new report is

Report view. For the rptEmployeesPlain report we left this property set to Report view, so

when you double-click on the report in the Navigation Pane or click the Open command

on the object shortcut menu, Access opens the report in Report view. We will discuss this

new property further in Chapter 16, “Advanced Report Design.”

 A Tour of Reports 747

Ch
ap

te
r 1

4

The rptEmployeesPlain report is based on the qryRptEmployees query, which brings
together information from the tblEmployees and tblDepartments tables. When the
report opens in Report view, you’ll see the data from these tables in the Housing Reser-
vations database formatted in the report, as shown in Figure 14-12.

Figure 14-12 The rptEmployeesPlain report is set to open in the new Report view.

If you look closely at Figure 14-12 you will no doubt notice that there is no Page Num-
ber box in the lower-left corner of the window. You can also see that the Print Preview
contextual Ribbon tab is not available. Access displays the four main Ribbon tabs in
Report view so that you can use fi lters to interact and drill down to specifi c records and
then print only this smaller group of records. If you were to print this report right now,
all 16 employee records would be sent to your printer. Suppose though that you want
to print only the records of employees who are in the Finance department. You could
create a separate report that would show only the employees in the Finance depart-
ment, but from within Report view you can ask Access to fi lter the records to display
only the employee records you need. With the rptEmployeesPlain open in Report view,
right-click in the Department fi eld for the fi rst record and click Equals “Finance” on the
shortcut menu, as shown in Figure 14-13.

Chapter 14

748 Chapter 14 Using Reports
Figure 14-13 In Report view you can fi lter the records to show just the ones you want to print.

After you click Equals “Finance,” Access fi lters all the records in the report record
source to obtain the three employees in the Finance department, as shown in Figure
14-14. If you print the report at this point, Access prints only a one-page report with the
three records.

By using Report view, you can create a single report that returns all records and then
use the fi ltering capabilities of Access to drill down to subsets of the data. To remove
the fi lter applied to this report, click the Toggle Filter button in the Sort & Filter group
on the Home tab, and Access again displays all 16 employee records. Report view gives
you as many of the fi ltering and sorting capabilities as you have in forms but in an
object that’s designed to be printed rather than edit data.

 A Tour of Reports 749

Ch
ap

te
r 1

4

Figure 14-14 After you apply the fi lter shown in Figure 4-13, Access shows only the three employ-
ees in the Finance department.

In the new Report view, you can also defi ne controls that respond to events, similar to
what you can do with forms. We defi ned a Click event for the employee number text
box and styled it as a hyperlink to provide a visual cue to the user. In Figure 4-15, you
can see that the Employee Number fi eld looks like a hyperlink with the data in blue and
underlined. Clicking the Employee Number fi eld opens the frmEmployeesPlain form
as a dialog box displaying all information for that specifi c employee so that you can
make any necessary changes. After closing the form and returning to the report, click
the Refresh All command in the Records group on the Home tab to see any changes you
made to the data using the form refl ected in the report.

P

Chapter 14

750 Chapter 14 Using Reports
Clicking the Employee Number in Report view . . .

. . . opens the frmEmployeesPlain form for that employee.

Figure 14-15 You can use Report view to respond to control events such as opening data
entry forms.

rinting Reports
So far in this chapter you have learned the basics of viewing a report in Print Preview
and in Report view. Here are a few more tips and details about setting up reports for
printing.

Print Setup
Before you print a report, you might fi rst want to check its appearance and then change
the printer setup. Open the ContactsDataCopy database, right-click the rptContacts
report (which you looked at earlier) in the Navigation Pane, and click Print Preview on
the shortcut menu to see the report. After Access shows you the report, click the arrow
under the Zoom button in the Zoom group on the Print Preview contextual tab, and
then size the window to see the full-page view by clicking Fit To Window. Click the Two
Pages button in the same group to see two pages side by side, as shown in Figure 14-16.

 Printing Reports 751

Ch
ap

te
r 1

4

Figure 14-16 Click the Two Pages button on the Ribbon to display a two-page view of the
rptContacts report in Print Preview.

This report is narrow enough to print two contacts side by side in landscape orientation
on 14-inch-long paper. To print it that way, you need to modify some parameters in the
Page Setup dialog box.

Open the Page Setup dialog box by clicking the Page Setup button in the Page Layout
group. Access displays a dialog box similar to the one shown in Figure 14-17.

To print the rptContacts report with two logical pages per physical page, you fi rst need
to adjust the margins. You haven’t changed the page orientation yet, so the settings that
are currently the top and bottom will become the left and right margins, respectively,
after you rotate the page. (And left and right margins become top and bottom, respec-
tively.) The pages need to print very close to the edges of the paper, so set the top mar-
gin (this becomes the left margin in landscape orientation) to 0.25 inch, set the bottom
margin to about 0.5 inch, and set the left and right margins to 0.5 inch. Effectively, the
left margin will be the smallest after you change the orientation. Click the Page tab to
display the next set of available properties, as shown in Figure 14-18.

Chapter 14

752 Chapter 14 Using Reports
Figure 14-17 You can adjust the margins in the Page Setup dialog box.

Figure 14-18 You can set page orientation options on the Page tab of the Page Setup dialog box.

On the Page tab, you can select the orientation of the printed page—Portrait to print ver-
tically down the length of the page, or Landscape to print horizontally across the width
of the page. Because we’re trying to print two pages across a single sheet of paper, select
the Landscape option. The report is also about 61/2 inches wide, so you’ll need wider
paper to fi t two logical pages to a printed page. Select Legal (81/2-by-14-inch) paper from
the Size list under Paper.

In general, it’s best to leave the printer set to the default printer that you specifi ed in
your Windows settings. If you move your application to a computer that’s attached to a
different type of printer, you won’t have to change the settings. You can print any report
you design in Access on any printer supported by Windows with good results.

 Printing Reports 753

Ch
ap

te
r 1

4

However, if you’ve designed your report to print on a specifi c printer, you can save
those settings by using the Page Setup dialog box. To do this, select the Use Specifi c
Printer option on the Page tab and then click the Printer button to open a dialog box in
which you can select any printer installed on your system. (The Printer button is avail-
able only if you have more than one printer installed on your computer.) Click the Prop-
erties button to adjust settings for that printer in its Properties dialog box, shown in
Figure 14-19. The Properties dialog box you see might look different, depending on the
capabilities of the printer you selected and how Windows supports that printer.

Figure 14-19 You can defi ne properties for a specifi c printer to be used with your report.

After you fi nish selecting options on the Page tab, click the Columns tab, as shown in
Figure 14-20, to set up a multiple-column report. In this case, you want to print two
“columns” of information. After you set the Number Of Columns property to a value
greater than 1 (in this case, 2), you can set spacing between rows and spacing between
columns. By default, Access selects the Same As Detail check box and displays the
design Width and Height measurements of your report. You can also clear the Same As
Detail check box and set a custom width and height that are larger or smaller than the
underlying report design size. Note that if you specify a smaller size, Access crops the
report. When you have detail data that fi ts in more than one column or row, you can
also tell Access whether you want the detail printed down and then across the page or
vice versa.

Chapter 14

754 Chapter 14 Using Reports
Figure 14-20 You can set report column properties on the Columns tab of the Page Setup
dialog box.

Note
If you created the report or have permission to modify the design of the report, you can

change the page layout settings and save them with the report. The next time you print

or view the report, Access will use the last page layout settings you specifi ed.

After you enter the appropriate settings in the Page Setup dialog box, click OK, and
your report in Print Preview should look like the one shown in Figure 14-21. You can
fi nd this modifi ed version of the Contacts report saved in the sample database as
 rptXmplContacts2Page.

The most common use for setting multiple columns is to print mailing labels. You can
fi nd four example reports in the sample database that do this: rptCompanyLabels5160
and rptContactLabels5160 that print company and contact labels two across in Avery
5160 format; and rptCompanyLabels5163 and rptContactLabels5163 that print com-
pany and contact labels three across in Avery 5163 format.

Note
If you created the report or have permission to modify the design of the report, you can

change the page layout settings and save them with the report. The next time you print

or view the report, Access will use the last page layout settings you specifi ed.

 Printing Reports 755

Ch
ap

te
r 1

4

Figure 14-21 Print Preview now displays the rptContacts report in landscape orientation and in
two columns.

That covers the fundamentals of reports and how to view them and set them up for
printing. The next two chapters will show you how to design and build reports for your
application.

CHAPTER 15

Constructing a Report
Constructing a report is very similar to building a form. In this chapter, you’ll apply
many of the techniques that you used in working with forms, and you’ll learn about

some of the unique features of reports. After a quick tour of the report design facilities,
you’ll build a simple report for the Conrad Systems Contacts database, and then you’ll
use the Report Wizard to create the same report. You’ll see how to use the new Layout
view to modify existing reports and create new ones. Finally, you’ll see how to use the
quick create Report command to create a report with one mouse click.

Note
The examples in this chapter are based on the reports, tables, and data in ContactsData-

Copy.accdb on the companion CD included with this book. You can fi nd similar reports

in the Conrad Systems Contacts sample application, but all the reports in that sample

fi le have custom Ribbons defi ned, so you won’t see the four main Ribbon tabs when

you open those reports. The results you see from the samples in this chapter might not

exactly match what you see in this book if you have changed the sample data in the fi les.

Also, all the screen images in this chapter were taken on a Microsoft Windows Vista sys-

tem with the display theme set to Blue. Your results might look different if you are using

a different operating system or a different theme.

Starting from Scratch—A Simple Report
In a contact tracking application, the user is going to want to take a look at recent
events and perhaps work through a list of events that require follow-ups. Although the
user could search for events in a form, the application should also provide a report that
lists events by contact and shows the phone numbers the user needs. This report can be
fi ltered by the application to print out only recent and upcoming events.

Most reports gather information from several tables, so you’ll usually design a query
that brings together data from related tables as the basis for the report. In this sec-
tion, you’ll build a relatively simple report to list contact events as you tour the report
design facilities. The report you’ll build uses the tblContacts, tblContactEvents, and

Note
The examples in this chapter are based on the reports, tables, and data in ContactsData-

Copy.accdb on the companion CD included with this book. You can fi nd similar reports

in the Conrad Systems Contacts sample application, but all the reports in that sample

fi le have custom Ribbons defi ned, so you won’t see the four main Ribbon tabs when

you open those reports. The results you see from the samples in this chapter might not

exactly match what you see in this book if you have changed the sample data in the fi les.

Also, all the screen images in this chapter were taken on a Microsoft Windows Vista sys-

tem with the display theme set to Blue. Your results might look different if you are using

a different operating system or a different theme.

Starting from Scratch—A Simple Report 757

Using the Report Command. 775

Using the Report Wizard . 777

Building a Report in Layout View 790
 757

Chapter 15

758 Chapter 15 Constructing a Report
 tlkpContactEventTypes tables in the ContactsDataCopy.accdb sample database.
The report groups contact event data by contact, prints a single line for each contact
event, and calculates the number of contact events and the number of follow-ups for
each contact.

Building the Report Query
To construct the underlying query for the report, you need to start with the tblCon-
tactEvents table. Click the Query Design button in the Other group on the Create tab.
In the Show Table dialog box, select the tblContactEvents table, click the Add button to
add it to the query design grid, and then add the tblContacts and the tlkpContactEvent-
Types tables as well. Click the Close button in the Show Table dialog box to dismiss it.
You should see join lines between tblContacts and tblContactEvents on ContactID, and
between tlkpContactEventTypes and tblContactEvents on ContactEventTypeID.

From the tblContacts table, add ContactID to the query design grid. The report needs
to show the contact name, but it would be better to show the information concatenated
in one fi eld rather than separate title, fi rst name, middle name, last name, and suffi x
fi elds. In the next column, enter this expression on the Field line:

Contact: ([tblContacts].[Title]+" ") & [tblContacts].[FirstName]
& " " & ([tblContacts].[MiddleInit]+". ") & [tblContacts].[LastName]
& (", "+[tblContacts].[Suffi x])

Notice that the expression uses the plus sign concatenation operator to eliminate extra
blanks when one of the fi elds contains a Null value—a technique you learned about in
Chapter 7, “Creating and Working with Simple Queries.”

The query also needs to include the contact’s phone number, but the tblContacts table
includes both a work and a home phone number. You can create an expression to exam-
ine the DefaultAddress fi eld to decide which one to display. Microsoft Offi ce Access
2007 provides a handy function, Choose, which accepts an integer value in its fi rst
argument and then uses that value to choose one of the other arguments. For example,
if the fi rst argument is 1, the function returns the second argument; if the fi rst argu-
ment is 2, the function returns the third argument, and so on. The DefaultAddress fi eld
contains a 1 to indicate work address and a 2 to indicate home address. In the third
fi eld cell on the query design grid, enter the following:

Phone: Choose([tblContacts].[DefaultAddress], [tblContacts].[WorkPhone],
[tblContacts].[HomePhone])

To complete your query, include the ContactDateTime fi eld from the tblContactEvents
table and the ContactEventTypeDescription fi eld from the tlkpContactEventTypes
table. (ContactEventTypeID in tblContactEvents is a meaningless number.) Then
include the ContactNotes, ContactFollowUp, and ContactFollowUpDate fi elds from the
tblContactEvents table. Figure 15-1 shows the query you need for this fi rst report. Click
the Save button on the Quick Access Toolbar to save your new query. (You can fi nd this
query saved as qryRptContactEvents in the sample database.)

 Starting from Scratch—A Simple Report 759

Ch
ap

te
r 1

5

Figure 15-1 This query selects contact and contact event data for your report.

Note that although you’re designing a report that will summarize the data, you are not
building a totals query. If you used a totals query as the record source for the report,
you would see only the summary in the report. One of the beauties of reports is that
you can see the detail information and also ask the report to produce summaries. Also,
you don’t need to specify any sorting criteria here—you’ll do that later in the report’s
Group, Sort, And Total pane.

Designing the Report
Now you’re ready to start designing the report. Click the Report Design button in the
Reports group on the Create tab to tell Offi ce Access 2007 you want to begin creating a
report in Design view, as shown in Figure 15-2.

The fi eld list, the property sheet, and the Font and Controls groups on the Design contextual
tab under Report Design Tools are similar to the features you used in building forms. See
Chapter 11, “Building a Form,” for detailed descriptions of their uses.

Access 2007 opens a new Report window in Design view, as shown in Figure 15-3. You
can see the Report Design Tools collection of Ribbon tabs at the top of the Access win-
dow. The Report window is in the middle of the screen, and the property sheet is open
to assist you in building your report. (If necessary, you can click the Property Sheet but-
ton in the Tools group on the Design tab to open this window.) To begin constructing
your report you need to tell Access to use the qryRptContactEvents query as its record
source. In the property sheet, select qryRptContactEvents (or the name of the query you
just created) in the Record Source property, as shown in Figure 15-3.

Chapter 15

760 Chapter 15 Constructing a Report
Figure 15-2 Click the Report Design button to start creating your report.

The blank report has Page Header and Page Footer sections and a Detail section
between them, which is 5.25 inches (13.333 cm) high and 6.1694 inches (15.668 cm)
wide. The rulers along the top and left edges of the Report window help you plan space
on the printed page. If you want standard 1-inch side margins, the body of the report
can be up to 6.5 inches wide on an 8.5-by-11-inch page. The available vertical space
depends on how you design your headers and footers and how you defi ne the top and
bottom margins. As with forms, you can drag the edge of any report section to make
the section larger or smaller. Note that the width of all sections is the same, so if you
change the width of one section, Access 2007 changes the width of all other sections
to match.

Within each section you see a grid that has 24 dots per inch horizontally and 24 dots
per inch vertically, with a solid gray line displayed at 1-inch intervals. If you’re working
in centimeters, Access 2007 divides the grid into 5 dots per centimeter both vertically
and horizontally. You can change these settings using the Grid X and Grid Y properties
in the report’s property sheet. (If the dots are not visible in your Report window, click
the Grid command in the Show/Hide group on the Arrange contextual tab; if the Grid
command is already selected and you still can’t see the dots, try resetting the Grid X
and Grid Y properties to lower numbers in the property sheet.)

 Starting from Scratch—A Simple Report 761

Ch
ap

te
r 1

5

 Grouping & Totals group Report contextual tabs Property sheet
Font group Controls group

Figure 15-3 When you open a new Report window in Design view, Access displays all the tools you
need to create the report.

The page header and page footer will print in your report at the top and bottom of each
page. You can click the Page Header/Footer button in the Show/Hide group on the
Arrange tab to add or remove the page header and page footer. You can also add a report
header that prints once at the beginning of the report and a report footer that prints
once at the end of the report. To add these sections to a report, click the Report Header/
Footer button in the same Show/Hide group. You’ll learn how to add group headers and
group footers in the next section.

Grouping, Sorting, and Totaling Information
A key way in which reports differ from forms is that on reports you can group informa-
tion for display using the Group, Sort, And Total pane. Click the Group & Sort button
in the Grouping & Totals group on the Design tab (shown in Figure 15-3) to open the
Group, Sort, And Total pane beneath the report design grid, as shown in Figure 15-4.
(We collapsed the Navigation Pane in Figure 15-4.) In this pane you can defi ne up to
10 fi elds or expressions that you will use to form groups in the report. The fi rst item in
the list determines the main group, and subsequent items defi ne groups within groups.

Chapter 15

762 Chapter 15 Constructing a Report
(You saw the nesting of groups in the previous chapter in the rptProductSalesByProd-
uct report; each product category had a main group, and within that main group was a
subgroup for each product.) Because we have not yet defi ned any grouping or sorting
in this report, the Group, Sort, And Total pane opens to a blank pane that allows you to
click either Add A Group or Add A Sort.

 Group, Sort, And Total pane

Figure 15-4 You can create groups and specify their sort order in the Group, Sort, And Total pane.

In the simple report you’re creating for contact events, you need to group data by con-
tact ID so that you can total the number of contact events as well as contact events that
require follow-up for each contact. Click the Add A Group button in the Group, Sort,
And Total pane. Access 2007 creates a new grouping specifi cation and opens a list that
contains all fi elds in the report’s record source next to the Group On option, as shown
in Figure 15-5. (We collapsed the Navigation Pane and closed the property sheet in Fig-
ure 15-5 so that you can see more of the Group, Sort, And Total pane.)

If you click away from the fi eld list before selecting a fi eld to defi ne the group, Access
2007 closes the fi eld list. Click the arrow on the Select Field box (or press Alt+Down
Arrow while the focus is on the Select Field box) to open the list of fi elds from the
underlying query or table. Select the ContactID fi eld to place it in the Select Field box.
You can also use the Select Field box to enter an expression based on any fi eld in the

 Starting from Scratch—A Simple Report 763

Ch
ap

te
r 1

5

underlying table or query. Open the fi eld list again and click the Expression option
below the list of fi elds, and Access opens the Expression Builder to help you create
the expression. You let Access know you’re entering an expression by fi rst typing an
equal sign (=) followed by your expression. We discussed the Expression Builder in
Chapter 7.

Select Field box

Figure 15-5 After you click Add A Group in the Group, Sort, And Total Pane, Access creates a new
grouping specifi cation and opens a fi eld list to let you select the fi eld that defi nes the group.

Note
When you defi ne a grouping specifi cation in a report, the report engine actually builds

a totals query behind the scenes to perform the grouping. As you learned in Chapter 8,

“Building Complex Queries,” you cannot use Group By in a totals query on memo, OLE

object, hyperlink, or attachment fi elds. For this reason, you cannot use Memo, OLE

Object, Hyperlink, or Attachment data types in the Group, Sort, And Total pane.

Note
When you defi ne a grouping specifi cation in a report, the report engine actually builds

a totals query behind the scenes to perform the grouping. As you learned in Chapter 8,

“Building Complex Queries,” you cannot use Group By in a totals query on memo, OLE

object, hyperlink, or attachment fi elds. For this reason, you cannot use Memo, OLE

Object, Hyperlink, or Attachment data types in the Group, Sort, And Total pane.

Chapter 15

764 Chapter 15 Constructing a Report
After you select ContactID in the Select Field box, Access 2007 adds a new ContactID
group header to the report grid beneath the Page Header group level, as shown in Fig-
ure 15-6. By default, Access sets the height of this new group level to 1/4 inch. Access also
displays the Add A Group and Add A Sort buttons beneath the fi rst grouping specifi ca-
tion so you can create additional grouping or sorting levels. To the right of Group On
ContactID in the Group, Sort, And Total pane, Access now adds two new options—From
Smallest To Largest and More.

 More
 Group Interval
 Add A Sort
Add A Group

 Move Priority Up
 Move Priority Down

 Delete Grouping And Sorting Level

ContactID group level

Figure 15-6 After you add a group in the Group, Sort, And Total pane, Access creates a new group
level on the grid.

By default, Access 2007 sorts each fi eld or expression in ascending order. You can
change the sort order by selecting From Largest To Smallest from the list that appears
when you click the arrow to the right of the second option (From Smallest To Larg-
est in this example). In this case, you want to include the ContactID fi eld so that you
can form a group for each contact. Leave the sort order on From Smallest To Largest

 Starting from Scratch—A Simple Report 765

Ch
ap

te
r 1

5

so that the report will sort the rows in ascending numerical order by the ContactID
fi eld. If you wanted to see the contacts in alphabetical order by last name, you would
need to include the LastName fi eld in your query (even if you didn’t display it on the
report), and group and sort on the LastName fi eld. You could use the Contact expres-
sion that you included in the query, but then the report would sort the rows by title and
fi rst name.

Note
Access 2007 changes the choices in the second option in the grouping specifi cation

depending on the data type of the fi eld or expression you specifi ed in Group On. When

the data type is Text, you’ll see With A On Top and With Z On Top options. When the

data type is Date/Time, you’ll see From Oldest To Newest and From Newest To Old-

est. If the data type is Yes/No, you’ll see From Selected To Cleared and From Cleared To

Selected. As you saw in our example, Access uses From Smallest To Largest and From

Largest To Smallest for fi elds with a Numeric data type.

Click the More option in the ContactID grouping specifi cation to see all the group-
ing and sorting options, as shown in Figure 15-7. Access now displays a total of eight
grouping and sorting options. If you look at Figure 15-7, you can see that Access creates
a sentence structure to help you understand how this grouping level will take shape. If
you want to collapse the list of options, click Less at the end of the list.

 Header section
 Title
Less—collapse the option list

 Group interval
 Totals
 Keep together
 Sort order
 Footer section

Figure 15-7 Click More to expand the list of grouping and sorting options.

The third option in the grouping specifi cation (By Entire Value in our example) is called
the group interval, which tells Access how to group the records. Click the arrow to the
right of this option for a grouping based on the ContactID fi eld, as shown in Figure
15-8. For AutoNumber, Number, and Currency data types, Access displays the follow-
ing grouping options—By Entire Value, By 5s, By 10s, By 100s, By 1000s, and Custom,
which lets you set your own interval. For Text data types, you can set the group interval
to By Entire Value, By First Character, By First Two Characters, or Custom, which lets
you set your own interval. For Date/Time data types, you can set the group interval to
By Entire Value, By Day, By Week, By Month, By Quarter, By Year, or Custom, which

Note
Access 2007 changes the choices in the second option in the grouping specifi cation

depending on the data type of the fi eld or expression you specifi ed in Group On. When

the data type is Text, you’ll see With A On Top and With Z On Top options. When the

data type is Date/Time, you’ll see From Oldest To Newest and From Newest To Old-

est. If the data type is Yes/No, you’ll see From Selected To Cleared and From Cleared To

Selected. As you saw in our example, Access uses From Smallest To Largest and From

Largest To Smallest for fi elds with a Numeric data type.

Chapter 15

766 Chapter 15 Constructing a Report
lets you set your own interval. Leave the group interval set to By Entire Value for the
 ContactID group level.

Figure 15-8 The group interval displays different options based on the fi eld’s data type.

You use the fourth option in the grouping specifi cation (which currently displays
With No Totals in our example) to confi gure Access to list totals for a single fi eld or for
multiple fi elds. Click the arrow to the right of this option for a grouping based on the
ContactID fi eld, as shown in Figure 15-9. Select the fi eld on which you want Access to
calculate and display totals from the Total On list. In the Type box you can choose from
several types of calculations based on the data type of the fi eld you chose in the Total
On box. Beneath the Type box are four check boxes for additional totaling options.
Select the Show Grand Total check box to add a grand total for this fi eld in the report’s
footer section. Select the Show Group Totals As % Of Grand Total check box if you want
Access to calculate the percentage of the grand total for each group and place that per-
centage in the group header or footer. Select the Show In Group Header check box to
place the total and optional percentage in the group’s header section and the Show In
Group Footer check box to place the total and optional percentage in the group’s footer
section. Leave the option for the Totals list set at With No Totals for the ContactID
group level.

Figure 15-9 You can ask Access to calculate and display totals in the Totals list.

You use the fi fth option in the grouping specifi cation to defi ne a title. You can choose to
create a title that appears in a label control in the header section of the group. To create
a title, click the blue Click To Add text. Access opens the Zoom dialog box, as shown
in Figure 15-10, where you can enter a title. You can click Font to defi ne the font, font
style, size, and color of the title letters. After you enter a title, click OK, and Access cre-
ates a new label control in the group header section on the report grid. For the grouping
based on the ContactID fi eld, click Cancel to not enter a title at this time.

 Starting from Scratch—A Simple Report 767

Ch
ap

te
r 1

5

Figure 15-10 Access displays the Zoom dialog box when you want to add a title to a group header.

You use the sixth option in the grouping specifi cation to display a header section for
the specifi c group. Click the arrow to the right of this option and you can select either
With A Header Section (the default selection) or Without A Header Section, as shown in
Figure 15-11. When you select the option to include a header, Access creates the header
section for the group for you. Conversely, Access removes the group header, and all
controls in it, if you select the second option. If you have defi ned controls in the header
section when you choose Without A Header, Access displays a confi rmation dialog box
explaining that you’re deleting both the header and all its controls, and asks you to
confi rm the deletion. For the ContactID fi eld in our example, leave the option set to the
default—With A Header Section.

Figure 15-11 You can choose to have Access create a group header for you.

Similar to the header section option, you can use the seventh option to display a footer
section for the grouping specifi cation. Click the arrow to the right of this option and
select either With A Footer Section or Without A Footer Section (the default selection),
as shown in Figure 15-12. When you select the option to include a footer, Access creates
the footer section for you. Conversely, Access removes the group footer, and all controls
in it, if you select the second option. If you have defi ned controls in the footer section
when you choose Without A Footer, Access displays a confi rmation dialog box explain-
ing that you’re deleting both the footer and all its controls, and asks you to confi rm the
deletion. For the ContactID fi eld you will need a place to put two calculated total fi elds

Chapter 15

768 Chapter 15 Constructing a Report
(the count of contact events and the count of follow-ups). Click the arrow to the right of
this option and select With A Footer Section.

Figure 15-12 Select the With A Footer Section option to include a footer section for the ContactID
group on the report.

You use the last option in the grouping specifi cation, as shown in Figure 15-13, to con-
trol how Access will lay out the report when you print it. Click the arrow to the right
of this option, and you have three choices—Do Not Keep Group Together On One Page
(the default), Keep Whole Group Together On One Page, and Keep Header And First
Record Together On One Page.

The Do Not Keep Group Together On One Page option allows a section to fl ow across
page boundaries. The Keep Whole Group Together On One Page option attempts to
keep all lines within a section together on a page. If an entire group won’t fi t on the cur-
rent page (and the current page isn’t blank), Access moves to the top of the next page
before starting to print the group, but the group still might overfl ow the end of the
new page.

If you select Keep Header And First Record Together On One Page, Access does not
print the header for the group at the bottom of the page if it cannot also print at least
one detail record. For the Contact ID fi eld, leave the option set to the default—Do Not
Keep Group Together On One Page. You’ll learn more about how to use the group on,
group interval, and keep together settings in the next chapter.

Figure 15-13 You can choose from among several options to control how the report will look
when printed.

It would also be nice to see the contact events in descending date order for each contact
(most recent or newest events fi rst). To add the ContactDateTime fi eld below ContactID,
click the Add A Sort button and Access creates a new sort specifi cation. Select Contact-
DateTime in the Select Field box and change the sort order to From Newest To Oldest.
Click More to display the rest of the options available to you for the sort specifi cation.
Leave the group interval set to By Entire Value, and leave the Totals option set to the
default With No Totals. Do not add a title for this fi eld and make sure to not include a
group header or group footer. (If you add a header or footer, Access changes your speci-
fi cation from a sorting specifi cation to a grouping specifi cation.) Finally, keep the last
option set to Do Not Keep Group Together On One Page. Your completed sorting speci-
fi cation for the ContactDateTime fi eld should look like Figure 15-14.

 Starting from Scratch—A Simple Report 769

Ch
ap

te
r 1

5

Figure 15-14 Access will now sort the contact event records for your report in descending order.

You can change the priority of two or more grouping or sorting specifi cations by using
the arrows on the right side of the Group, Sort, And Total pane. If you need to move a
group up one level, select that group and then click the up arrow one time. Similarly,
if you need to move a group down one level, select that group and then click the down
arrow one time. Access repositions any group headers and footers for you during this
process. To delete a group level, select it and then click Delete (the X) to the right of the
up and down arrows. Close the Group, Sort, And Total pane now by clicking the Close
button on its title bar or by clicking the Group & Sort button in the Grouping & Totals
group on the Design tab.

You can specify sorting criteria in the query for a report, but after you set any criteria in

the Group, Sort, And Total pane, the report overrides any sorting in the query. The best

way to ensure that your report data sorts in the order you want is to always specify sort-

ing criteria in the Group, Sort, And Total pane and not in the underlying query.

Completing the Report
Now you’re ready to fi nish building a report based on the tblContactEvents table. Take
the following steps to construct a report similar to the one shown in Figure 15-15. (You
can fi nd this report saved as rptXmplContactEvents1 in the sample database.)

 1. Click the Title button in the Controls group on the Design tab to place a new
label control in the Report Header section. By default, Access enters the name of
the report, in this case Report1, in the label. Click inside this label and highlight
or delete the existing characters, type Contact Events, and press Enter to change
the label’s caption. With the label control still selected, use the commands in the
Font group on the Ribbon to change the font to Arial and the font color to Black.
Next, click the Bold and Underline buttons in the Font group, and then click the
Size To Fit command in the Size group on the Arrange tab to size the control to
accommodate the new font adjustments. Access placed this title in a new section
it created—the Report Header. Any control placed in the Report Header section
gets printed only on the fi rst page of the report. We want to see this label on every
page, so select the label control and drag it down and drop it into the Page Header
section. Now remove the Report Header section by clicking the Report Header/
Footer button in the Show/Hide group on the Arrange tab.

SIDE OUT Understanding Who Controls the Sorting

You can specify sorting criteria in the query for a report, but after you set any criteria in

the Group, Sort, And Total pane, the report overrides any sorting in the query. The best

way to ensure that your report data sorts in the order you want is to always specify sort-

ing criteria in the Group, Sort, And Total pane and not in the underlying query.

Chapter 15

770 Chapter 15 Constructing a Report

Figure 15-15 This is the completed Contact Events report that you will create in Design view.

2. Click the Add Existing Fields button in the Tools group on the Design tab to show
the fi eld list. If you see Fields Available In Related Tables and Fields Available
In Other Tables, click Show Only Fields In The Current Record Source at the
bottom of the fi eld list to reduce the number of fi elds and tables you see. Drag the
Contact fi eld from the fi eld list and drop it into the ContactID Header section.
Use Arial 10-point bold for the label control and the text box control. Select the
text box control and make it about 2 inches wide so that there’s room to display
all the characters in the contact name. Also drag and drop the Phone fi eld into
the header, and set the resulting text box control and the label control to Arial
10-point bold. Size all these controls to fi t and line them up near the top of the
section.

3. You’ll need some column labels in the ContactID Header section. The easiest way
to create them is to set up the text box control so that it has an attached label with
no colon, set the defaults for the label control to the font you want, drag and drop
the fi elds you need into the Detail section, and then cut the label controls from
their respective text box controls and paste them into the header.

First, widen the design area of the report to about 6.5 inches and increase the
height of the ContactID Header section to about 0.5 inch to give yourself some
room to work. Next, to set the default properties for the text box and label con-
trols, make sure the property sheet is open (click the Property Sheet button in the
Tools group on the Design tab). Click the Text Box button in the Controls group
on the Design tab. Select the All tab in the property sheet, scroll down, and check
that the Auto Label property is set to Yes and that the Add Colon property is set
to No. Also, set the Font Name property to Arial and the Font Size property to 8.
Click the Label button in the Controls group, and set its font to Arial 8-point bold
and underlined. (You set the font to bold by modifying the Font Weight property.)

 Starting from Scratch—A Simple Report 771

Ch
ap

te
r 1

5

Click the Add Existing Fields button in the Tools group to hide the property
sheet and open the fi eld list. Now drag the ContactDateTime, ContactEventType-
Description, ContactNotes, ContactFollowUp, and ContactFollowUpDate fi elds
from the fi eld list and drop them into the Detail section one at a time.

Select the label for ContactDateTime, and then choose the Cut command in the
Clipboard group on the Home tab (or press Ctrl+X) to separate the label from the
control and move it to the Clipboard. Click the ContactID Header bar, and then
click the Paste command in the Clipboard group (or press Ctrl+V) to paste the
label in the upper-left corner of the ContactID Header section. Notice that you can
now move the label independently in the ContactID Header section. (If you move
the label before you separate it from its control, the control moves with it.) Sepa-
rate the labels from the ContactEventTypeDescription, ContactNotes, ContactFol-
lowUp, and ContactFollowUpDate controls one at a time, and move them to the
ContactID Header section of the report.

Note
As you paste each label, you’ll see warning smart tags appear that notify you that the

labels aren’t associated with any control. This is useful to know when you create labels in

the Detail section. But in this case, this is what you want, so click the smart tag and select

the Ignore Error option to turn off the warning for each label.

4. Line up the column labels in the ContactID Header section, placing the Date /
Time label near the left margin, the Contact Type label about 1.1 inches from the
left margin, the Notes label about 2.75 inches from the left margin, the Follow
Up? label about 4.5 inches from the left margin, and the Follow-Up Date label
about 5.4 inches from the left margin. You can set these distances in the Left
property of each label’s property sheet. Line up the tops of the labels by dragging
a selection box around all fi ve labels using the Select button in the Controls group
on the Design tab and then clicking the Top command in the Control Alignment
group on the Arrange tab.

5. You can enhance the appearance of the report by placing a line control across the
bottom of the ContactID Header section. Click the Line button in the Controls
group, and place a line in the ContactID Header section. To position this control
at the bottom of the section, you need to fi nd out the section’s height. Click the
ContactID Header bar to select the section, open the property sheet, and fi nd the
Height property. Next, select the line control, and set the following properties:
Left 0, Width 6.5, and Height 0. Set the Top property equal to the Height of the
section. (It’s diffi cult to see this line in Figure 15-15, because it is hidden against
the bottom of the section. You’ll see it when you switch to Print Preview.)

Note
As you paste each label, you’ll see warning smart tags appear that notify you that the

labels aren’t associated with any control. This is useful to know when you create labels in

the Detail section. But in this case, this is what you want, so click the smart tag and select

the Ignore Error option to turn off the warning for each label.

Chapter 15

772 Chapter 15 Constructing a Report
6. You can make the text box control for ContactDateTime smaller (about 0.9
inch), and you need to make the ContactEventTypeDescription text box control
about 1.6 inches wide. Set the Text Align property for the ContactDateTime and
ContactFollowUpDate text box controls to Left. Access sized the text box for the
ContactNotes fi eld too wide because ContactNotes is a Memo data type. Select
the ContactNotes and ContactEventTypeDescription text box controls together,
and click the To Narrowest button in the Size group on the Arrange tab to make
the ContactNotes text box the same width as the ContactEventTypeDescription
text box.

7. Align the text box controls for ContactDateTime, ContactEventTypeDescription,
ContactNotes, ContactFollowUp, and ContactFollowUpDate under their
respective labels. You can align each one by placing each text box control to the
right of the left edge of its label, selecting them both (hold down the Shift key
while selecting each one), and then left aligning them by clicking the Left button
in the Control Alignment group on the Arrange tab. Align the ContactFollowUp
check box control visually under the center of its label. Select all the controls
in the Detail section and top align them by clicking the Top button in the same
group.

8. The height of the Detail section determines the spacing between lines in the
report. You don’t need much space between report lines, so make the Detail
section smaller, until it’s only slightly higher than the row of controls for
displaying your data. (About 0.3 inch should suffi ce.)

9. Expand the height of the ContactID Footer section and then add a text box in this
section under the ContactFollowUpDate text box control and delete its attached
label. To calculate the number of events, click the text box control, and in the
Control Source property in the property sheet, enter

=Count([ContactID])

It’s a good idea to repeat the grouping information in the footer in case the detail
lines span a page boundary. One way to do that is to add an expression in a text
box. Add a second text box to the left of the fi rst one (also delete its label) and
stretch it to about 3.5 inches wide. Click the leftmost text box control to select it,
and in the Control Source property in the property sheet, type

="Total contact events for " & [Contact] & ":"

Change the text box alignment to Right and change its font to Bold.

10. Add a second text box control in the ContactID Footer section under the fi rst one.
In the Control Source property in the property sheet, enter

= –Sum([ContactFollowUp])

Keep in mind that a True value in a yes/no fi eld is the value –1. So, summing the
values and then displaying the negative should give you a count of the contact

 Starting from Scratch—A Simple Report 773

Ch
ap

te
r 1

5

events that require a follow-up. Click the attached label control and change the
Caption property in the property sheet to

Number of events that require a follow-up:

Change Font Underline to No, right align the label, and size it to fi t.

11. Add a line to the bottom of the ContactID Footer section to separate the end of
the information about one contact from the next one. You can click the heading
bar of the ContactID Footer to select the section and then look in the property
sheet to fi nd out the section’s height, which should be about 0.5 inch. Select the
line again, and in the property sheet set Left to 0, Top to the height of the section,
Width to 6.5, Height to 0, and Border Width (the thickness of the line) to 2 pt.

12. Click the Insert Page Number button in the Controls group on the Design tab to
open the Page Numbers dialog box shown here.

You want to display the current page number and the total number of pages on
each page, so select the Page N Of M option under Format. The Page N option dis-
plays only the current page number. Next, to display these page numbers at the
bottom of the report, select Bottom Of Page [Footer] under Position. The Top Of
Page [Header] option places the control in the Page Header section of the report.
In the Alignment list, select Right to display the page numbers on the right side
of the page. The Left alignment option places the control that displays the page
numbers on the left side of the report design grid, and the Center alignment
option places the control in the center. The Inside alignment option places one
control on the left side and one control on the right side of the report design grid.
Access sets the Control Source property of these controls so that page numbers
appear in the inside margin of pages in a bound book—odd page numbers appear
on the left and even page numbers appear on the right. The Outside alignment
option works just the opposite of Inside—even page numbers appear on the left
and odd page numbers appear on the right.

Select the Show Number On First Page check box at the bottom of the dialog box
to display the page numbers on all pages, including the fi rst page. If you clear this
check box, Access creates a control that will not show the page number on the

Chapter 15

774 Chapter 15 Constructing a Report
fi rst page. Click OK in the Page Numbers dialog box, and Access creates a new
control in the Page Footer section.

13. Click the new text box control that you just created in the page footer, and look at
the Control Source property in the property sheet. Access created the expression
="Page " & [Page] & " of " & [Pages] in the Control Source property of the text
box. [Page] is a report property that displays the current page number. [Pages] is
a report property that displays the total number of pages in the report. Finally,
change the Text Align property to Right for this new control.

After you fi nish, click the arrow below the View button in the Views group on the Rib-
bon and click Print Preview to see the result, shown in Figure 15-16. Notice in this
fi gure that the detail lines are sorted in descending order by contact date/time. You’ll
recall from Figure 15-14 that the grouping and sorting specifi cations include a request
to sort within group on ContactDateTime.

Figure 15-16 This is how your completed Contact Events report looks in Print Preview.

Now that you’ve seen how to create a report from scratch, you should have a good
understanding of how to work with the individual design elements. In the remaining
sections, we’ll show you how to get a jump-start on your report design using the quick
create Report command, the Report Wizard, and the new Layout view. You’ll probably
fi nd that using one of these features is a good way to get a report started, and then you
can use what you’ve learned thus far to fully customize your reports.

 Using the Report Command 775

Ch
ap

te
r 1

5

Using the Report Command
Access 2007 includes a new quick create Report command that makes it easy for you to
quickly create quality reports. Similar to the quick create form commands, the Report
command is a one-step process—you’re not presented with any options or dialog boxes;
Access simply creates a generic report with one click. You can use either a table or query
as the base for the report. We’ll create two quick reports to illustrate this process using
the ContactsDataCopy.accdb sample database.

Open ContactsDataCopy.accdb, click the Navigation Pane menu, click Object Type
under Navigate To Category, and then click Queries under Filter By Group to display a
list of queries available in this database. The qryContacts query includes all the fi elds
from the tblContacts table and sorts them by last name and then fi rst name. Let’s create
a nice report of your contacts using this query. Scroll down to this query in the Naviga-
tion Pane, select it, and then click the Report command in the Reports group on the
Create tab, as shown in Figure 15-17.

Figure 15-17 Click the Report command to let Access build a report using the qryContacts query.

After just a second or two, Access 2007 creates an entire report with all the fi elds
in the query, complete with a logo, a title, the current date and time, a colored line
beneath the column labels, and even a page count at the bottom of the pages, as shown

Chapter 15

776 Chapter 15 Constructing a Report
in Figure 15-18. (You can best see the page count in Print Preview.) Access opens the
report in Layout view so that you can begin the process of making modifi cations.

Figure 15-18 With one click, Access creates an entire formatted report for your convenience.

If you look closely at the report, you’ll also see that there are signifi cant problems with
this layout. Access spread all the fi elds out in a tabular control layout. If you switch to
Print Preview, you can see that this report would not be easy to read because the data
in many columns wraps to multiple lines, and you have to scan across three pages to
fi nd all the data for each contact. If the number of contact records were even larger, the
report would be extremely hard to follow. Access did much of the hard work for you in
creating the report, but you still need to make many modifi cations in either Layout view
or Design view to make the report readable. (We’ll discuss Layout view in more detail
later in this chapter.) Close this report now, and don’t save it when prompted.

The qlkpProducts query includes all the fi elds from the tblProducts table and sorts
them by product name. Select this query in the Navigation Pane and then click the
Report command in the Reports group on the Create tab. Access 2007 creates another
report very similar to the fi rst one, as shown in Figure 15-19.

This query has only six fi elds, so Access was able to do a better job of laying out the
fi elds horizontally. However, the Expire fi eld and part of the Price fi eld spill over onto
a second page. Using the techniques you learned earlier in this chapter, it would prob-
ably take you less than a minute to resize some of the controls to fi t everything onto one
page and change the title. The rest of the report looks very usable as is. As you can see,
the Report command can save you time over starting a report from scratch. Close the
report, and don’t save it when prompted.

 Using the Report Wizard 777

Ch
ap

te
r 1

5

Figure 15-19 This report is easier to understand than the one created on a more complex query.

The Report command’s strength is speed, not fi nesse. As the previous two examples

demonstrate, this report option is not suited for all occasions. For complex queries or

tables with quite a few fi elds, it might take you longer to clean up a report created with

this one-click approach compared to starting from scratch. Although the Report com-

mand does create a simple total for the Price fi eld, it does not create any groups or sorts,

so you would have to manually add these. We fi nd that the Report command is best

suited for simple tables or queries that do not require a lot of complex report analysis.

Using the Report Wizard
The Report Wizard that Access 2007 provides to assist you in constructing reports
is similar to the Form Wizard you used earlier to create forms. To practice using the
Report Wizard, we’ll build the Contact Events report again. Click the Navigation Pane
menu, click Object Type under Navigate To Category, and then click Queries under
Filter By Group. Select the qryRptContactEvents query in the Navigation Pane, and
then click the Report Wizard button in the Reports group on the Create tab to open the
Report Wizard.

SIDE OUT When to Use the Report Command

The Report command’s strength is speed, not fi nesse. As the previous two examples

demonstrate, this report option is not suited for all occasions. For complex queries or

tables with quite a few fi elds, it might take you longer to clean up a report created with

this one-click approach compared to starting from scratch. Although the Report com-

mand does create a simple total for the Price fi eld, it does not create any groups or sorts,

so you would have to manually add these. We fi nd that the Report command is best

suited for simple tables or queries that do not require a lot of complex report analysis.

Chapter 15

778 Chapter 15 Constructing a Report
Specifying Report Wizard Options
On the fi rst page of the Report Wizard, shown in Figure 15-20, select the fi elds you
want in your report. (If you have a table or query selected in the Navigation Pane and
then click the Report Wizard button, Access automatically uses that object as the record
source for the report.) You can select all available fi elds in the order in which they
appear in the underlying query or table by clicking the double right arrow (>>) button.
If you want to select only some of the fi elds or if you want to specify the order in which
the fi elds appear in the report, select one fi eld at a time in the Available Fields list and
click the single right arrow (>) button to move the fi eld to the Selected Fields list. If
you make a mistake, you can select the fi eld in the Selected Fields list and then click
the single left arrow (<) button to move the fi eld to the Available Fields list. Click the
double left arrow (<<) button to remove all selected fi elds from the list on the right and
start over.

Figure 15-20 Select fi elds to include in the report on the fi rst page of the Report Wizard.

To create the Contact Events report, you should select all the fi elds. Then, click the Next
button to go to the next page.

You can also select fi elds from one table or query and then change the table or query

selection in the Tables/Queries list. The Report Wizard uses the relationships you defi ned

in your database to build a new query that correctly links the tables or queries you spec-

ify. If the wizard can’t determine the links between the data you select, it warns you and

won’t let you proceed unless you include data only from related tables.

SIDE OUT Selecting Fields from More Than One Table and/or Query

You can also select fi elds from one table or query and then change the table or query

selection in the Tables/Queries list. The Report Wizard uses the relationships you defi ned

in your database to build a new query that correctly links the tables or queries you spec-

ify. If the wizard can’t determine the links between the data you select, it warns you and

won’t let you proceed unless you include data only from related tables.

 Using the Report Wizard 779

Ch
ap

te
r 1

5

The wizard examines your data and tries to determine whether there are any natural
groups in the data. Because this query includes information from the tblContacts table
that has a one-to-many relationship to information from the tblContactEvents table,
the wizard assumes that you might want to group the information by contacts (the
 ContactID, Contact, and Phone fi elds), as shown in Figure 15-21. If you don’t want any
report groups or you want to set the grouping criteria yourself, select By tblContact-
Events. In this case, the Report Wizard has guessed correctly, so click Next to go to the
next step.

Figure 15-21 Make sure to verify the primary grouping criteria on the second page of the
Report Wizard.

On the next page (shown in the background in Figure 15-22), the Report Wizard shows
you the grouping already selected for ContactID and asks whether you want to add
any grouping levels below that. (If you chose to set the criteria yourself—by choosing
By tblContactEvents on the previous page—you will see a similar window with no fi rst
group selected.) You can select up to four grouping levels. The wizard doesn’t allow
you to enter an expression as a grouping value—something you can do when you build
a report from scratch. If you want to use an expression as a grouping value in a report
that you create with the Report Wizard, you have to include that expression in the
underlying query. For this report, you could also group within each contact by the
 ContactDateTime fi eld, so select that fi eld and click the single right arrow to temporar-
ily add it as a grouping level.

When you add grouping levels, the Report Wizard makes the Grouping Options button
available for those levels. You can select the ContactDateTime By Month grouping level
on the right side of this page and then click this button to see the Grouping Intervals
dialog box, shown in Figure 15-22. For a text fi eld, you can group by the entire fi eld
or by one to fi ve of the leading characters in the fi eld. For a date/time fi eld, you can
group by individual values or by year, quarter, month, week, day, hour, or minute. For a
numeric fi eld, you can group by individual values or in increments of 10, 50, 100, 500,
1,000, and so on, up to 500,000. As you can see, the Report Wizard has automatically

Chapter 15

780 Chapter 15 Constructing a Report
assumed grouping by month when you added the ContactDateTime fi eld as a grouping
level. You don’t need that grouping level in this sample, so cancel the Grouping Inter-
vals dialog box, select ContactDateTime By Month on the right side of the page, and
click the single left arrow to remove it. Then click Next.

Figure 15-22 You can set grouping intervals on the grouping fi elds in the Report Wizard.

On the next page, shown in Figure 15-23, the Report Wizard asks you to specify any
additional sorting criteria for the rows in the Detail section. (Access will sort the report
at this point by the grouping level fi elds you specifi ed on the previous page.) You can
select up to four fi elds from your table or query by which to sort the data. By default,
the sort order is ascending. Click the button to the right of the fi eld selection list box
to switch the order to descending. You can’t enter expressions as you can in the Group,
Sort, And Total pane. In this report, click the arrow to the right of the fi rst box and
select the ContactDateTime fi eld. Click the button to the right once to switch it to
Descending, as shown in the fi gure.

Click the Summary Options button to open the dialog box shown in Figure 15-24. Here
you can ask the Report Wizard to display summary values in the group footers for any
numeric fi elds the wizard fi nds in the Detail section. In this case, the Report Wizard
sees that the ContactFollowUp fi eld is the only one in the Detail section that is a num-
ber (a Yes/No data type). As you’ll see later, the Report Wizard automatically generates a
count of the rows, which explains why Count isn’t offered as an option.

Select the Sum check box for this fi eld. (You can add the minus sign after the wizard is
done to get the correct count.) Note that you also have choices to calculate the average
(Avg) of values over the group or to display the smallest (Min) or largest (Max) value.
You can select multiple check boxes. You can also indicate that you don’t want to see
any detail lines by selecting the Summary Only option. (Sometimes you’re interested in
only the totals for the groups in a report, not all of the detail.) If you select the Calculate
Percent Of Total For Sums check box, the Report Wizard will also display, for any fi eld
for which you have selected the Sum check box, an additional fi eld that shows what

 Using the Report Wizard 781

Ch
ap

te
r 1

5

percent of the grand total this sum represents. When you have the settings the way you
want them, click OK to close the dialog box. Click Next in the Report Wizard to go on.

Figure 15-23 Select ContactDateTime on the fourth page of the Report Wizard to sort on
that fi eld.

Figure 15-24 Click the Summary Options button on the fourth page of the Report Wizard to select
additional summary options.

On the next page, shown in Figure 15-25, you can select a layout style and a page ori-
entation for your report. When you select a layout option, the Report Wizard displays
a preview on the left side of the page. In this case, the Outline layout option in Portrait
orientation will come closest to the hand-built report you created earlier in this chapter.
You should also select the check box for adjusting the fi eld widths so that all the fi elds
fi t on one page.

Chapter 15

782 Chapter 15 Constructing a Report
Figure 15-25 Choose a layout style and page orientation on this page of the Report Wizard.

Click Next to go to the next page of the Report Wizard. On this page you can select
from 25 built-in report styles. If you defi ned your own custom report style using Auto-
Format in Design view (similar to the way you defi ned a format for a form in Chapter
12, “Customizing a Form”), you can also select your custom style. Some of the built-in
styles are probably better suited for informal reports in a personal database. Other for-
mats look more professional. Also, some styles include many color elements while oth-
ers just a few. When you select a style option, the wizard displays a preview on the left
side of the page. For this example, select the Access 2007 style. Click Next to go to the
fi nal page of the Report Wizard, shown in Figure 15-26.

Figure 15-26 You can specify a report title on the last page of the Report Wizard.

Here, you can type a report title. Note that the wizard uses this title to create the report
caption that is displayed in the title bar of the window when you open the report in

 Using the Report Wizard 783

Ch
ap

te
r 1

5

Print Preview, the label that serves as the report header, and the report name. It’s prob-
ably best to enter a title that’s appropriate for the caption and label and not worry about
the title being a suitable report name. If you’re using a naming convention (such as pre-
fi xing all reports with rpt as we’ve done in the sample databases), it’s easy to switch to
the Navigation Pane after the wizard is done to rename your report. In this case, enter
Contact Events as the title.

Viewing the Result
Select the Preview The Report option on the fi nal page of the Report Wizard, and then
click the Finish button to create the report and display the result in Print Preview, as
shown in Figures 15-27. One of the fi rst things you will notice is that Access has created
alternating background colors for the detail lines to make it easier to see the data that
goes with each record. This feature can be very useful if reports have a lot of informa-
tion in the detail records and if the lines are packed close together.

Figure 15-27 This is the fi rst page of the Contact Events report created using the Report Wizard.

It’s easy to use Design view or Layout view to modify minor items (such as adjusting
the width and alignment of the ContactDateTime and ContactEventDescription fi elds
and resizing the labels) to obtain a result nearly identical to the report you constructed
earlier. You can see in Figure 15-27 that the ContactDateTime fi eld displays # symbols
for all the records. Access displays # symbols for date/time and numeric fi elds when
it cannot display all the data in the control, but only when you select the Check For
Truncated Number Fields check box under Application Options in the Current Data-
base category of the Access Options dialog box. You also need to fi x the expression in
the text box that calculates the Sum of the ContactFollowUp fi eld and change the for-
mat to display the number. (The Report Wizard set the format to Yes/No.) You should
also change the Sum label associated with this calculation. We’ll show you how to fi x

Chapter 15

784 Chapter 15 Constructing a Report
all these problems in the next section. You can fi nd the Report Wizard’s report at this
point saved as rptXmplContactEvents2 in the sample database. As you might imagine,
the Report Wizard can help you to get a head start on more complex report designs.

Modifying a Wizard-Created Report in Layout View
In the previous section you used the Report Wizard to create a report for contact events.
Now you need to clean up this report so that it more closely resembles the Contact
Events report you built from scratch earlier in this chapter. Using Layout view makes
this process quick and easy. Right-click the Contact Events report in the Navigation
Pane (or rptXmplContactEvents2) and click Layout View on the shortcut menu to open
this report in Layout view, as shown in Figure 15-28.

Figure 15-28 Open the Contact Events report in Layout view to begin making changes.

Access 2007 shows the Report Layout Tools collection of three contextual tabs—Format,
Arrange, and Page Setup—on the Ribbon. The report design grid in Layout view looks
less like a grid than a sheet of paper. You’ll also notice that there are no page breaks in
Layout view, and by default Access displays dashed lines along the edges of the report
to denote the print margins.

You fi rst need to make the ContactDateTime fi eld wider to accommodate the data. In
Layout view you can see live data, so making column adjustments like this is easy.

 Using the Report Wizard 785

Ch
ap

te
r 1

5

Click the ContactDateTime label in the fi rst group (the label Date / Time), move your
mouse pointer to the left edge of the highlighted control until it becomes a double-sided
arrow, and then drag the control to the left until you can see the dates and times in the
records, as shown in Figure 15-29. After you adjust the fi eld width for the Date / Time
label, click the Center button in the Font group on the Format tab to center the text in
the label.

Figure 15-29 Drag the ContactDateTime label control to the left to resize the entire column.

 The ContactEventTypeDescription fi eld also needs to be wider because some of the
data is being truncated. Click the ContactEventTypeDescription label in the fi rst group
(the label Contact Type), move your mouse pointer to the right edge of the highlighted
control until it becomes a double-sided arrow, and then drag the control to the right
until you can see all the various contact event descriptions in the records, as shown in
Figure 15-30. After you make this adjustment, you can scroll down the records to see
whether the increased width accommodates the data in each record. As you make the
ContactEventTypeDescription fi eld wider, Access pushes the remaining fi elds further
to the right. If you look closely at Figure 15-30, you can see that the ContactFollowUp-
Date fi eld now extends past the print margin. Without even having to switch to Print
Preview, you know you have to make further fi eld size adjustments in order to keep the
data from spanning across pages.

The Notes fi eld seems to be too wide, so let’s shorten this fi eld to make room for the
other fi elds. Click the Notes fi eld label and reduce the width by dragging the right edge
to the left until the ContactFollowUpDate fi eld is within the print margin.

The label for the number of events requiring follow-up displays only the word Sum at
the moment. This label is certainly not very descriptive, so let’s change it to something
more meaningful. Double-click on the Sum label and type Number of events that

Chapter 15

786 Chapter 15 Constructing a Report
require a follow-up: directly over the word Sum. After you press Enter, Access automati-
cally resizes the control to accommodate the new text, as shown in Figure 15-31.

Figure 15-30 When you make the ContactEventTypeDescription fi eld wider, Access moves the
other columns to the right.

Figure 15-31 Access resizes the control for you in Layout view when you enter a new caption for
a label.

 Using the Report Wizard 787

Ch
ap

te
r 1

5

You now need to move this label closer to the control that actually lists the sum of the
follow-up check boxes. Because there are no controls between the label and the Sum
control you have two choices—you can drag the right edge of the label to the Sum con-
trol (and right align the text) or you can move the label closer to the Sum control. Let’s
move this control closer instead of resizing it. Select the label control so that the edges
are highlighted with a different color and then drag it closer to the Sum control, as
shown in Figure 15-32. As you drag the control, Access displays an outline of the label’s
size dimensions so that you can easily judge how it will fi t in its new position. Release
the mouse to drop the label into place next to the Sum control.

Figure 15-32 You can easily drag and drop controls into new positions using Layout view.

The Sum control in the Follow Up? column needs to be wider because it is displaying
symbols as was the ContactDateTime fi eld. Resize this control by dragging its right
edge. You can now see that Access displays only Yes or No values instead of an actual
count. The Report Wizard in this case did not create an expression to correctly calcu-
late the number of follow-ups. Select this control and click the Property Sheet command
in the Tools group on the Arrange tab (or press the F4 key) to open the property sheet.
Click the All tab on the property sheet and change the Control Source to

= –Sum([ContactFollowUp])

Move down to the Format property and select Standard from the list of formats to dis-
play a number in this control instead of Yes or No. Finally, move down to the Decimal
Places property and choose 0 from the list of options to display only whole numbers
in the fi eld, as shown in Figure 15-33. Access now displays an integer value repre-
senting the number of follow-ups needed. Close the property sheet to see the entire
report again.

Chapter 15

788 Chapter 15 Constructing a Report
Figure 15-33 Change the properties of the Sum Of ContactFollowUp control in order to display an
integer instead of a Yes or No value.

The Report Wizard created alternating background colors for the detail records in this
report. The color is light, so let’s change that color to provide more contrast. Click the
far left edge of the report next to one of the detail records, and Access highlights all the
detail records, as shown in Figure 15-34.

Figure 15-34 Click the left side of the report to highlight all the detail records.

 Using the Report Wizard 789

Ch
ap

te
r 1

5

Now click the arrow to the right of the Alternate Fill/Back Color button in the Font
group on the Format tab to display a color palette. Select Medium Gray 1 to provide
more contrast on the report, as shown in Figure 15-35.

Figure 15-35 You can select an alternating background color to provide more contrast to your
detail records.

Click the Save button on the Quick Access Toolbar to save the changes you made to
this report. Switch to Print Preview to see how your completed report looks on paper,
as shown in Figure 15-36. This report now looks very close to the Contact Events
report you created from scratch earlier in the chapter. You can fi nd this report saved
as rptXmplContactEvents3 in the sample database. By using the Report Wizard to do
all the heavy lifting and Layout view to make some quick changes, you can create a
 professional-looking report in a very short time.

Chapter 15

790 Chapter 15 Constructing a Report
Figure 15-36 Your completed report now includes all the changes you made in Layout view.

Building a Report in Layout View
In this chapter you’ve learned how to create a report from scratch in Design view, to
quickly build a simple report using the Report command, to create a report using the
Report Wizard to get a jump-start on your work, and to use Layout view to modify an
existing report. You’ve been creating a Contact Events report in the preceding sections,
so we’ll continue this example now using Layout view.

Starting with a Blank Report
If you want to follow along in this section, open the ContactsDataCopy.accdb database.
Click the Blank Report button in the Reports group on the Create tab. Access 2007
opens a new blank report in Layout view with the fi eld list displayed on the right, as
shown in Figure 15-37.

 Building a Report in Layout View 791

Ch
ap

te
r 1

5

Figure 15-37 Access always opens in Layout view when you click the Blank Report button.

The report does not yet have a record source, so no fi elds are displayed in the fi eld list.
You can click Show All Tables in the fi eld list to display a list of all tables in this data-
base, but you want to use the saved qryRptContactEvents query that contains all the
fi elds you need from several tables. Click the Property Sheet button in the Tools group
on the Arrange tab, click the All tab, and select the qryRptContactEvents query for the
Record Source property. Switch back to the fi eld list by clicking the Add Existing Fields
button in the Controls group on the Format tab, and then click Show Only Fields In
The Current Record Source at the bottom of the fi eld list to show only the eight fi elds in
the query, as shown in Figure 15-38.

You should start this new report by entering a title, so click the Title button in the Con-
trols group on the Format tab. Access places a label control in the upper-left corner of
the report and enters the name of the report as Report1. Click inside this label, high-
light the existing characters, and change the text to Contact Events. As you type the
new characters, Access automatically resizes the label to accommodate the length of the
new text. Press Enter to save the new title in the control.

Chapter 15

792 Chapter 15 Constructing a Report
Figure 15-38 Assign the qryRptContactEvents query as the new report’s record source.

Adding Grouping and Sorting
You need to set up the grouping and sorting options for the ContactID and Contact-
DateTime fi elds as you did earlier in the chapter. Click the Group & Sort button in the
Grouping & Totals group on the Format tab to open the Group, Sort, And Total pane.
Click the Add A Group button and set the following options for ContactID, as shown in
Figure 15-39:

Group On ContactID From Smallest To Largest, By Entire Value, With No Totals, With
Title Contact ID, With A Header Section, With A Footer Section, Do Not Keep Group
Together On One Page

As soon as you select ContactID in the Select Field box that opens when you click the
arrow next to Group On, Access 2007 places a text box bound to ContactID and an
associated label on the report. In Layout view, it’s hard to see where the different report
sections begin and end. When you create the ContactID group level, Access creates a
header and footer for this group, but because you see live data in Layout view, the actual
design layout can sometimes be hard to visualize. Right now it almost looks like the
ContactID fi eld is in the report’s Detail section because you see all the records listed
one right after another. Switch to Design view for a moment and take a quick look at
what Access has created so far. In Figure 15-40, you can see that Access correctly placed
the title label in the Report Header section instead of the Page Header section. The
ContactID fi eld and label are positioned in the new ContactID group level (as shown in
the ContactID Header section). This is what you want, so switch back to Layout view to
continue creating your report.

 Building a Report in Layout View 793

Ch
ap

te
r 1

5

Figure 15-39 After you add ContactID as a group level, Access adds that fi eld to the report grid.

Figure 15-40 In Design view, you can see where Access has placed the various controls in the
report sections.

You need to add a sort on the ContactDateTime fi eld, so click the Add A Group button
in the Group, Sort, And Total pane and set the following options for ContactDateTime:

Sort By ContactDateTime From Newest To Oldest, By Entire Value, With No Totals, With
Title Date / Time, Without A Header Section, Without A Footer Section, Do Not Keep
Group Together On One Page

Chapter 15

794 Chapter 15 Constructing a Report

You could also click Add A Sort to defi ne the sort on the ContactDateTime fi eld, but

Access 2007 won’t add the fi eld to the report layout. When you click Add A Group,

Access builds a group header section and adds the ContactDateTime fi eld. When you

change the grouping specifi cation to Without A Header Section, Access moves the

 ContactDateTime fi eld into the Detail section for you. This saves having to fi nd the fi eld

in the fi eld list and add it yourself.

Just as before, Access places a new control and label on the report for you after you
select the ContactDateTime fi eld, as shown in Figure 15-41. In this case, Access places
this fi eld in the Detail section of the report when you select Without A Header Section.
After you select Without A Header Section, you’ll notice that With Title changes from
Date / Time to Click To Add. Access moves the label and text box from the new Contact-
DateTime Header section into the Detail section. The new label still shows Date / Time,
but Access changes the specifi cation to show Click To Add in the With Title column.
You can now see the report beginning to take shape with two fi elds on the grid and the
controls displaying live data. Close the Group, Sort, And Total pane now.

Figure 15-41 Access adds the ContactDateTime fi eld to the Detail section below the
ContactID fi eld.

SIDE OUT Save a Step by Choosing Add A Group Instead of Add A Sort

You could also click Add A Sort to defi ne the sort on the ContactDateTime fi eld, but

Access 2007 won’t add the fi eld to the report layout. When you click Add A Group,

Access builds a group header section and adds the ContactDateTime fi eld. When you

change the grouping specifi cation to Without A Header Section, Access moves the

ContactDateTime fi eld into the Detail section for you. This saves having to fi nd the fi eld

in the fi eld list and add it yourself.

 Building a Report in Layout View 795

Ch
ap

te
r 1

5

Now that you have all your grouping and sorting set up, you need to add the additional
fi elds onto the report. If necessary, click the Add Existing Fields button in the Controls
group on the Format tab to open the fi eld list again. Click the Contact fi eld in the fi eld
list, drag it onto the report, and drop it just below the Contact ID label and text box, as
shown in Figure 15-42. When you have it correctly positioned, Access displays a hori-
zontal I-bar below the Contact ID controls.

Figure 15-42 Drag the Contact fi eld and drop it below the ContactID fi eld.

Access places the Contact fi eld right below the Contact ID label and text box controls
and appears to push the Date / Time records down the page. Now that you have the
Contact fi eld in place, you really don’t need the ContactID fi eld at all. Earlier in the
chapter when you built this report in Design view, you didn’t include the ContactID
fi eld because the number itself is probably meaningless to whoever sees this report. The
contact’s name is more important, so let’s delete the ContactID controls now. Click on
either the ContactID label or text box and press Delete to remove these two controls
from the grid. Alternatively, you can click the Delete button in the Records group on the
Home tab. Your report should now look like Figure 15-43.

Chapter 15

796 Chapter 15 Constructing a Report
Figure 15-43 Access moves the other controls up after you delete the ContactID text box
and label.

It’s true that you probably could have created the group header directly using the Con-

tact fi eld rather than ContactID to see a similar end result. However, for each contact,

only the value in the ContactID fi eld is guaranteed to be unique. (It’s the primary key

of the tblContacts table.) Although it’s highly unlikely to fi nd two contacts with the

same name, it could happen, and you would end up with contact event data for mul-

tiple unique contact ID values grouped under one heading. Also, creating a group on

a numeric value (ContactID) is slightly more effi cient than creating a group on a text

value (Contact).

Now let’s add the Phone fi eld to the report beneath the contact name. Click the Phone
fi eld in the fi eld list, drag it onto the report, and drop it just below the label and text box
controls for the fi rst contact. As before, make sure the I-bar is right below the contact
label and text box controls before releasing the mouse. Access places the Phone fi eld in
the ContactID Header section and lines up the control to match the Contact fi eld. (You
can switch to Design view if you’d like to see this.)

SIDE OUT Why Delete the ContactID Controls?

It’s true that you probably could have created the group header directly using the Con-

tact fi eld rather than ContactID to see a similar end result. However, for each contact,

only the value in the ContactID fi eld is guaranteed to be unique. (It’s the primary key

of the tblContacts table.) Although it’s highly unlikely to fi nd two contacts with the

same name, it could happen, and you would end up with contact event data for mul-

tiple unique contact ID values grouped under one heading. Also, creating a group on

a numeric value (ContactID) is slightly more effi cient than creating a group on a text

value (Contact).

 Building a Report in Layout View 797

Ch
ap

te
r 1

5

Working with Control Layouts
When you’re designing a report in Layout view, Access 2007 automatically places any
controls that you add to the report inside a control layout. Control layouts help you to
align and position controls on reports and forms. You can think of a control layout as
being similar to a table in Microsoft Word or a spreadsheet in Microsoft Excel. When
you widen or narrow one control in a column, you change the width of any other con-
trols in that column that are part of that control layout. Likewise, when you increase
or decrease the height of a control, you’re changing the height of all the controls on
that row.

There are two kinds of control layouts in Access 2007— stacked and tabular. In a stacked
control layout, Access “stacks” bound controls for different fi elds in a column and
places all the labels down the left side. You can have multiple sets of stacked controls
within a section. Any controls (including associated labels) in a stacked layout must all
be in one section. In the report you’ve built thus far, Access has placed the contact and
phone number controls in a stacked layout in the ContactID Header section. It has also
placed the contact date/time controls in a stacked layout in the Detail section.

In a tabular control layout, Access places bound controls horizontally with labels along
the top as column headings—much like rows on a spreadsheet. A tabular control layout
can include controls in different sections of a report—for example, the labels can appear
in a header section and the data controls in the Detail section. You’ll learn later in this
section how to convert the stacked layout for fi elds in the Detail section into a tabu-
lar layout.

The answer depends on your level of expertise. As experienced developers, we fi nd

Layout view somewhat frustrating. It’s not always obvious which section contains the

controls for a fi eld that we’ve just added to the report. Notice that we recommend you

switch to Design view several times during the design process to verify where Access has

placed controls. Also, Access automatically adds any fi eld into a control layout, and you

don’t have much control over how it does this. Although control layouts can help you

align controls in a pleasing way, they severely restrict how you place your controls and

how you size them within a layout group. If you’re an experienced developer, you might

use Layout view to quickly place controls in a new report design, but then you’ll probably

switch to Design view to selectively remove control layouts so that you can fi nish cus-

tomizing your design.

The text box controls for the Phone fi eld and the Contact fi eld are both too wide at this
point. You can see this by clicking any of the controls for either fi eld—Access draws a
dotted line showing you the boundary of all the controls in the stacked layout group.
Start by clicking the Phone fi eld text box, move your mouse to the right edge until it

SIDE OUT Is Layout View a Useful Way to Build Reports?

The answer depends on your level of expertise. As experienced developers, we fi nd

Layout view somewhat frustrating. It’s not always obvious which section contains the

controls for a fi eld that we’ve just added to the report. Notice that we recommend you

switch to Design view several times during the design process to verify where Access has

placed controls. Also, Access automatically adds any fi eld into a control layout, and you

don’t have much control over how it does this. Although control layouts can help you

align controls in a pleasing way, they severely restrict how you place your controls and

how you size them within a layout group. If you’re an experienced developer, you might

use Layout view to quickly place controls in a new report design, but then you’ll probably

switch to Design view to selectively remove control layouts so that you can fi nish cus-

tomizing your design.

Chapter 15

798 Chapter 15 Constructing a Report
becomes a double-sided arrow, and then click and drag the edge of the fi eld to the left
but make sure you don’t shorten the fi eld too much. Give yourself more room than
you think you might need on the right side because as you resize the Phone fi eld you’ll
notice that Access resizes the Contact fi eld as well, and you need enough room in that
fi eld to display the names on one line. You can see this effect in Figure 15-44. (Note:
The longest contact names are near the end of the list.) When you resize the Phone fi eld,
you resize the Contact fi eld and vice versa, so if you shorten the Phone fi eld too much,
Access has to move some of the data in the Contact fi eld down to a second line.

Figure 15-44 Access resizes the Contact and Phone fi elds together.

The only control in the Detail section of the report at the moment is the ContactDate-
Time fi eld. You’ll eventually need to convert this stacked control layout to a tabular
control layout, and you’ll need some additional horizontal space. If you click the Con-
tactDateTime text box, you’ll see that it is far wider than it needs to be. Grab the right
edge of the control and drag it to the left so that the text box is just wide enough to dis-
play all the data.

To see how this affects placing additional controls in the section, click ContactEvent-
TypeDescription in the fi eld list and drag it to the right edge of ContactDateTime.
Access lets you place the horizontal I-bar either above or below the ContactDateTime
fi eld controls, but not to the right of the fi eld, which is what you want to do. Go ahead
and drop it below the fi rst ContactDateTime control, as shown in Figure 15-45.

After you release the mouse, Access places the ContactEventTypeDescription fi eld
directly below the ContactDateTime fi eld and sizes it to match the width of the Con-
tactDateTime fi eld, as shown in Figure 15-46. Because the width you chose for the
 ContactDateTime fi eld won’t allow the data in ContactEventTypeDescription to fi t on
one line for all records, Access expands the height on those records that have more
characters.

 Building a Report in Layout View 799

Ch
ap

te
r 1

5

Figure 15-45 Drop the ContactEventTypeDescription fi eld below the fi rst ContactDateTime fi eld.

Figure 15-46 Access places the ContactEventTypeDescription fi eld into the stacked control layout
with the ContactDateTime fi eld.

Chapter 15

800 Chapter 15 Constructing a Report
If you added the remaining three fi elds—ContactNotes, ContactFollowUp, and Contact-
FollowUpDate—to the report Detail section, Access would also stack these down the left
edge on the report. You want to see these fi elds placed horizontally across the report, so
you need to change the control layout in this section from stacked to tabular. Click the
Date / Time label or text box, hold down the Shift key, and then click the Contact Type
label or text box to select both controls. Click the Remove button in the Control Layout
group on the Arrange tab to remove the control layout applied to this section, as shown
in Figure 15-47.

Figure 15-47 You can remove control layouts by clicking the Remove button on the Arrange tab.

Now that you have removed the control layout for the Detail section, these controls act
independently—if you resize one control, the other will not resize. If you add new fi elds
to the Detail section at this point, you might have some extra work in getting every-
thing properly aligned. Because you want to see the other fi elds displayed horizontally,
applying a tabular control layout to the Detail section will make placement and align-
ment of the new fi elds much simpler. Select the Date / Time and Contact Type labels or
text boxes as you did previously, and then click the Tabular button in the Control Lay-
out group on the Arrange tab, as shown in Figure 15-48.

 Building a Report in Layout View 801

Ch
ap

te
r 1

5

Figure 15-48 The tabular control layout arranges the controls with labels horizontally across
the report.

Although we told you to select both controls in the Detail section and then click Remove,

you don’t actually have to do that. We added that step so that you could see the controls

independent of the layout. When you want to convert a layout from stacked to tabular or

vice versa, select the controls in the layout and then click the layout you want in order to

directly convert it.

Access now places the labels and text box controls for the ContactDateTime and
ContactEventTypeDescription fi elds in a tabular format. The two labels are placed
horizontally across the report just below the report title. Access also moves the Con-
tactEventTypeDescription text box to the right of the ContactDateTime text box con-
trol. (Access has actually placed the labels in the Page Header section—you can verify
this by switching briefl y to Design view.) During the switch to tabular format, Access
also moves the labels and controls about one inch from the left side of the report.
This layout is now closer to the report you built from scratch in Design view earlier in
this chapter.

SIDE OUT You Don’t Have to Remove a Layout Before Converting It

Although we told you to select both controls in the Detail section and then click Remove,

you don’t actually have to do that. We added that step so that you could see the controls

independent of the layout. When you want to convert a layout from stacked to tabular or

vice versa, select the controls in the layout and then click the layout you want in order to

directly convert it.

Chapter 15

802 Chapter 15 Constructing a Report
Because these two fi eld controls are now next to each other instead of stacked, you can
change the width of one of them without affecting the other. Let’s move both the labels
and text boxes back to the left margin of the report. Click the Date / Time label and
increase the width by dragging its left edge to the print margin dotted line on the left
side of the report. The Date / Time label is aligned with the left margin of the report,
but now it’s too wide, so decrease the width by dragging its right edge toward the left.
As you resize the label, Access also resizes the ContactDateTime fi eld control. Release
the mouse when you can still see all the data in the ContactDateTime fi eld control.
Access moves the Contact Type label and the ContactEventTypeDescription fi eld to the
left after you reduce the width of the date/time controls. Now click the Contact Type
label and expand the width to the right to allow extra room for the characters in the
longest ContactEventTypeDescription fi eld control. After you have expanded the width,
Access reduces the height of the ContactEventTypeDescription fi eld control to one line,
as shown in Figure 15-49.

Figure 15-49 Expand the width of the ContactEventTypeDescription fi eld so that the data fi ts on
one line.

Now you’re ready to add the three remaining fi elds to the report. Click ContactNotes in
the fi eld list and drag it to the right edge of the Contact Type label until you see a long
vertical I-bar, as shown in Figure 15-50. The vertical I-bar indicates that the fi eld is in
the right position, so release the mouse. Access places a Notes label along the same line

 Building a Report in Layout View 803

Ch
ap

te
r 1

5

as the Date / Time and Contact Type labels and a Notes fi eld next to the ContactDate-
Time and ContactEventTypeDescription fi eld controls in the Detail section, as shown in
Figure 15-51.

Figure 15-50 Use the vertical I-bar to help you position the ContactNotes fi eld.

Figure 15-51 After you drop the ContactNotes fi eld on the report, Access adds a label and text
box control to the appropriate report sections.

Chapter 15

804 Chapter 15 Constructing a Report
The ContactNotes fi eld is too wide at this point, so reduce its width by dragging its
right edge toward the left side of the report. Now drag the ContactFollowUp fi eld to
the right of the Notes label using the same technique. After the ContactFollowUp fi eld
is in place, drag the last fi eld, ContactFollowUpDate, into position to the right of the
 ContactFollowUp fi eld. Close the fi eld list so that you can see the whole report grid
and the right print margin. Because these controls are in a tabular control layout, if you
resize the width of one of them, the others move to the left or right accordingly. Make
any small adjustments you need to the widths of the fi elds so that you can see all the
data, but make sure the ContactFollowUpDate fi eld does not extend past the right print
margin. Your report at this point should look like Figure 15-52.

Figure 15-52 Your report is beginning to take shape with all the fi elds now in place.

Adding Totals to Records
All your fi elds are in place, so now you can add some controls for counting the events
and follow-ups. You can add some of these elements to the report while in Layout view,
but you’ll still have to fi ne-tune the report using Design view, as you’ll soon see. Start
with adding a count of the follow-ups by right-clicking on the Follow Up? label and
clicking Total Follow Up? and then Count Values, as shown in Figure 15-53.

Access places a new control in the ContactID Footer section in the same column as
the ContactFollowUp fi eld, as shown in Figure 15-54. Remember that when you cre-
ated this report using the Report Wizard, you had to correct the Sum expression for
the ContactFollowUp fi eld to display a correct count of the number of contact events
requiring a follow-up. (See page 785.) In this case, Access correctly creates an expres-
sion to total the number of True values in the ContactFollowUp fi eld. (The Count
Records option, shown in Figure 15-53, would ask Access to calculate a simple count

e

 Building a Report in Layout View 805

Ch
ap

te
r 1

5

of the number of records in that group, which is not we want for this fi eld.) To align th
total with the check boxes, click the new control—where you see the number 5—and
then click the Align Left button in the Font group on the Format tab.

Figure 15-53 Click the Count Values command to create a control to total the follow-ups for
each contact.

Figure 15-54 Access creates an expression to count the number of True values for the
ContactFollowUp fi eld.

Chapter 15

806 Chapter 15 Constructing a Report
You need to create a similar count of event records for each contact, so right-click the
fi rst ContactEventTypeDescription fi eld (under the Phone fi eld), and click Total Contact
Type and then Count Values, as shown in Figure 15-55.

Figure 15-55 Click the Count Values option to create a control to total the event records.

Access places another new control in the ContactID Footer section in the same column
as the ContactEventTypeDescription fi eld, as shown in Figure 15-56. Access now dis-
plays a correct count of the number of events.

When the report is printed, it would be nice to have a page number at the bottom of the
page. Click the Insert Page Number button in the Controls group on the Format tab to
open the Page Numbers dialog box, discussed in “Completing the Report” on page 769.
Select the following options in the Page Numbers dialog box: Page N Of M, Bottom Of
Page [Footer], Alignment set to Right, and Show Number On First Page. Click OK to
close the Page Numbers dialog box.

Note
You won’t immediately see a difference to the report in Layout view after you add a page

count. If you scroll to the bottom of this report, you’ll see the control says Page 1 Of 1.

In Layout view, Access does not count the number of pages because it is not actually

formatting the pages for printing. If you switch to Design view, you can see that Access

placed the control on the right side of the report in the Page Footer section. If you switch

to Print Preview, you can see the correct page numbers displayed on each page.

Note
You won’t immediately see a difference to the report in Layout view after you add a page

count. If you scroll to the bottom of this report, you’ll see the control says Page 1 Of 1.

In Layout view, Access does not count the number of pages because it is not actually

formatting the pages for printing. If you switch to Design view, you can see that Access

placed the control on the right side of the report in the Page Footer section. If you switch

to Print Preview, you can see the correct page numbers displayed on each page.

 Building a Report in Layout View 807

Ch
ap

te
r 1

5

Figure 15-56 Access now correctly displays a total of events for each contact.

Applying an AutoFormat
Your report is functional right now, but with a little formatting you can make it look
more professional and also easier to read. You could selectively add some color to cer-
tain controls to highlight specifi c areas, but here again you can let Access do most of
the work. Access 2007 has 25 built-in AutoFormats to spice up your reports. You can
easily click one of the AutoFormats to see what it would look like applied to your report.
If you don’t like it, click the Undo command on the Quick Access Toolbar and then try
another one. To match the report you created previously using the Report Wizard, let’s
choose the Access 2007 AutoFormat style. Click the arrow under the AutoFormat but-
ton in the AutoFormat group on the Format tab to display the gallery of AutoFormats,
and then click the Access 2007 style, as shown in Figure 15-57.

You see an instant change to several elements of your report. Access added some
background color to all the labels going horizontally across the screen. The font size
changed from 11 to 10 in some of the controls, and Access even added some alternating
background color to the detail records, as shown in Figure 15-58.

Chapter 15

808 Chapter 15 Constructing a Report
Figure 15-57 Select one of the AutoFormats to give your report a more professional look.

Figure 15-58 Access makes several visual changes to your report when you select an AutoFormat.

Save your report and then switch to Print Preview to see how your report will print
on paper. The report still needs some fi ne-tuning to exactly match the reports you cre-
ated earlier in this chapter. You need to add a label and a text box next to the two Sum
controls in the ControlID Footer section to list the name of the contact and the descrip-
tive text of follow-up information. You could also move the Title control into the Page
Header section so that it appears on every page instead of only the fi rst page. You can
fi nd this report (after we made these few changes) saved as rptXmplContactEvents4

 Building a Report in Layout View 809

Ch
ap

te
r 1

5

in the sample database. As you can see, Layout view allows you to quickly create a
 professional-looking report in Access 2007.

You should now feel comfortable with constructing reports. In this chapter, you’ve seen
that Access 2007 presents many tools and views to assist you in creating professional
and functional reports. In most cases, you’ll fi nd that using a combination of these
tools—Design view, Layout view, the Report command, and the Report Wizard—is the
best way to create reports. In the next chapter, you’ll learn how to build more complex
reports that contain subreports and calculated values.

CHAPTER 16

Advanced Report Design

In the previous chapter, you learned how to create a relatively simple report with a
single subtotal level. You also saw how the Report Wizard can help you construct a

new report. This chapter shows you how to

O Design a report with multiple subtotal groups

O Add complex calculations to a report

O Embed a report within another report

O Create a report with an embedded PivotChart form

To learn how to work with these features, you’ll create a Facility Occupancy By Date
report for the Housing Reservations database. In a second example, you’ll learn how
to use the results from two queries in an embedded subreport and an embedded Pivot-
Chart to produce a report that summarizes and graphs revenue by facility and month.

Note
The examples in this chapter are based on the reports, queries, tables, and data in

 HousingDataCopy2.accdb on the companion CD included with this book. You can fi nd

similar reports in the Housing Reservations sample application, but all the reports in that

sample fi le have custom Ribbons defi ned, so you won’t see the four main Ribbon tabs—

Home, Create, External Data, and Database Tools—when you open those reports. The

results you see from the samples in this chapter might not exactly match what you see in

this book if you have changed the sample data in the fi les. Also, all the screen images in

this chapter were taken on a Microsoft Windows Vista system with the display theme set

to Blue. Your results might look different if you are using a different operating system or

a different theme.

Note
The examples in this chapter are based on the reports, queries, tables, and data in

HousingDataCopy2.accdb on the companion CD included with this book. You can fi nd

similar reports in the Housing Reservations sample application, but all the reports in that

sample fi le have custom Ribbons defi ned, so you won’t see the four main Ribbon tabs—

Home, Create, External Data, and Database Tools—when you open those reports. The

results you see from the samples in this chapter might not exactly match what you see in

this book if you have changed the sample data in the fi les. Also, all the screen images in

this chapter were taken on a Microsoft Windows Vista system with the display theme set

to Blue. Your results might look different if you are using a different operating system or

a different theme.

Building a Query for a Complex Report 812

Creating the Basic Facility Occupancy
By Date Report . 813

Defi ning the Grouping and Sorting Criteria 816

Setting Section and Report Properties 819

Using Calculated Values . 830

Creating and Embedding a Subreport 851

Adding a PivotChart to a Report 860
 811

Chapter 16

812 Chapter 16 Advanced Report Design
Building a Query for a Complex Report
To explore some of the advanced features you can include in a report, let’s build a report
in the Housing Reservations database that displays room occupancy information by
facility, date, room, and employee. As noted in the previous chapter, reports tend to
bring together information from many tables, so you are likely to begin constructing a
report by designing a query to retrieve the data you need for the report. For this exam-
ple, you need information from the tblFacilities, tblReservations, and tblEmployees
tables in the HousingDataCopy2.accdb database. Open a new Query window in Design
view by clicking the Query Design button in the Other group on the Create tab, and
add these tables to the Query window.

The tblReservations table contains one row per reservation, and the reservation
could span many days. If you want to report on occupancy by day, you must use the
special trick you learned in Chapter 8, “Building Complex Queries”: Include a table
containing all the dates you want, and add special criteria to expand each row in
tblReservations into one row per day. The sample database contains a handy table,
ztblDates, that has rows containing all the dates from January 1, 1992, to December
31, 2035, so add that table to your query. Close the Show Table dialog box. Next, add
the fi elds listed in Table 16-1 to the design grid. (You can fi nd this query saved as
qryXmplRptReservationsByDay in the sample database.)

Table 16-1 Fields in the qryXmplRptReservationsByDay Query

Field/Expression Source Table Criterion

EmpName: tblEmployees.LastName
& ", " & tblEmployees.FirstName &
(" "+tblEmployees.MiddleName)

ReservationID tblReservations

FacilityName tblFacilities

RoomNumber tblReservations

DateValue ztblDates Between #4/1/2007# And
#6/30/2007#

CheckInDate tblReservations <=[ztblDates].[DateValue]

CheckOutDate tblReservations >[ztblDates].[DateValue]

TotalCharge tblReservations

Your Query window should look similar to the one shown in Figure 16-1.

You might be wondering why the query has a criterion to limit the range of dates
returned from the ztblDates table. The sample database contains reservations from Feb-
ruary 18, 2007, through October 9, 2007 (340 records). Although you could certainly
create a report that includes all reservations, a user is typically going to want to look at
records only for a specifi c date span. (For example, the housekeeping department might
be interested in seeing this report only for the next few days or week.) Also, because the
ztblDates table contains more than 16,000 rows, this query could take up to a minute

 Creating the Basic Facility Occupancy By Date Report 813

Ch
ap

te
r 1

6

to run—or more on a slow computer—unless you fi lter the rows. In Chapter 20, “Auto-
mating Your Application with Visual Basic,” you’ll learn how to provide the user with a
custom date range dialog box to limit the records. For this example, the query includes
a fi lter to limit the rows to the second quarter of 2007.

Figure 16-1 The qryXmplRptReservationsByDay query for the Facility Occupancy By Date report
returns one row per day in each reservation.

You can either save your query as qryMyRptReservationsByDay and select it in the Navi-
gation Pane, or select the qryXmplRptReservationsByDay query in the Navigation Pane
to follow along in the next section.

Creating the Basic Facility Occupancy By Date Report
For many reports, building the source query is the most diffi cult step. Once you have
the data you need and understand the grouping options and properties you can set,
building the report is easy. We actually like to use the Report Wizard to get a jump-start
on laying out our reports. The wizard works especially well when the record source
contains 10 or fewer fi elds.

To start designing the Facility Occupancy By Date report, select the query in the Navi-
gation Pane, and click the Report Wizard button in the Reports group on the Create tab.
Build the basic report by taking the following steps:

 1. On the fi rst page of the wizard, choose the FacilityName, DateValue,
RoomNumber, and EmpName fi elds, and click Next.

 2. On the second page, the wizard suggests grouping the report by the
RoomNumber fi eld. However, you need to defi ne custom grouping and sorting
later, so click the left arrow to undo that selection, and then click Next.

Chapter 16

814 Chapter 16 Advanced Report Design
3. On the next page, the wizard offers to sort the information for you. You can ask
the wizard to establish some of the grouping and sorting settings you need by
asking for an ascending sort on FacilityName, DateValue, and RoomNumber.
Click Next.

4. Because you didn’t ask the wizard to create any groups, the wizard suggests a
tabular layout, and this is just fi ne. Be sure that Orientation is set to Portrait and
the Adjust The Field Width So All Fields Fit On A Page check box is selected.
Click Next.

5. All the reports in this application use the Access 2007 style. Choose that style,
and click Next.

6. On the fi nal page of the wizard, enter Facility Occupancy By Date – 2nd Quarter
2007 as the report title, select the Modify The Report’s Design option, and click
Finish to create your report.

The report the wizard built should look like that shown in Figure 16-2.

Figure 16-2 This is the initial Facility Occupancy By Date report created by the Report Wizard.

Close the Field List window to give yourself more room in the object window. The wiz-
ard always places the report title label in the Report Header section, but that appears
only once on the fi rst page of the report. Especially when the report is likely to contain
many pages, we like to see the report title repeated at the top of each page so that the
subject of the report is clear throughout. You can move the report title from the Report
Header section to the Page Header section. To do this, follow these steps:

1. Expand the bottom of the Page Header section about 0.5 inch.

2. Select any of the label controls in the page header. Move your mouse pointer in
the middle of the label until it becomes double-sided crosshairs, and then drag

 Creating the Basic Facility Occupancy By Date Report 815

Ch
ap

te
r 1

6

the label down until it is close to the bottom edge of the Page Header section. You
can also use the Down Arrow key to move the controls down to provide some
space for the label from the Report Header section. Because the wizard has placed
the labels and text boxes into a tabular control layout, you don’t have to worry
about the labels becoming vertically misaligned from the text box controls in the
Detail section. (Caution: If you hold down the Down Arrow key, Microsoft Offi ce
Access 2007 moves your selected controls down into the Detail section when they
hit the bottom margin of the Page Header section.)

3. Click the label control in the Report Header section, and drag it down into the
space you created in the Page Header section. You might want to select a column
heading label again and use the Up Arrow key to close any gap below the bottom
of the report title label control. Also, move the bottom of the Page Header section
up so that there’s only a small space between the line and the bottom of the
section.

4. Close up the bottom of the Report Header section so that it has zero height.

5. To make sure that all the characters in the report title label fi t inside the control,
click it and expand it to the right by grabbing the sizing handle in the center of
the right edge. (Although the “size to fi t” that the wizard performed on the label
for you does a pretty good job, we fi nd it safest to always slightly expand labels
containing large fonts to make sure all characters show on the printed report.)

While you’re refi ning the look of the report, click the DateValue label control, and
change its caption to Date. Also click the EmpName label control, and change its cap-
tion to Employee. (You can change captions directly in a label control by selecting the
control, clicking inside it with your mouse, and then typing the new caption.) Select all
the controls in the Page Footer section, and delete them. You’ll learn later how to create
controls to display the current date and time and page numbers.

Your report should now look like Figure 16-3. Click the Save button on the Quick
Access Toolbar to preserve your work to this point.

Figure 16-3 Your Facility Occupancy By Date report should look like this after you adjust what the
wizard built.

Chapter 16

816 Chapter 16 Advanced Report Design
Defi ning the Grouping and Sorting Criteria
The next thing you need to do is defi ne the grouping and sorting criteria for the report.
Click the Group & Sort button in the Grouping & Totals group on the Design tab to
open the Group, Sort, And Total pane. This report should display the daily reservation
data from the query in the Detail section, with summaries of reservations by date, by
month, and by facility. Note that in the Group, Sort, And Total pane, you specify group-
ing values from the outermost to the innermost (like specifying a sorting criteria left
to right). So, select the FacilityName sorting specifi cation in the fi rst line of the Group,
Sort, And Total pane, click More to expand the options, click the arrow on the Without
A Footer box, and then click With A Footer Section. Notice that when you add a group
header or group footer for any fi eld or expression in the Group, Sort, And Total pane,
Offi ce Access 2007 adds an appropriate section to your report. Access also changes this
specifi cation from Sort By to Group On. You want to make sure that a group header
doesn’t get “orphaned” at the bottom of a page, so click the arrow on the option that
says Do Not Keep Group Together On One Page and click Keep Header And First
Record Together On One Page. Note that you can also ask Access to attempt to keep
all the detail for this level of grouping on one page by clicking the Keep Whole Group
Together On One Page option. When you do this, Access will produce a new page if all
the detail for the next group won’t fi t on the current page. As you’ll see later, the report
sections also have properties that you can set to force a new page with the start of
each group.

The DateValue fi eld from the query returns the date each room is occupied across a res-
ervation span. When housing managers review reservations for more than one month,
they might want to see subtotals by month. You can create a group on month by click-
ing the DateValue sorting specifi cation, clicking More to expand the options, clicking
the arrow on the group on property box (where it says By Entire Value), and clicking
By Month. See the sidebar “Understanding Grouping Options” on page 818 for details
about other options you can set. Also click the arrow on the group footer property
(where it says Without A Footer Section), and click With A Footer Section to create a
space to place monthly totals on your report. (Notice that Access changes this specifi ca-
tion from Sort By to Group On.) Click the arrow on the option that says Do Not Keep
Group Together On One Page, and click Keep Header And First Record Together On
One Page as you did for the FacilityName grouping specifi cation.

You can include the DateValue fi eld in the Group, Sort, And Total pane again, but set the
group interval to Each Value to create a subtotal by day. Click the Add A Group button
to create a blank specifi cation row for a second DateValue. Click DateValue in the Select
Field box, click More to see all the options, click the arrow on the group interval box
(where it says By Quarter), and then click By Entire Value. Next, click Without A Header
Section in the header section box, and click With A Footer Section in the footer section
box. Finally, click Keep Whole Group Together On One Page for the last option so that
a set of rows for a particular day doesn’t split across a page boundary. You need to move
this new grouping specifi cation up one level in the grouping and sorting order, so click

 Defi ning the Grouping and Sorting Criteria 817

Ch
ap

te
r 1

6

the Move Up arrow to move this second DateValue group specifi cation above the Room-
Number sort specifi cation. Remember that there’s no sorting specifi cation in the query
you built or in the sample qryXmplRptReservationsByDay query. There wouldn’t be any
point in defi ning a sort in the query because reports ignore any sorting specifi cation
from the query when you defi ne any criteria in the Group, Sort, And Total pane. Your
result should look something like that shown in Figure 16-4. (Note that we clicked the
fi rst DateValue grouping specifi cation so that you can see the group property settings
for that fi eld.)

Figure 16-4 Set your grouping and sorting criteria for the Facility Occupancy By Date report in the
Group, Sort, And Total pane.

Your report design should now look like Figure 16-5.

Figure 16-5 The Facility Occupancy By Date report has new footer sections after you defi ne the
grouping and sorting criteria.

Click the Save button again to preserve your work to this point. You can fi nd this
stage of the report design saved as rptXmplFacilityDateOccupancyStep1 in the sample
 database.

Chapter 16

818 Chapter 16 Advanced Report Design
Understanding Grouping Options
For each fi eld or expression in the upper part of the Group, Sort, And Total pane, you can

set group on and group interval properties. Normally, you’ll want to start a new grouping

of data whenever the value of your fi eld or expression changes. You can, however, specify

that a new grouping starts whenever a fi eld or an expression changes from one range of

values to another. The type of range you can specify varies depending on the data type

of the fi eld or the expression.

For text grouping fi elds, you can tell Access to start a new group based on a change in

value of one or more leading characters in the string. For example, you can create a new

group based on a change in the fi rst letter of the fi eld (rather than on a change anywhere

in the fi eld) to create one group per letter of the alphabet—a group of items beginning

with A, a group of items beginning with B, and so on. To group on such a prefi x, use the

Custom interval, and enter in the Characters box the number of leading characters that

differentiates each group.

For numbers, you can enter a setting for the group interval property that clusters mul-

tiple values within a range. In the interval list, you can choose from By 5s, By 10s, By 100s,

or By 1000s. Access calculates ranges from 0. For example, if you specify By 10s as the

interval value, values ranging from –20 to 29 would be grouped from –20 through –11,

–10 through –1, 0 through 9, 10 through 19, 20 through 29. You can also specify a Cus-

tom interval value.

For date/time fi elds, you can set the group interval property to calendar or time sub-

divisions and multiples of those subdivisions, such as By Year, By Quarter, By Month, By

Week, or By Day. Use the Custom setting for the group interval property if you want to

group on Hours or Minutes or a multiple of the subdivision—for example, select Custom

in the group interval property, enter 2 in the By box, and select Years from the interval

combo box if you want groupings for every two years.

When you create groupings in which the group interval property is set to something

other than Each Value, Access sorts only the grouping value, not the individual values

within each group. If you want Access to sort the detail items within the group, you must

include a separate sort specifi cation for those items. For example, if you group on the

fi rst letter of a LastName fi eld and also want the names within each group sorted, you

must select LastName in the fi eld box in the Group, Sort, And Total pane, select With A

Header Section (and possibly With A Footer Section), set the sort order to With A On Top,

and set the group interval to By First Character. You must then enter LastName again

as an additional sorting specifi cation, set the sort order to With A On Top, and set the

group interval to By Entire Value.

Understanding Grouping Options
For each fi eld or expression in the upper part of the Group, Sort, And Total pane, you can

set group on and group interval properties. Normally, you’ll want to start a new grouping

of data whenever the value of your fi eld or expression changes. You can, however, specify

that a new grouping starts whenever a fi eld or an expression changes from one range of

values to another. The type of range you can specify varies depending on the data type

of the fi eld or the expression.

For text grouping fi elds, you can tell Access to start a new group based on a change in

value of one or more leading characters in the string. For example, you can create a new

group based on a change in the fi rst letter of the fi eld (rather than on a change anywhere

in the fi eld) to create one group per letter of the alphabet—a group of items beginning

with A, a group of items beginning with B, and so on. To group on such a prefi x, use the

Custom interval, and enter in the Characters box the number of leading characters that

differentiates each group.

For numbers, you can enter a setting for the group interval property that clusters mul-

tiple values within a range. In the interval list, you can choose from By 5s, By 10s, By 100s,

or By 1000s. Access calculates ranges from 0. For example, if you specify By 10s as the

interval value, values ranging from –20 to 29 would be grouped from –20 through –11,

–10 through –1, 0 through 9, 10 through 19, 20 through 29. You can also specify a Cus-

tom interval value.

For date/time fi elds, you can set the group interval property to calendar or time sub-

divisions and multiples of those subdivisions, such as By Year, By Quarter, By Month, By

Week, or By Day. Use the Custom setting for the group interval property if you want to

group on Hours or Minutes or a multiple of the subdivision—for example, select Custom

in the group interval property, enter 2 in the By box, and select Years from the interval

combo box if you want groupings for every two years.

When you create groupings in which the group interval property is set to something

other than Each Value, Access sorts only the grouping value, not the individual values

within each group. If you want Access to sort the detail items within the group, you must

include a separate sort specifi cation for those items. For example, if you group on the

fi rst letter of a LastName fi eld and also want the names within each group sorted, you

must select LastName in the fi eld box in the Group, Sort, And Total pane, select With A

Header Section (and possibly With A Footer Section), set the sort order to With A On Top,

and set the group interval to By First Character. You must then enter LastName again

as an additional sorting specifi cation, set the sort order to With A On Top, and set the

group interval to By Entire Value.

 Setting Section and Report Properties 819

Ch
ap

te
r 1

6

Setting Section and Report Properties
You’ve probably noticed that Access 2007 has a property sheet for each section in the
Report window in Design view. You can set section properties not only to control how
the section looks but also to control whether Access should attempt to keep a group
together or start a new page before or after the group. There’s also a property sheet for
the report as a whole. You don’t need to change any of these properties at this point, but
the following sections explain the available property settings.

Section Properties
When you click in the blank area of any group section or Detail section of a report and
then click the Property Sheet button in the Tools group on the Design tab, Access dis-
plays a property sheet, such as the one shown in Figure 16-6.

Figure 16-6 This is a property sheet for a report section.

The available properties and their uses are described in Table 16-2.

Chapter 16

820 Chapter 16 Advanced Report Design
Table 16-2 Properties for a Section

Property Description

Name Access automatically generates a unique section name for you.

Visible Set this property to Yes to make the section visible or to No to
make the section invisible. You can set this property from a macro
or from a Visual Basic procedure while Access formats and prints
your report. You can make sections disappear depending on data
values in the report.

Height This property defi nes the height of the section. You normally
change this property by dragging the bottom edge of the section.
If you want a specifi c height, you can enter it here, and Access
changes the display to match as long as all controls fi t within the
defi ned height. If you attempt to set the height smaller than will
accommodate the controls in the section, Access sets the height
to the minimum that can contain the controls.

Back Color The default back color of a section is the color value for white,
#FFFFFF. You can also choose a custom color by clicking in the
property and then clicking the Build (...) button to open the color
picker. Click More Colors to open the Colors dialog box. You can
also choose colors by clicking the Fill/Back Color button in the
Font group on the Design tab.

Alternate Back
Color

The default alternate back color of a section is No Color. With this
setting Access applies the defi ned back color to all rows of data
in that section. If you use the Report Wizard to create your report,
Access might set an alternating back color in the Detail section
of your report depending upon which style you choose. If you
want to display a different back color on alternating rows of data
in a section, click the Build (…) button to open the color picker.
Click More Colors to open the Colors dialog box. You can also
choose alternating colors by clicking the Alternate Fill/Back Color
button in the Font group on the Design tab. When you defi ne an
Alternate Back Color, Access applies the Back Color to the fi rst,
third, and so on rows, and it applies the Alternate Back Color to
the second, fourth, and so on, rows. This property is not available
in page headers and footers.

Special Effect The default setting is a fl at effect. You can also set a raised or
sunken effect for a section using the Special Effect button in the
Controls group on the Design tab or by clicking this effect from
the drop-down list for the property.

Auto Height The default setting, Yes, causes the section’s height to adjust
automatically when you resize controls resized in Layout view.
If you shrink the height of controls in Layout view, for example,
Access shrinks the height of the section as well. If no controls exist
in a section, Access reduces the section height to 0 inches. Change
this property to No to not allow Access to automatically resize the
section when controls are resized.

 Setting Section and Report Properties 821

Ch
ap

te
r 1

6

Property Description

Can Grow Setting this property to Yes allows the section to expand to
accommodate controls that might expand because they display
memo fi elds or long text strings. You can design a control to
display only one line of text, but you should allow the control
to expand to display more lines of text as needed. If you set the
Can Grow property for any control in the section to Yes, Access
automatically sets the Can Grow property of the section to Yes.
This property is not available in page headers and footers.

Can Shrink This property is similar to Can Grow. You can set it to Yes to allow
the section to become smaller if controls in the section become
smaller to enclose less text. Unlike Can Grow, setting the Can
Shrink property for any control in the section to Yes does not
automatically set Can Shrink for the section to Yes. The default
setting is No. This property is not available in page headers and
footers.

Display When The default setting, Always, displays this section in Report view,
Layout view, Print Preview, and when you print the report. Choose
Print Only to display the section only when you view the report
in Print Preview or you print the report. Choose Screen Only to
display the section only when in Report view and Layout view.

Keep Together Set this property to No to allow a section to fl ow across page
boundaries. The default Yes setting tells Access to attempt to keep
all lines within a section together on a page. (You can tell Access
to attempt to keep detail lines together with group headers and
footers by setting the Keep Together property in a Group, Sort,
And Total specifi cation to either Keep Whole Group Together On
One Page or to Keep Header And First Record Together On One
Page.) This property is not available in page headers and footers.

Force New Page Set this property to Before Section to force the section to print at
the top of a new page. Set this property to After Section to force
the next section to print at the top of a new page. You can also
set this property to Before & After to force the section to print on
a page by itself. The default setting is None. This property is not
available in page headers and footers.

New Row Or Col When you use the Page Setup dialog box to format your report
with more than one column (vertical) or more than one row
(horizontal) of sections, you can set this property to Before
Section, After Section, or Before & After to produce the section
again at the top, bottom, or both top and bottom of a new
column or row. This property is useful for forcing headers to
print at the top of each column in a multiple-column report. The
default setting is None. This property is not available in page
headers and footers.

On Click Enter the name of a macro or a Visual Basic procedure that you
want Access to execute when a user clicks inside this section in
Report view. See Part 4, “Automating an Access Application,” for
details.

Chapter 16

822 Chapter 16 Advanced Report Design
Property Description

On Format Enter the name of a macro or a Visual Basic procedure that you
want Access to execute when it begins formatting this section. See
Part 4 for details.

On Dbl Click Enter the name of a macro or a Visual Basic procedure that you
want Access to execute when a user double-clicks inside this
section in Report view. See Part 4 for details.

On Mouse Down Enter the name of a macro or a Visual Basic procedure that you
want Access to execute when a user clicks the mouse button while
the mouse pointer rests on this section in Report view. See Part 4
for details.

On Mouse Up Enter the name of a macro or a Visual Basic procedure that you
want Access to execute when a user releases a mouse button while
the mouse pointer rests on this section in Report view. See Part 4
for details.

On Mouse Move Enter the name of a macro or a Visual Basic procedure that you
want Access to execute when a user rests their mouse pointer on
this section in Report view. See Part 4 for details.

On Paint Enter the name of a macro or a Visual Basic procedure that you
want Access to execute when this section is redrawn in Print
Preview or Report view. See Part 4 for details.

On Print Enter the name of a macro or a Visual Basic procedure that you
want Access to execute when it begins printing this section or
when it displays the section in Print Preview. See Part 4 for details.

On Retreat Enter the name of a macro or a Visual Basic procedure that you
want Access to execute when it has to “back up” over a section
after it fi nds that the section won’t fi t on the current page and
you’ve set the Keep Together property to Yes. This event happens
after On Format but before On Print, so you can use it to undo
settings you might have changed in your On Format routine.
Access calls On Format again when it formats the section on a new
page. See Part 4 for details. This property is not available in page
headers and footers.

Tag Use this property to store additional identifying information about
the section. You can use this property in macros and in Visual
Basic procedures to temporarily store information that you want
to pass to another routine.

Report Properties
If you select the Report option from the Selection Type list in the Property Sheet win-
dow (or click in the Report window beyond the right edge of the Detail section and then
click the Property Sheet button in the Tools group on the Design tab), Access displays
the report’s properties in the property sheet, as shown in Figure 16-7.

 Setting Section and Report Properties 823

Ch
ap

te
r 1

6

Figure 16-7 The property sheet for a report displays many properties that you can customize for
the report object.

Some of the available properties and their uses are described in Table 16-3.

Table 16-3 Properties for a Report

Property Description

Record Source This property displays the name of the table or query that provides
the data for your report. You can also enter a valid SQL statement
for the record source.

Caption Use this property to set the text that appears in the title bar when
you open the report in Report view, Layout view, and Print Preview.
If you don’t specify a caption, Access displays Report: and the name
of the report in the window title bar if you are using multiple-
document interface or on the report’s tab if you are using single-
document interface.

Pop Up Set this property to Yes to make the report window in Report view
and Print Preview open as a pop-up. A pop-up window stays visible
on top of other windows even when another window has the
focus. The default setting is No. If you’re using a single-document
interface, Access does not display a tab for this report but instead
shows the report as a pop-up window.

Chapter 16

824 Chapter 16 Advanced Report Design
Property Description

Modal Set this property to Yes to disallow clicking any other window or
clicking the Ribbon when the Report window is open in Report view
or Print Preview. The default setting is No.

Display On
SharePoint Site

Use this property to tell Access to create a view for this report if the
database is migrated to a Microsoft Windows SharePoint Services
(version 3) site. The default setting, Follow Table Setting, tells Access
to honor the setting specifi ed for the underlying table. Choose
Do Not Display to not have Access create a view on the Windows
SharePoint Services Version 3 site of this report.

Default View Use this property to tell Access in which view to fi rst open the
report. The default setting, Report view, tells Access to open the
report in Report view when you double-click the report in the
Navigation Pane or click Open on the report’s shortcut menu. Select
Print Preview to have Access open the report in Print Preview when
opened from the Navigation Pane or from the Open command on
the report’s shortcut menu. If you set the Default View property to
Report View and set the Allow Report View property to No, Access
removes the Report View option from the Views group and opens
the report in Print Preview.

Allow Report View The default setting, Yes, specifi es that you can open this report in
Report view and you can switch to Report view from other views.
If you change the setting to No, Access removes Report View as an
option in the Views group on the Ribbon.

Allow Layout View The default setting, Yes, specifi es that you can open this report in
Layout view and you can switch to Layout view from other views.
If you change the setting to No, Access removes Layout View as an
option in the Views group on the Ribbon.

Picture, Picture
Type

To use a bitmap as the background of a report, you enter the full
path name and fi le name in the Picture property. If you set the
Picture Type property to Embedded, Access copies the bitmap
specifi ed to the Report object. If you set the Picture Type property
to Linked, Access uses the path name stored in the Picture property
to load the bitmap each time you open the report. The default
setting for Picture is (none), and the default setting for Picture Type
is Embedded.

Picture Tiling When you set the Picture Size Mode property to Clip or Zoom and
your picture is smaller than the page size, you can set the Picture
Tiling property to Yes so that Access will place multiple copies of
the picture across and/or down the page. The default setting is No.

Picture Alignment When you set the Picture Size Mode property to Clip or Zoom, you
can use Picture Alignment to place the picture in the center of the
page or in one of the corners. The default setting is Center.

 Setting Section and Report Properties 825

Ch
ap

te
r 1

6

Property Description

Picture Size Mode When your background picture is not the same size as your page,
you can set the Picture Size Mode property so that Access adjusts
the size. The Clip setting displays the picture in its original size, and
if the page is smaller than the picture, Access clips the sides and top
and bottom edges of the picture as necessary. The Zoom setting
maintains the aspect ratio and shrinks or enlarges the picture to
fi t the page. If your picture doesn’t have the same horizontal-to-
vertical dimensions (aspect ratio) as your page, Access centers the
image and shows some blank space at the sides or top and bottom
of the page. The Stretch setting expands the picture to fi t the page
size and will distort the image if the aspect ratio of the picture does
not match the aspect ratio of the page. The default setting is Clip.

Width Access sets this property when you increase the width of the report
in the design grid. If you want a specifi c width, you can enter
it here, and Access changes the display to match as long as all
controls fi t within the defi ned width. If you attempt to set the width
smaller than will accommodate the controls in any section, Access
sets the width to the minimum that can contain the controls.

Auto Center This setting affects the positioning of the Report window when you
open the report in Report view or Print Preview using the multiple-
document interface. This property has no effect when you are using
the single-document interface unless you have also set the Pop
Up or Modal property to Yes. The default setting, No, leaves the
upper-left corner in the same location as when you last saved the
Report window from Design view. When you specify Yes, the Report
window opens centered in the Access workspace to the right of the
Navigation Pane or opens centered in the Access window if you set
either Pop Up or Modal to Yes. If you collapse the Navigation Pane
after you open the report, Access moves the report to the left but
does not center it again in the object workspace.

Auto Resize This setting affects the size of the Report window when you open
the report in Print Preview. The default setting, Yes, asks Access
to zoom the report to show the fi rst entire page and size the
window to fi t within the Access workspace on your screen when
you’re using a multiple-document interface. When you’re using
a single-document interface, the report opens in a window sized
to approximately 80 percent of the height available in the Access
workspace, with a width relative to the layout of the page (portrait
or landscape) and the report sized to display the entire fi rst page.
Unless you have a very high-resolution monitor, most portrait
layout reports will be unreadable with this setting. When you
specify No, the report opens at 100 percent resolution. When you’re
using a single-document interface, Access sizes the window the
same as when you last saved the Report window from Design view
or Layout view. We recommend you change this setting to No for
most reports.

Chapter 16

826 Chapter 16 Advanced Report Design
Property Description

Fit To Page Use this property to make Access expand the width of the report to
fi t a page while you are working in Layout view. The default setting,
Yes, tells Access to automatically expand the width of the report to
fi t within the page margins. When you specify No, Access does not
automatically expand the width and honors any width you specify
for the report.

Border Style The default setting, Sizable, allows you to resize the Report window
in Report view or Print Preview when you use a multiple-document
interface or you have set the Pop Up or Modal property to Yes. This
property has no effect when you use a single-document interface
and both Pop Up and Modal are set to No.
When you choose None, the report’s Report view and Print Preview
windows have no borders, control menu, title bar, Close button, or
Minimize and Maximize buttons. You cannot resize or move the
report when it is open. You can select the report and press Ctrl+F4
to close it unless the report’s Pop Up property is set to Yes. You
should write Visual Basic code to provide an alternative way to close
this type of report.
When you choose Thin, the Report window in Report view or Print
Preview has a thin border, signifying that the report cannot be
resized.
When you choose Dialog and the Pop Up property is set to Yes, the
border of the Report window in Report view or Print Preview is a
thick line (like that of a true Windows dialog box), signifying that
you can resize the report. If the Pop Up property is set to No, the
Dialog setting is the same as the Thin setting.

Scroll Bars Use this property to tell Access to display scroll bars for a report
displayed in Report view or Layout view. The default setting, Both,
causes Access to display both a horizontal and vertical scroll bar if
needed to display the entire report. If you choose Neither, Access
does not display either scroll bar, even if one is needed. You will not
be able to scroll to see the rest of the report. Choose Horizontal
Only to display only a horizontal scroll bar, or choose Vertical Only
to display only a vertical scroll bar.

Control Box You can set the Control Box property to No to remove the control
menu and the Close, Minimize, and Maximize buttons from the
Report window in Report view or Print Preview when you’re using
a multiple-document interface. The default setting is Yes. You must
use Ctrl+F4 to close the window when this property is set to No.
This property has no effect when you’re using the single-document
interface.

Close Button You can set the Close Button property to No to remove the Close
button from the Report window in Report view or Print Preview.
When you’re using a multiple-document interface or you have
set the Pop Up or Modal property to Yes, the control menu is still
available unless you have also set the Control Box property to
No, but the Close command is disabled on the menu. The default
setting is Yes.

 Setting Section and Report Properties 827

Ch
ap

te
r 1

6

Property Description

Min Max Buttons You can set the Min Max Buttons property to Both Enabled, None,
Min Enabled, or Max Enabled when you are using a multiple-
document interface or you have set the Pop Up or Modal property
to Yes. If you disable a Minimize or Maximize button, the related
command on the control menu becomes dimmed when the Report
window is in Report view or Print Preview. The default setting is
Both Enabled.

Moveable The default setting, Yes, allows you to move the Report window
in Report view or Print Preview when you’re using a multiple-
document interface or the Pop Up or Modal property is set to Yes.
Set this property to No to lock the form on the screen where you
last saved it.

Show Page
Margins

The default setting, Yes, displays print margins for your report
when you open it in Layout view. The print margins are determined
by your printer settings. You can use this setting in Layout view
to make sure no controls extend past the print margins. Set this
property to No to not display print margins.

Grid X, Grid Y Specify the number of horizontal (X) or vertical (Y) divisions per inch
or per centimeter for the dots in the grid. When you use inches
(when Measurement is set to U.S. in the Regional And Language
Options section of Windows Control Panel), you can see the dots
whenever you specify a value of 24 or less for both X and Y. When
you use centimeters (when Measurement is set to Metric), you
can see the dots when you specify values of 9 or less. The default
setting is 24 for inches and 10 for metric.

Layout For Print When you set this property to Yes, you can select from among
the TrueType and printer fonts installed on your computer. When
you set this property to No, only TrueType and screen fonts are
available. The default setting is Yes.

Grp Keep
Together

Set this property to Per Page if you want Access to honor the
Group, Sort, And Total keep together setting by page. Set it to
Per Column (the default) for a multiple-column report if you want
Access to attempt to keep a group together within a column. This
property has no effect in a typical report with a single column.

Picture Pages You can set this property to show the picture on all pages, the fi rst
page, or no pages. The default setting is All Pages.

Page Header This property controls whether the page header appears on all
pages. You might choose not to print the page header on the fi rst
page if the report contains a report header. Valid settings are All
Pages (the default), Not With Rpt Hdr, Not With Rpt Ftr, and Not
With Rpt Hdr/Ftr.

Page Footer This property controls whether the page footer appears on all
pages. You might choose not to print the page footer on the last
page if the report contains a report footer. Valid settings are All
Pages (the default), Not With Rpt Hdr, Not With Rpt Ftr, and Not
With Rpt Hdr/Ftr.

Chapter 16

828 Chapter 16 Advanced Report Design
Property Description

Orientation The default in most versions of Access 2007 is Left-to-Right. In
versions that support a language that is normally read right to left,
the default is Right-to-Left. When you use Right-to-Left, captions
appear right-justifi ed, and the order of characters in controls is right
to left.

Filter This property shows any fi lter applied by a macro or Visual Basic
procedure the last time the report was opened. You can also
defi ne a specifi c Filter setting that you want to save with the report
defi nition. You can defi ne a fi lter for a report, as you can with a
form, using Ribbon commands when the report is in Report view.
To activate the Filter in code, set the report’s FilterOn property (not
displayed in the property sheet) to True.

Filter On Load Set this property to Yes if you want Access to apply the fi lter
defi ned for the report automatically each time the report opens.
Note that you can set the Filter and FilterOn properties from a
macro or a Visual Basic procedure. The default setting is No.

Order By This property shows any ordering criteria applied by a macro or a
Visual Basic procedure the last time the report was opened. You can
also defi ne a specifi c Order By setting that you want to save with
the report defi nition. You can activate the ordering criteria in code
by setting the OrderByOn property (not displayed in the property
sheet) to True.

Order By On Load Set this property to Yes if you want the Order By property
defi ned for the report to be applied automatically each time the
report opens. Note that you can set the OrderBy and OrderByOn
properties from a macro or a Visual Basic procedure. Remember
that Order By and Order By On Load have no effect if you have
specifi ed any settings in the Group, Sort, And Total pane. The
default setting is No.

Allow Filters Use this property to determine whether a user can see selected
records in Report view by applying fi ltering and sorting criteria
using the commands in the Sort & Filter group on the Home tab or
by applying the shortcut menu fi ltering options. If you set the Allow
Filters property to No, the user cannot change the report to view
other existing records, and Access dims all commands in the Sort &
Filter group. The valid settings for the Allow Filters property are Yes
and No. The default setting is Yes.

On Current
through On Page

You can set these properties to run a macro, a function, or an event
procedure when the specifi c event described by the property occurs
for this report. See Part 4 for details.

Date Grouping Use this property to determine how Access groups date and time
values that you’ve specifi ed in the Group, Sort, And Total pane. You
can set this property to US Defaults or Use System Settings (the
default). For US Defaults, the fi rst day of the week is Sunday, and
the fi rst week of the year starts on January 1. If you specify Use
System Settings, the fi rst day of the week and fi rst week of the year
are determined by the Regional And Language Options section in
Windows Control Panel.

 Setting Section and Report Properties 829

Ch
ap

te
r 1

6

Property Description

Cycle Use the default setting, All Records, to tab to the next record
when you press the Tab key in the last control in the tab order.
This setting applies when you display the report in Layout view
or Report view. Choose Current Record to disallow tabbing from
one record to another. Choose Current Page to disallow tabbing
onto the next or previous record—you must use Page Up or Page
Down to move between the records. When you set Current Record
or Current Page, you must use the navigation buttons or Ribbon
commands to move to other records.

Record Locks Set this property to All Records if the data for your report is on a
network shared by others and you want to be sure that no one can
update the records in the report until Access creates every page
in the report. You should not set this property to All Records for a
report that you plan to view in Layout view, Report view, or Print
Preview because you’ll lock out other users for the entire time that
you’re viewing the report on your screen. The default setting is No
Locks.

Ribbon Name Enter the name of a custom Ribbon. Access displays the Ribbon
when you open the report in Report view or Print Preview. See
Chapter 24, “The Finishing Touches,” for details.

Toolbar Enter the name of a custom toolbar. Access displays the toolbar
when you open the report in Report view or Print Preview. You can
use this setting only if your database is in the .mdb fi le format and
you defi ned custom toolbars in the database using a prior version
of Access.

Menu Bar Enter the name of a custom menu bar. Access displays the menu
bar when you open the report in Report view or Print Preview. You
can use this setting only if your database is in the .mdb fi le format
and you defi ned custom menu bars in the database using a prior
version of Access.

Shortcut Menu
Bar

Enter the name of a custom shortcut menu. Access displays the
shortcut menu when you open the report in Report view or Print
Preview and right-click in the Report window. You must create
custom shortcut menu bars by using Visual Basic code or by using
the design facilities in a prior version of Access.

Help File, Help
Context Id

You can set the Help File property to specify the location of a Help
fi le in any format supported by Windows and the 2007 Microsoft
Offi ce system, including the HTML help format. Use the Help
Context Id property to point to a specifi c help topic within the fi le.

Has Module This property indicates whether the report has associated Visual
Basic procedures. Access automatically changes this setting to Yes
when you defi ne any Visual Basic event procedures for the report.
Caution: If you change this property to No when the report has
procedures, Access warns you that this deletes your code.

Chapter 16

830 Chapter 16 Advanced Report Design
Property Description

Use Default Paper
Size

The default setting, No, tells Access to not use the default paper
size of your default printer when printing the report. Instead, Access
honors the section size properties you defi ned. Change this setting
to Yes to have Access use the default printer settings.

Fast Laser Printing Some laser printers support the drawing of lines (such as the edges
of rectangles, the line control, or the edges of text boxes) with rules.
If you set the Fast Laser Printing property to Yes, Access sends rule
commands instead of graphics to your printer to print rules. Rules
print faster than graphics. The default setting is Yes.

Tag Use this property to store additional identifying information about
the report. You can use this property in macros and in Visual Basic
procedures to temporarily store information that you want to pass
to another routine.

Palette Source With this property, if you have a color printer, you can specify a
device-independent bitmap (.dib) fi le, a Microsoft Windows Palette
(.pal) fi le, a Windows icon (.ico) fi le, or a Windows bitmap (.bmp)
fi le to provide a palette of colors different from those in the Access
default palette. You might need to set this property if you have
also set the Picture property so that the colors of the background
picture display properly. The default setting, (Default), uses your
current Windows palette.

Key Preview This property determines whether the report-level keyboard event
procedures (KeyUp, KeyDown, and KeyPress) are invoked before a
control’s keyboard event procedures. The default setting, No, tells
Access that only the active control can receive keyboard events
when the report is displayed in Layout view or Report view. Choose
Yes to have the report receive keyboard events before the active
control receives keyboard events when the report is displayed in
Layout view or Report view.

Using Calculated Values
Much of the power of Access 2007 reports comes from their ability to perform both sim-
ple and complex calculations on the data from the underlying tables or queries. Access
also provides dozens of built-in functions that you can use to work with your data or
to add information to a report. The following sections provide examples of the types of
calculations you can perform.

Adding the Print Date and Page Numbers
One of the pieces of information you might frequently add to a report is the date on
which you prepared the report. You’ll probably also want to add page numbers. Access
provides two built-in functions that you can use to add the current date and time to
your report. The Date function returns the current system date as a date/time value

 Using Calculated Values 831

Ch
ap

te
r 1

6

with no time component. The Now function returns the current system date and time
as a date/time value.

Note
When you create a report using the Report Wizard, it adds a similar control to the Page

Footer section, and it uses the Now function that returns the date and the time. However,

the wizard sets the Format property to Long Date, which displays only the date portion.

To add the current date to your report, create an unbound text box control (delete the
label) in the Page Footer section, and set its Control Source property to =Date(). Then,
in the Format property box, specify Long Date. You can see an example of using the
Date function in Figure 16-8. The result in Print Preview is shown in Figure 16-9.

Figure 16-8 Use the Date function in an unbound control to add the date to a report.

Figure 16-9 You can now see the current date displayed in the report in Print Preview.

In the Controls group on the Design tab, Access 2007 includes a button that helps you
create this type of control on your report. Click the Date & Time button in the Controls
group, and Access opens the Date And Time dialog box, shown in Figure 16-10. You can
choose to insert the date, the time, or both the date and time displayed in a text box
control into the report’s Report Header section. You can choose different formats for

Note
When you create a report using the Report Wizard, it adds a similar control to the Page

Footer section, and it uses the Now function that returns the date and the time. However,

the wizard sets the Format property to Long Date, which displays only the date portion.

Chapter 16

832 Chapter 16 Advanced Report Design
both. Access displays a sample of what the control will display at the bottom of the dia-
log box. However, the tool does not offer you any choices of where it will place the con-
trol—Access always places this control in the Report Header section on the right side.
You could create the control using this feature (selecting only the Include Date check
box and the Long Date format), drag and drop it into the Page Footer on the left, set the
alignment to left, and shrink the Report Header back to zero height, but we think it’s
just as easy to create the control yourself. Click Cancel to close the dialog box because
you’ve already added a control to the report to display the date.

Figure 16-10 Use the Date And Time dialog box to assist you in building a report date control.

To add a page number, use the Page property for the report. You can’t see this prop-
erty in any of the property sheets because it is maintained by Access. Access also pro-
vides the Pages property, which contains a count of the total number of pages in the
report. To add the current page number to a report (in this example, in the Page Footer
 section), create an unbound text box control (delete the label), set its Control Source
property to ="Page " & [Page] & " of " & [Pages] as shown in Figure 16-11, and set the
Text Align property to Right.

Figure 16-11 Use the Page and Pages properties to add page numbers to a report.

In the Controls group on the Design tab, Access 2007 includes a button that helps
you create this type of control on your report. Click the Insert Page Numbers button
in the Controls group, and Access opens the Page Numbers dialog box, shown in Fig-
ure 16-12. (Remember, we discussed this command in Chapter 15, “Constructing a
Report.”) You can choose to insert the page number or the page number and count of
pages. Access also offers an option to display the page text box control in the report’s
Page Header or Page Footer section. In the Alignment drop-down list you can choose
where to have Access place the control—Left, Center, Right, Inside, or Outside. Note
that Access adds two controls for the Inside and Outside options and includes a logical

 Using Calculated Values 833

Ch
ap

te
r 1

6

expression in the control source to display each text box on alternate pages. When you
choose Inside, even page numbers appear on the right, and odd page numbers appear
on the left. When you choose Outside, even page numbers appear on the left, and odd
numbers appear on the right. Select the Show Number On First Page check box at the
bottom of the dialog box to display the page numbers on all pages, including the fi rst
page. If you clear this check box, Access creates a control that will not show the page
number on the fi rst page. You can try this feature using the settings in Figure 16-12 to
compare the result with the text box you created previously, or you can click Cancel to
close the dialog box.

Figure 16-12 Use the Page Numbers dialog box to assist you in building a page number control.

You can reset the value of the Page property in a macro or a Visual Basic procedure that

you activate from an appropriate report property. For example, if you’re printing several

multiple-page invoices for different customers in one pass, you might want to reset the

page number to 1 when you start to format the page for a different customer. You can

include a Group Header section for each customer and then use a macro or a Visual Basic

procedure to set the Page property to 1 each time Access formats that section (indicat-

ing that you’re on the fi rst page of a new customer invoice).

Performing Calculations
Another task you might perform frequently is calculating extended values from detail
values in your tables. If you understand the principles of good table design (see
Article 1, “Designing Your Database Application,” on the companion CD), you know
that it’s usually redundant and wasteful of storage space to defi ne a fi eld in your tables
that you can calculate from other fi elds. The only situations in which this is acceptable
are when saving the calculated value will greatly improve performance in parts of your
application and when you have collected static historical data in a table designed spe-
cifi cally to support reporting.

SIDE OUT You Can Change the Value of the Page Property in Code

You can reset the value of the Page property in a macro or a Visual Basic procedure that

you activate from an appropriate report property. For example, if you’re printing several

multiple-page invoices for different customers in one pass, you might want to reset the

page number to 1 when you start to format the page for a different customer. You can

include a Group Header section for each customer and then use a macro or a Visual Basic

procedure to set the Page property to 1 each time Access formats that section (indicat-

ing that you’re on the fi rst page of a new customer invoice).

Chapter 16

834 Chapter 16 Advanced Report Design
Performing a Calculation on a Detail Line
You can use arithmetic operators to create complex calculations in the Control Source
property of any control that can display data. You can also use any of the many built-in
functions or any of the functions you defi ne yourself in a module. If you want, you can
use the Expression Builder that you learned about in Chapter 7, “Creating and Working
with Simple Queries,” to build the expression for any control. You let Access know that
you are using an expression in a Control Source property by starting the expression
with an equal sign (=).

Note
To use a fi eld in a calculation, that fi eld must be in the table or query specifi ed in the

Record Source property of the report.

One calculated value that housing management might fi nd useful is the daily revenue
for each room. You could have calculated that value in the query that is the record
source of the report, but you can also calculate it as an expression in a text box in the
Detail section of the report. To add the expression you need to the Facility Occupancy
By Date report that you have been creating, follow these steps:

1. Before you add your new control to the Detail section, you should fi rst expand
the width of the FacilityName control because it is too narrow to display all the
facility names. Click the FacilityName control, and drag its left edge toward the
left side of the report to make it fl ush with the left side. Next, drag its right edge
toward the right edge of the report to expand the width of the control until it
is about 1.6 inches in width. (You can check this in the Property Sheet window
if you want.) As you expand the width, Access moves the other controls in the
Detail section to the right (along with their labels in the Page Header section).
When the Report Wizard created this report, it placed all the controls in the
Detail section into a tabular control layout, so when you resize the FacilityName
control, Access adjusts the other controls as well. Note that you could make
these changes in Layout view in order to see the data while resizing the control.
However, Access collapses the height of the two DateValue footer sections and
the FacilityName footer section when you switch to Layout view. Go ahead and
change the caption for the facility name label as well from Name to Facility by
clicking the label and typing Facility.

2. Reduce the width of the DateValue controls to 0.9 inch, the RoomNumber
controls to 0.8 inch, and the EmpName controls to 1.6 inches.

Note
To use a fi eld in a calculation, that fi eld must be in the table or query specifi ed in the

Record Source property of the report.

 Using Calculated Values 835

Ch
ap

te
r 1

6

3. On the Design tab, in the Controls group, click the Text Box button, and place
a text box in the Detail section to the right of the EmpName text box. Select the
attached label, and delete it.

4. In the Control Source property of the new text box, enter

=CCur(Round([TotalCharge]/([CheckOutDate]-[CheckInDate]),2))

Because you included the TotalCharge, CheckInDate, and CheckOutDate fi elds in
the query, you can reference them in your expression. This expression calculates
the daily revenue by dividing the total charge for the reservation by the number
of days. Set the Format property of the text box to Currency, and set the Width
property to 0.75 inch. Move this text box close to the EmpName text box, and line
up the tops of the two text boxes. Also, make sure the height of both text boxes
is the same by selecting them both and then clicking the Size To Tallest button in
the Size group on the Arrange tab.

5. Click the Line button in the Controls group on the Design tab, and place a
horizontal line in the Page Header section below the labels. Move the line to the
left edge of the report, and set its Width property to 5.9 inches so that it stretches
over all the controls in the Detail section, including your new text box. Make
sure the height of the control is 0 inches. Click the Line Thickness button in the
Controls group, and select 2 PT for the thickness.

6. Click the Label tool in the Controls group on the Design tab, and draw a label
control next to the Employee label in the page header. Type Charge in the label,
and press Enter. (If you don’t type anything, the label disappears when you click
away from it.)

7. The default Label control in the Access 2007 style has no background color, but
the other labels have a light blue background. You can click one of the other
labels in the page header, click the Format Painter button in the Font group on
the Design tab, and then click your new label to transfer the format.

8. Make the new label the same height as the other labels in the page header, and
give it the same width as the text box below it (0.75 inch). Align the left edge of
the label with the left edge of the text box, and align the top of the label with the
top of the other labels in the section.

Your report in Design view should now look like Figure 16-13.

Figure 16-14 shows the result in Print Preview. (Note that the Access 2007 report style
has an alternating color defi ned for the Detail section.) You can see that Access has per-
formed the required calculations for each day of each reservation.

Chapter 16

836 Chapter 16 Advanced Report Design
Figure 16-13 Add an expression to the Detail section to calculate daily revenue.

Instead of starting with an unbound text box to perform a calculation, you might decide

to drag and drop one of the fi elds that you’ll use in the calculation from the fi eld list onto

your report. When you do that, Access gives the text box the same name as the fi eld. If

you modify the control source to an expression that uses the fi eld, you’ll see #Error in the

text box when you view or print the report.

When you enter a name in an expression, Access fi rst searches for another control that

has that name. If it doesn’t fi nd the control, then it looks in the fi eld list. So, if the name

of the control is TotalCharge and you include an expression that uses [TotalCharge], the

expression is referencing itself! Access can’t fi gure out how to display the value of the

TotalCharge text box, so it displays #Error instead. If you decide to drag and drop a fi eld

that you’ll change to an expression, be sure to change the Name property of the control

(for example, txtTotalCharge) before you enter the expression.

Of course, you’ll also see #Error if your expression references a function that doesn’t exist

or provides invalid parameters to a function. However, using the name of the control

itself inside the expression that is the control source is one of the most common sources

of #Error.

SIDE OUT Avoiding #Error in a Calculated Control

Instead of starting with an unbound text box to perform a calculation, you might decide

to drag and drop one of the fi elds that you’ll use in the calculation from the fi eld list onto

your report. When you do that, Access gives the text box the same name as the fi eld. If

you modify the control source to an expression that uses the fi eld, you’ll see #Error in the

text box when you view or print the report.

When you enter a name in an expression, Access fi rst searches for another control that

has that name. If it doesn’t fi nd the control, then it looks in the fi eld list. So, if the name

of the control is TotalCharge and you include an expression that uses [TotalCharge], the

expression is referencing itself! Access can’t fi gure out how to display the value of the

TotalCharge text box, so it displays #Error instead. If you decide to drag and drop a fi eld

that you’ll change to an expression, be sure to change the Name property of the control

(for example, txtTotalCharge) before you enter the expression.

Of course, you’ll also see #Error if your expression references a function that doesn’t exist

or provides invalid parameters to a function. However, using the name of the control

itself inside the expression that is the control source is one of the most common sources

of #Error.

 Using Calculated Values 837

Ch
ap

te
r 1

6

Figure 16-14 The calculated detail line values within a group now appear in Print Preview.

Adding Values Across a Group
Another task commonly performed in reports is adding values across a group. In the
previous chapter, you saw a simple example of this in a report that used the built-
in Sum function. In the Facility Occupancy By Date report, you have three levels of
grouping: one by facility, another by month, and another by date. When you specifi ed
grouping and sorting criteria earlier in this chapter, you asked Access to provide group
footers. This gives you sections in your report in which you can add unbound controls
that use any of the aggregate functions (Sum, Min, Max, Avg, Count, First, Last, StDev,
or Var) in expressions to display a calculated value for all the rows in that group. In this
example, you can create unbound controls in the Facility footer and both DateValue
footers to hold the totals by facility, by month, and by date, for the daily charge for each
room, as shown in Figure 16-15. In the Control Source property of each, enter

=Sum(CCur(Round([TotalCharge]/([CheckOutDate]-[CheckInDate]),2)))

Set the Format property to Currency for each of the three new controls. Notice that in
this case, you must repeat the original expression inside the aggregate function rather
than attempt to sum the control you placed in the Detail section. (See “How to Calcu-
late Totals on Expressions” on the next page for an explanation.)

Chapter 16

838 Chapter 16 Advanced Report Design
You should also add a line control at the top of each footer section to provide a visual
clue that the values that follow are totals. When you place a line control on the grid in
any footer section using the Access 2007 report style, Access sets Border Style to Trans-
parent. Change the Border Style property to Solid for each of these lines. In this exam-
ple, we placed lines approximately 4.85 inches in from the left and made them about 1
inch long, but they’re diffi cult to see in Design view because they’re right up against the
top of the section. Also move the page number control so the right edge lines up with
these new calculated controls, and reduce the width of the design grid to 6.5 inches.

Figure 16-5 Add summaries by facility, by month, and by date into the three footer sections.

An important point to remember about using an aggregate expression in a group sec-

tion is that the expression cannot refer to any calculated controls in the Detail section.

As you’ll learn later, you can reference an outer control from an inner one (for example,

a total calculation in a group from inside the Detail section), but not vice versa. So, you

cannot create a calculated fi eld in the Detail section, for example, that multiplies two

numbers and then reference that control in the summary expression. You can, how-

ever, repeat the calculation expression in the summary. If a detail control named Total

has an expression such as =[Quantity] * [Price], you must use an expression such as

=Sum([Quantity] * [Price]) in your grouping section, not =Sum([Total]).

SIDE OUT How to Calculate Totals on Expressions

An important point to remember about using an aggregate expression in a group sec-

tion is that the expression cannot refer to any calculated controls in the Detail section.

As you’ll learn later, you can reference an outer control from an inner one (for example,

a total calculation in a group from inside the Detail section), but not vice versa. So, you

cannot create a calculated fi eld in the Detail section, for example, that multiplies two

numbers and then reference that control in the summary expression. You can, how-

ever, repeat the calculation expression in the summary. If a detail control named Total

has an expression such as =[Quantity] * [Price], you must use an expression such as

=Sum([Quantity] * [Price]) in your grouping section, not =Sum([Total]).

 Using Calculated Values 839

Ch
ap

te
r 1

6

Creating a Grand Total
Use the Report Footer section to create grand totals for any values across the entire set
of records in a report. You can use any of the aggregate functions in the report footer
just as you did in the two grouping section footers. Expand the Report Footer section
to about 0.43 inch to give yourself some room. Add a new text box control to the Report
Footer section, and set the Control Source property to the same expression used in the
three footer controls. Set Format to Currency, and change the width of the text box to 1
inch to allow extra room for a larger number total. Align the right edge of the text box
to the other three calculated controls. Click inside the label for this new text box, type
Grand Total:, and align the text to the right. Finally, bold the text in the label, and move
the label so that its right edge is next to the left side of the text box. Figure 16-16 shows
you this Sum function used in the new control in the report footer to produce a total for
all records in the report.

Figure 16-16 Use the Report Footer section to create a grand total control for all records.

If you switch to Print Preview, go to the last page in the report, and scroll down, you
should see a result similar to that shown in Figure 16-17. (You should set the name
of this grand total fi eld to txtSumGrand so that you can use it to calculate percent-
ages later.) You can fi nd this stage of the report design saved as rptXmplFacilityDate-
OccupancyStep2 in the sample database.

Chapter 16

840 Chapter 16 Advanced Report Design
Figure 16-17 You can see the various totals displayed in the report in Print Preview.

Note
If you want to create percentage calculations for any of the groups over the grand total,

you must create the control for the grand total in the report footer so that you can refer-

ence the total in percentage calculation expressions. See “Calculating Percentages” on

page 843. If you don’t want the total to print, set the control’s Visible property to No.

Hiding Redundant Values and Concatenating Text Strings
You probably noticed in several of the preceding examples that the FacilityName and
DateValue fi elds print for every detail line. When a particular detail line displays or
prints values that match the previous line, the report looks less readable and less pro-
fessional. You can control this by using the Hide Duplicates text box property (which
is available only in reports). Switch to the Design view of this report, and set the Hide
Duplicates property to Yes for the FacilityName text box and the DateValue text box in
the Detail section. The report will now print the facility name and the date only once
per group or page, as shown in Figure 16-18. (The fi gure shows information from the
last page of the report.) When Access moves to a new grouping level or page, it prints
the facility name even if it matches the previous value displayed.

Note
If you want to create percentage calculations for any of the groups over the grand total,

you must create the control for the grand total in the report footer so that you can refer-

ence the total in percentage calculation expressions. See “Calculating Percentages” on

page 843. If you don’t want the total to print, set the control’s Visible property to No.

 Using Calculated Values 841

Ch
ap

te
r 1

6

Figure 16-18 Set the Hide Duplicates property to Yes to eliminate redundant values in each group.

Notice that when the report gets to the end of data for a month or a facility, it’s not
clear what the total lines mean. For example, on the last page of the report as shown
in Figure 16-18, $792.58 is clearly the total for the last date, but it’s not obvious that
$17,047.07 is the total for the month of June for the facility or that $44,479.28 is the
total revenue for the facility. You can use string concatenation to display data that looks
like a label but that also includes information from the record source. Sometimes it’s
useful to combine descriptive text with a value from a text fi eld in the underlying query
or table or to combine multiple text fi elds in one control. In Figure 16-19, you can see a
descriptive label (created by a single text box control) on one of the subtotal lines. (In
Figure 16-19 we dragged the Property Sheet window below the new text box so that you
could see the Control Source property.)

Chapter 16

842 Chapter 16 Advanced Report Design
Figure 16-19 A text constant and a string derived from a fi eld in the record source are concat-
enated as a “label” in a text box.

This “label” concatenates the words Total for with an expression that uses the Format
function—applied here to the DateValue fi eld to get the date in medium date format—
and an ending string containing a colon. You can use the same technique in the group
footer to create a “label” that reads Total for facility followed by the facility name and
a trailing colon. You could certainly defi ne a label followed by a text box followed by
another label to create the same display. The advantage of using a single control is that
you don’t have to worry about lining up three controls or setting the font characteris-
tics. In fact, because the string in the middle, containing the facility name, could vary
signifi cantly in length, you cannot create three separate controls that correctly line up
all possible values end-to-end. Set the Text Alignment property of these controls to
Right so that they line up correctly next to the summary controls, and match the for-
matting of the grand total label in the Report Footer section by selecting the grand total
label, double-clicking the Format Painter button to lock it, and then clicking the three
text boxes. Click the Format Painter button again when you’re done to unlock it.

When you look at the report in Print Preview, as shown in Figure 16-20, you can see
that the duplicate values for the facility name and for the date have been eliminated.
You can also see the nice result from using a concatenated string in a text box to gener-
ate labels for the total lines.

 Using Calculated Values 843

Ch
ap

te
r 1

6

Figure 16-20 The total lines now have descriptive captions using data from the record source.

 Calculating Percentages
In any report that groups and summarizes data, you might want to determine what per-
centage of an outer group total or the grand total is represented in a particular sum. You
can do this in a report because Access makes two passes through the data. On the fi rst
pass, it calculates simple expressions in detail lines, sums across groups, sums across
the entire report, and calculates the length of the report. On the second pass, it resolves
any expressions that reference totals that were calculated in the fi rst pass. Conse-
quently, you can create an expression in a detail or group summary section that divides
by a sum in an outer group or the grand total to calculate percentages.

Figure 16-21 shows an example of a percentage calculation in the FacilityName Footer
section. (We dragged the Property Sheet window down below the control so that you
could see the Control Source property.) The expression divides the sum of the calcu-
lated charge for this facility by the value in a fi eld called txtSumGrand—the name of the
grand total control in the report footer. (Remember that when you created the grand
total, we instructed you to give it this name.)

Chapter 16

844 Chapter 16 Advanced Report Design
Figure 16-21 You can add a calculation in the group footer for a percentage of a grand total.

Set the Format property of the text box to Percent, and switch to Print Preview. Scroll
down to fi nd a total by month or by facility, and you’ll also see the percent of the grand
total, as shown in Figure 16-22. You can fi nd this stage of the report design saved as
rptXmplFacilityDateOccupancyStep3 in the sample database.

Figure 16-22 At the end of the report, you can see percentage calculations for two groups in
Print Preview.

 Using Calculated Values 845

Ch
ap

te
r 1

6

Using Running Sum
In addition to producing totals for any group you defi ne, Access lets you create running
totals within the Detail section or any group header or footer. For any text box that dis-
plays a numeric value, you can set the Running Sum property to produce a total that is
reset at the start of each group or that continues totaling through the entire report. Let’s
further refi ne rptXmplFacilityDateOccupancyStep3 to see how this works.

Before you can add any controls horizontally, you need to adjust the sizes of some of the
controls to provide more horizontal space within the design width of the report. Select
the Room label control, and change the width to 0.5 inch in the Property Sheet window.
Access moves the EmpName controls to the left so that they remain close to the Room
controls. Click the Employee label control, and set the width to 1.3 inches. Select both
the Charge label control and the calculated text box control below it, and slide them
both to the left about 0.3 inch. (The Left property for these controls should be about 4.8
inches now.) Click the line control in the page header that runs beneath all the labels,
and set its width to 6.45 inches. Select all the controls in both DateValue footers, the
FacilityName footer, and the report footer, and slide them to the left so that they now
line up with the new position of the charge calculation text box in the Detail section.

Now you have some horizontal room to add another label control and companion text
box control. Start by selecting the Charge label control, copy it to the Clipboard, and
paste it back into the page header. Move it just to the right of the existing Charge label
control, and line it up vertically with all the other labels. Now change its caption to
Cum. Charge, and set its width to 0.85 inch.

If you select the Page Header section before you perform the paste, Access places the

control in the upper-left corner of the section and doesn’t change the size of the section.

If you leave the original control selected when you perform the paste, Access places the

new copy below the original and expands the section, which you might not want it to do.

Likewise, select the text box control below the original Charge label control, copy it to
the Clipboard, and paste it back into the Detail section. Move it to the left of the exist-
ing charge calculation text box, and line it up horizontally with all the other text boxes.
Line up the new text box control with the label control above it, and set its width to
0.85 inch to allow room for larger numbers. Finally, select the new text box control, and
set its Running Sum property in the Property Sheet window to Over Group. Your report
should now look like Figure 16-23.

SIDE OUT Select the Section Before Pasting

If you select the Page Header section before you perform the paste, Access places the

control in the upper-left corner of the section and doesn’t change the size of the section.

If you leave the original control selected when you perform the paste, Access places the

new copy below the original and expands the section, which you might not want it to do.

Chapter 16

846 Chapter 16 Advanced Report Design
Figure 16-23 For the Running Sum property of the new calculated text box, select Over Group to
add a running sum calculation on the charge.

No, this isn’t a second copy of the charge calculation. As you’ll see when you look at the
report in Print Preview, this produces (as the name of the property implies) a running
sum of the charge calculation within the Detail section. As Access encounters each new
row in the Detail section, it adds the current value of calculation to the previous accu-
mulation and displays the result. Because you asked for the sum Over Group, Access
resets the accumulating total each time it encounters a new group.

Next, let’s use a little trick to generate a line number for each line in the Detail section.
To make room for this line number, click the Facility label, and drag its right edge to
the right side of the report until it moves the Employee label control and EmpName text
box control next to the Charge label control. Now drag the left side of the Facility label
to the right to reduce its width and create enough space for a small text control. (The
Facility label and FacilityName text box controls should be about 1.65 inches in width
when you complete these steps.) Insert a small text box in the space you just created in
the Detail section. Above this text box, create a label that displays # as its caption. (You
can use the Format Painter button again to copy the format from one of the existing
label controls to the new one.)

Remember that as Access formats each detail line, it takes the current value of the fi eld
(actually, the current value of the text box), adds it to the previous total, and displays
the result. If you set the text box equal to any constant numeric value, Access uses that

 Using Calculated Values 847

Ch
ap

te
r 1

6

value for each detail line it produces. So, the trick is to set this text box equal to 1 (=1
in the Control Source property) and then set the Running Sum property. If you choose
Over All for Running Sum, Access will number the fi rst line 1, add 1 for the second line
and display 2, add 1 for the third line and display 3, and so on throughout the report.
If you choose Over Group, Access increases the number for each line but resets the
number back to 1 when a new group starts. Select Over Group on the Running Sum
property for this control to sequentially number all the reservations on the same date,
as shown in Figure 16-24. Also set the Format property of the control to 0. to place a
period after each displayed value.

Figure 16-24 Use the Running Sum property to generate a line number.

If you switch to Print Preview, you can see the result of using Running Sum, as shown
in Figure 16-25. The charge accumulates over each group and then resets for the next
group. The line numbers start at 1 and also reset for each group. You can fi nd this
report saved as rptXmplFacilityDateOccupancyStep4 in the sample database.

Chapter 16

848 Chapter 16 Advanced Report Design
Figure 16-25 You can see the result of using Running Sum to produce a cumulative total for each
group and a line number for each detail line.

Taking Advantage of Conditional Formatting
In Chapter 13, “Advanced Form Design,” you learned how to defi ne conditional format-
ting for a text box control. Access makes an identical facility available to you for reports.
Let’s say, for example, that you want to highlight any daily total that is more than $400
or any monthly total that is greater than $10,000. To do this, open the report from the
previous example in Design view, select the Sum text box in the fi rst DateValue Footer
section that displays the sum of the charge, and click the Conditional button in the
Font group on the Design tab. Access displays the Conditional Formatting dialog box,
as shown in Figure 16-26.

Figure 16-26 Set conditional formatting for the Sum text box in the fi rst DateValue Footer section.

 Using Calculated Values 849

Ch
ap

te
r 1

6

Just as you can in a text box control on a form, you can defi ne a test against the cur-
rent value in the control or enter an expression. In this case, verify that Field Value Is
appears in the fi rst list, click Greater Than in the second list, and enter the value 400
in the box. Under Condition 1, set Back Color to some dark color, and set Fore Color to
white. Click OK to save the conditional format. You can specify a similar condition for
the Sum text box in the second DateValue footer (by month) to test for a monthly total
greater than 10,000.

Note
In the Detail section, you can reference any other fi eld in the current row to create an

expression. But, when you create a conditional formatting expression in a grouping sec-

tion, any fi eld reference you use in an expression uses the value of the current row. In a

group footer, for example, the current row is the last row displayed in the previous Detail

section.

In order for the new formats to appear in Print Preview, you need to make one quick
change to the two Sum controls. Select the Sum control in the fi rst DateValue Footer
section, hold down the Shift key, and then select the Sum control in the second
 DateValue Footer section. Open the Property Sheet window, and change the Back Style
property from Transparent to Normal. If you leave these controls set to Transparent,
you won’t see any text in these controls when the conditions are met.

Before viewing the report one more time, let’s change the margins on the report to
center the printed area left to right on the page. Assuming a standard U.S. paper width
of 8.5 inches and with the report print area designed at 6.5 inches, we need a 1-inch
margin on both sides. Click the Page Setup button in the Page Layout group on the Page
Setup tab. Access opens the Page Setup dialog box shown in Figure 16-27. On the Print
Options tab, change the Top, Bottom, Left, and Right margins from .25 inch to 1 inch.
Click OK to save your changes and close the Page Setup dialog box. When you switch
to Print Preview, you can see the result, as shown in Figure 16-28. You can fi nd this
sample saved as rptXmplFacilityDateOccupancyStep5. (Page 20 in the sample shows
both conditional formats in action.)

Note
In the Detail section, you can reference any other fi eld in the current row to create an

expression. But, when you create a conditional formatting expression in a grouping sec-

tion, any fi eld reference you use in an expression uses the value of the current row. In a

group footer, for example, the current row is the last row displayed in the previous Detail

section.

Chapter 16

850 Chapter 16 Advanced Report Design
Figure 16-27 Change all the page margins to 1 inch.

Figure 16-28 Here is the result of setting conditional formatting for the two Sum text boxes.

 Creating and Embedding a Subreport 851

Ch
ap

te
r 1

6

To see a more complex example of conditional formatting in action, open rptEmployeeRes in
the sample database. That report uses conditional formatting to check for overlapping reser-
vation requests, highlight them, and reveal a warning label in the section header.

Creating and Embedding a Subreport
In many of your reports, you will probably design the Detail section to display a single
line of information from the underlying record source. As you learned earlier in this
chapter, it’s fairly easy to link several tables to get lots of detail across several one-to-
many relationships in your database. You also saw how to use the Hide Duplicates prop-
erty to display a hierarchy across several rows of detail.

However, as with forms and subforms, which you learned about in Chapter 13, you can
embed subreports (or subforms) in the Detail section of your report to display multiple
detail lines from a table or query that has a many relationship to the one current line
printed in the Detail section. You must use this technique when you want to display
information from more than one many relationship on a single page. In the Conrad
Systems Contacts database, for example, if you want to provide details about contact
events and products owned by a contact, you must use subreports. You could create
a very complex query that joins all the information, but you’d get one row for each
unique combination of contact event and product. If a contact has 100 events and owns
six products, each of the six product rows is matched with each of the 100 contact
event rows. You’ll get 600 rows for that contact in a query that joins the tblContacts,
 tblContactEvents, and tblContactProducts tables—each product record appears 100
times, and each contact event record appears six times.

Understanding Subreport Challenges
Subreports present a unique challenge. Unlike a subform where you can scroll through
all available related rows in one window, a subreport has no scroll bar. The subreport
expands to list all the related rows. If the rows won’t fi t on one page, it can be diffi cult
to repeat the header information at the top of the subsequent pages. Although you can
defi ne a report header in a report that you use as a subreport, that header prints only
once at the top of the subreport space on the page where the subreport starts.

To understand how this works, let’s examine two approaches to listing department
information in a report with related employee information in a subreport. In the
 HousingDataCopy2.accdb sample database, open rptDepartmentsWSubBad in Design
view, as shown in Figure 16-29. When you drop a report onto the design of another
report to create a subreport, Access sizes the subreport control to the height of one line
from the report inside the control. The fi gure shows the subreport control expanded so
that you can see the subreport inside it. We selected the control and dragged down the
bottom edge, but you might fi nd it easier to change the Height property in the property
sheet because the bottom sizing box is diffi cult to grab with your mouse pointer.

Chapter 16

852 Chapter 16 Advanced Report Design
Figure 16-29 This report displays departments with related employees in a subreport.

The outer report, Departments, uses a query based on the tblDepartments and
 tblEmployees tables to provide information about each department and the depart-
ment’s manager. The report inside the subreport control, Employees, has another
query on the tblEmployees table. The report looks simple enough—a heading for each
department row and a heading inside the subreport to provide column headings for the
employee information. You can also see that a subreport works just like a subform—you
defi ne the Link Master Fields and Link Child Fields properties of the subreport control
to link the information from the two reports.

Now switch to Print Preview, and go to the fourth and fi fth pages of the report, as
shown in Figures 16-30 and 16-31, to see what really happens when a department has
more employees than will fi t on one page.

 Creating and Embedding a Subreport 853

Ch
ap

te
r 1

6

Figure 16-30 The top of the fourth page of the departments and employees report displays the
header information.

Figure 16-31 The top of the fi fth page of the departments and employees report has
missing headers.

As you can see, the fi fth page has nothing more than the page header to help identify
the information being printed. The detail department information printed once on the
fourth page, as did the report header from the subreport. When the subreport over-
fl owed onto a second page, the column heading information from the report header
defi ned for the subreport didn’t print again.

To see how to solve this problem, open rptDepartmentsWSub in Design view, as shown
in Figure 16-32. Again, the fi gure shows the subreport control expanded so that you can
see the subreport inside it.

Chapter 16

854 Chapter 16 Advanced Report Design
Figure 16-32 This design of a report and subreport handles the page overfl ow problem.

Can you fi gure out the difference? The secret is the outer report has a group defi ned on
department, even though there is only one detail row per department. All the depart-
ment information and the headers for the columns in the subreport appear in this
group header. Remember that you set the Repeat Section property of a group header to
Yes to force it to appear again at the top of a page if the information in the Detail section
overfl ows the page. The Detail section contains only the subreport, and the subreport
has no headers. If you switch to Print Preview and go to the fi fth page in this report, as
shown in Figure 16-33, you can see that the appropriate headers appear again when the
Product Development department overfl ows onto another page.

Figure 16-33 The top of the fi fth page of the departments and employees report in this sample
has headers correctly repeated.

 Creating and Embedding a Subreport 855

Ch
ap

te
r 1

6

Building a Report with a Subreport
The manager of Housing Administration has just asked you to produce a report that
summarizes for each facility the revenue by month. You know the manager is someone
who likes to see a visual representation as well as the data, so you need to design a
report that will ultimately display a revenue chart as well. You’ll learn how to add the
PivotChart in the last section of this chapter.

Building the Subreport Query
If all you needed to do was display total revenue by facility and by month, you could
build one totals query that joins the tblFacilities table with the tblReservations table
and group by facility. However, the need to add the chart means you’ll need a subreport
to calculate the monthly totals so that you can display the chart that graphically shows
all the month values immediately below the numerical data. If you try to add a chart to
the Detail area of a report that displays totals by month, the chart will show one graph
point for the current month, not all months.

In the previous examples, you have been using a complex query to calculate revenue by
day—an accounts receivable perspective. But guests in a hotel usually don’t pay for their
stay until the day they check out. So, to calculate actual revenue received for a month,
you should use the check-out date and the total amount owed.

Start a new query on the tblReservations table. In the query design grid, include the
FacilityID (you’ll need this fi eld to provide the link between the subreport and the main
report), CheckOutDate, and TotalCharge fi elds. You could turn this into a totals query
to sum the total charge by month, but it’s just as easy to do that in the report. Your
query should look like Figure 16-34. You can fi nd this query saved in the sample data-
base as qryXmplFacilityRevenue.

Designing the Subreport
The report you need for the subreport is very simple. Click the Report Design but-
ton in the Reports group on the Create tab to start designing your report. If you want
your report to look like the Facility Occupancy report earlier in this chapter, click the
AutoFormat button in the AutoFormat group on the Arrange tab, and select the Access
2007 style from the gallery of options. Remember from the discussion in the previous
section that you’ll see what’s in the report header and report footer of a report that you
use as a subreport, but Access never displays the page header or page footer. Click the
Page Header/Footer button in the Show/Hide group on the Arrange tab. Now click the
Report Header/Footer button in the same group. You now need to bind this report to
the qryXmplFacilityRevenue query (or the query you created earlier). Open the prop-
erty sheet and set Record Source to qryXmplFacilityRevenue.

Chapter 16

856 Chapter 16 Advanced Report Design

Figure 16-34 This query for the subreport calculates revenue by facility and month.

Open the Group, Sort, And Total pane by clicking the Group & Sort button in the
Grouping & Totals group on the Design tab. Click the Add A Group button to start a
new grouping specifi cation. Select the CheckOutDate fi eld in the Select box, click the
More button to expand the option list, set the group interval to By Month, and then
close the pane. Because you want the report to calculate and display totals by month
only, close up the Detail section to zero height. Reduce the report design area to about
5.5 inches. Close up the Report Header section to zero height because you’ll add the
column labels to the outer report.

Draw a line across the top of the CheckOutDate Header section starting near the left
edge and extending to about 5.1 inches wide. In the Property Sheet window, set the
 Border Style property to Solid and the Border Width property to 1 PT. Underneath this
line about 1.5 inches from the left, drag and drop the CheckOutDate fi eld from the
Field List window, and delete the attached label. In the Property Sheet window, set the
Format property to mmmm yyyy to display the month name and four-digit year, and
change the Width property to 1.5 inches. Drag and drop the TotalCharge fi eld from the
fi eld list into the CheckOutDate Header section about 3.75 inches from the left, and
delete the attached label. In the Property Sheet window, expand the width to 1.2 inches,
change the Name property of the control to TotalChargeSum, and change the Control
Source to =Sum([TotalCharge]). (Remember, you must change the name of the con-
trol to avoid a circular reference in the expression!) Line up the two text boxes in the
CheckOutDate Header section horizontally.

 Creating and Embedding a Subreport 857

Ch
ap

te
r 1

6

Finally, click the Text Box button in the Controls group on the Design tab, and add a
text box to the Report Footer section lined up under the TotalChargeSum text box. Set
its Control Source property to =Sum([TotalCharge]), change the font to Bold, and set the
Format property to Currency. Change the caption of the attached label to Grand Total,
change the font to Bold, and position it near the left edge of the Report Footer section.
Your report should look something like Figure 16-35. You can fi nd this report saved as
rsubXmplFacilityRevenueByMonth in the sample database.

Figure 16-35 This is your subreport to summarize revenue by month.

Embedding a Subreport
You can fi nd the query you need for the outer report saved as qryRptFacilities in the
sample database. This query includes the FacilityID, FacilityName, and FacilityAddress
fi elds. It also includes an expression (named FacilityCSPP) that concatenates the
 FacilityCity, FacilityStateOrProvince, and FaciltyPostalCode fi elds so that they display
nicely on one line in the report.

Click the Report Design button in the Reports group on the Create tab to start your
report design. Click the AutoFormat button in the AutoFormat group on the Arrange
tab, and select the Access 2007 style from the gallery of options. Expand the report to
6.5 inches wide. Open the Property Sheet window, and enter qryRptFacilities in the
Record Source property to bind the report to the saved query. Expand the Page Header

Chapter 16

858 Chapter 16 Advanced Report Design
section to 0.5 inch, add a label control to the Page Header section, and type Facility
 Revenue in the label. Change Font Size to 20, size the label to fi t, bold the text, and
position it in the upper-left corner of the Page Header section.

Open the Group, Sort, And Total pane by clicking the Group & Sort button in the
Grouping & Totals group on the Design tab. Click the Add A Group button to start a
new grouping specifi cation. Select the FacilityName fi eld in the Select box, click the
More button to expand the option list, set the last column to Keep Header And First
Record Together On One Page, and then close the pane. Expand the FacilityName
Header section to about 1.25 inches high to give yourself some room to work. Select
the FacilityName Header section, and in the Property Sheet window, set the Force New
Page property to Before Section.

Drag and drop all four fi elds from the Field List window onto the FacilityName Header
section of the report one at a time, as shown in Figure 16-36. Delete the attached label
for the FacilityCSPP control, expand the width of the FacilityName text box to 1.6
inches, and expand the width of the FacilityAddress and FacilityCSPP text boxes to 3.2
inches. Bold the text of the three labels in the FacilityName Header section. Click the
Label button in the Controls group on the Design tab, and place a label control under
the FacilityCSPP text box control about 2.5 inches in from the left. Type Month in the
label, and press Enter. (You can ignore the smart tag warning about an unattached
label.) Add a second label control about 4.5 inches in from the left, type Revenue in the
label, and press Enter. Line up the two labels horizontally, and bold their text. Click the
Line Control button in the Controls group on the Design tab, and add a line at the top
of the FacilityHeader section. In the Property Sheet window for this line, set the Border
Style property to Solid, set the Border Width property to 1 PT, and set the Width prop-
erty to 4.5 inches.

Expand the Navigation Pane if it is collapsed, click at the top of the Navigation Pane,
click Object Type under Navigate To Category, and then click Reports under Filter By
Group to display a list of reports in the sample database. Drag and drop the report you
created in the previous section (or the rsubXmplFacilityRevenueByMonth report) from
the Navigation Pane onto the Detail section of the report into the upper-right corner
about 0.25 inch in from the left edge. In the Property Sheet window, set the Link Child
Fields and Link Master Fields properties to FacilityID. Delete the label that Access
attached to the subreport control, and then reduce the height of the Detail section to
about 0.36 inch.

As a fi nishing touch, you can add a date text box control and a page number text box
control to the Page Footer section as you learned to do earlier in this chapter. Also, you
should change all the margins for the report to 1 inch using the Page Setup dialog box
and enter a caption of Facility Revenue for the report in the Property Sheet window.
Your report should look something like Figure 16-36. You can fi nd this report saved as
rptXmplFacilityRevenue in the sample database.

 Creating and Embedding a Subreport 859

Ch
ap

te
r 1

6

Figure 16-36 The design of your report now includes a subreport.

Switch to Print Preview to see the result as shown in Figure 16-37. If the Month and
Revenue labels aren’t correctly positioned over the columns in the subreport, switch to
Layout view to easily make the adjustment.

Figure 16-37 Your report now displays facility information with monthly revenue in a subreport.

Chapter 16

860 Chapter 16 Advanced Report Design
Adding a PivotChart to a Report
You can now design a form in PivotChart view to graphically display monthly revenue
data. Note that a report doesn’t have a PivotChart or Pivot Table view, but it is perfectly
legal to embed a form into a report as a subreport. (But you cannot embed a report in a
form as a subform.)

Designing the PivotChart Form
When you built the subreport for the Facility Revenue report, you used a simple query
on the tblReservations table. For the chart, you need to include the name of the facility—
the ID won’t make much sense in the legend for the chart. In the sample database, you
can fi nd a query named qryXmplChtFacilityRevenue that includes both the tblFacilities
and tblReservations tables. The fi elds in the query are FacilityID and FacilityName from
the tblFacilities table and CheckOutDate and TotalCharge from the tblReservations
table.

To build the chart you need, select the query in the Navigation Pane, and then click the
PivotChart button in the Forms group on the Create tab. This command opens a new
form object in PivotChart view.

Open the chart fi eld list, and drag and drop the FacilityName fi eld onto the Drop Series
Fields Here area of the chart. Click the plus sign next to the CheckOutDate By Month
fi eld to expand its list and drag and drop Months onto the Drop Category Fields Here
area. Drag and drop the Total Charge fi eld onto the Drop Data Fields Here area—the
chart calculates a sum of this fi eld for you. Click the Property Sheet button in the Tools
group on the Design tab, and select Chart Workspace on the General tab in the Prop-
erty Sheet window. Click both the Add Title and Add Legend buttons to add these ele-
ments to your chart.

Click the Chart Workspace Title element to select it. In the Property Sheet window,
select the Format tab, and enter Facility Revenue in the Caption box. In the PivotChart,
click the vertical Axis Title and in the Property Sheet window, enter Revenue in the
Caption box. In the PivotChart, click the horizontal Axis Title, and change its Caption
to Months. Go back to the General tab, and select the Chart Workspace. On the Show/
Hide tab of the Property Sheet window, clear all the options under Show By Default and
Let Users View so that users cannot modify the chart. Your chart should now look like
Figure 16-38. Switch back to Design view, and set the Default View property to Pivot-
Chart. Be sure to save the form, and give it a name such as chtFacilitiesRevenue. You
can fi nd this form saved as chtXmplFacilityRevenue in the sample database.

 Adding a PivotChart to a Report 861

Ch
ap

te
r 1

6

Figure 16-38 This PivotChart form displays facility revenue by month.

Embedding a PivotChart in a Report
The rest is easy. Go to the Navigation Pane, and select the report you created in the
previous section to display facilities with revenue by month in a subreport. Open that
report in Design view. (You can also open the sample rptXmplFacilityRevenue report.)
Select the subreport control, and click the Size To Fit button in the Size group on the
Arrange tab to make sure the subreport is exactly one line high to give yourself some
room to work. Don’t worry about displaying all the lines in the subreport—when you
dragged and dropped it onto the report, Access set its Can Grow property to Yes. When
you view the report, Access will expand the subreport control to display all the lines.

Expand the Detail section to about 5.5 inches high. Make sure the Use Control Wizards
button in the Controls group is turned off, then click the Subform/Subreport button in
the Controls group on the Design tab, and fi nally draw the control in the Detail section
under the previous subreport approximately 5.5 inches wide and 4 inches high. The
size of the subreport control affects the resolution of the chart you’re going to put inside
it, so you want it big enough to be easily readable. Delete the label from the control.
Move the subreport control up under the previous subreport control.

Chapter 16

862 Chapter 16 Advanced Report Design
With the new subreport control selected, open the Property Sheet window, and set the
Source Object property to the PivotChart form you created earlier. (Or, you can use
the example chtXmplFacilityRevenue form in the sample database.) Set both the Link
Child Fields and Link Master Fields properties to FacilityID. Your report design should
now look like Figure 16-39. Notice that the subreport window shows you the Form view
design of the form, not the chart.

Figure 16-39 Your report now includes an embedded PivotChart form as a subreport.

Switch to Print Preview to see the result, as shown in Figure 16-40. Now that lay-
out should make the facilities manager happy! You can fi nd the report saved as
rptXmplFacilityRevenueChart in the sample database.

 Adding a PivotChart to a Report 863

Ch
ap

te
r 1

6

Figure 16-40 Here is your completed report with an embedded subreport and PivotChart in
Print Preview.

At this point, you should thoroughly understand the mechanics of constructing reports
and working with complex formulas. The next part of the book explores how to apply
all you’ve learned to this point to building an Access project that uses Microsoft SQL
Server to store your tables and queries (views, stored procedures, and functions).

PART 4

Automating an
Access Application

CHAPTER 17

Understanding Event Processing. 867

CHAPTER 18

Automating Your Application
with Macros . 887

CHAPTER 19

Understanding Visual Basic
Fundamentals . 941

CHAPTER 20

Automating Your Application
with Visual Basic . 1051
 865

CHAPTER 17

Understanding Event Processing

Although you can make Microsoft Offi ce Access 2007 do a lot for you by setting
properties when you design forms and reports, you really can’t make your applica-

tion “come alive” until you build macros or Visual Basic procedures that respond to
events. An event can be as simple as the user clicking a button—and your code responds
by opening a related form or report. An event can also trigger complex actions, such as
creating a booking record when the user selects an available room.

In this chapter, you’ll fi rst learn what event processing is all about—both in Microsoft
Windows and specifi cally within Offi ce Access 2007. The second part of the chapter
contains a comprehensive reference for all the events available within Access, a discus-
sion of event sequence, and a list of the specifi c macro actions you can use to respond
to events.

Access as a Windows Event-Driven Application
If you’re reading this book, you’re using the 2007 Microsoft Offi ce system and
 Windows. You probably use Windows every day and don’t give a second thought to
how it actually works. Understanding Windows is essential to programming events in
Access 2007.

Understanding Events in Windows
Windows is an event-driven and message-based operating system. When you start an
application on your system, that application sends messages to Windows to tell Windows
that it wants to respond to certain events. When an event occurs (such as resting your
mouse pointer on the application window or clicking somewhere), Windows sends a
message to the application to notify it that the event happened. The message usually
includes critical information, such as the location of the mouse pointer when the event
occurred. The application then responds to the event—usually by sending a message to
Windows to act upon the event. Figure 17-1 shows you a conceptual view of this process.

For example, when you have Windows Explorer open and click a fi le name, Windows
sends a message to Windows Explorer to tell it where you clicked. Windows Explorer
sends a message back to Windows to tell it to highlight what you selected. Another
example is the clock utility that runs on your taskbar. Windows starts this utility when

Access as a Windows Event-Driven Application 867

Summary of Form and Report Events 869

Understanding Event Sequence and Form Editing . . . 879
 867

Chapter 17

868 Chapter 17 Understanding Event Processing
Windows initializes unless you’ve set a taskbar option to not display the clock. When
the utility starts, it asks Windows to notify it when the system clock time changes.
When the clock utility receives a message from Windows that the system clock time has
changed to a different minute, it sends a message back to Windows to tell it to change
the characters displayed on the taskbar.

Notifies Windows of events to
which application can respond

Notifies application
when event occurs

Application responds

Application Running
Inside Windows

Microsoft Windows

Figure 17-1 Applications running in Windows send messages and respond to events.

The most important aspect of this entire process is that the user is in control of the
applications that are running. As the user of your personal computer, you decide what
you want the applications to do next. And because Windows can handle multiple mes-
sages at a time, you can start a process in an application (perhaps a search in Windows
Explorer for a fi le) and then switch to or start another application to do something else
(such as playing a game of solitaire while you wait for the search to fi nish).

Leveraging Access Events to Build an Application
If you think of forms and reports in your Access application as little applications run-
ning under Access, you have the right idea. When you set an event property (one of
the properties on the Event tab in the property sheet in a report, a form, or a control
on a form or report that points to a macro or a Visual Basic procedure, you’re notify-
ing Access that you want to respond to that event. The code you write in your macro or
Visual Basic procedure provides the response to the occurrence of the event.

Access passes on to forms, reports, and controls on forms and reports some typical
Windows events such as mouse clicks (the Click and DblClick events) or characters
entered from the keyboard (the Change, KeyDown, and KeyPress events). Access also
defi nes a wide range of events that are specifi c to the objects it supports. For example,
the BeforeUpdate event signals that the value in a control is about to change or a record

 Summary of Form and Report Events 869

Ch
ap

te
r 1

7

being edited in the form is about to be saved. You can perform data validation in your
macro or Visual Basic code that responds to BeforeUpdate and have your macro or code
send a message back to Access to cancel the save if some business rule is about to be
violated.

Although events in Access occur in a specifi c sequence, you should keep in mind that
other events can occur while any code you’ve written to respond to an event is running.
Also, some events signal that an action is about to happen but might not have com-
pleted yet. For example, the form Open event signals that a command has been issued
to open the form, but the form isn’t displayed on the screen yet.

The next section gives you a comprehensive overview of all events in Access 2007 and
describes how you can use them.

Summary of Form and Report Events
Access 2007 provides more than 60 different events on forms, form controls, and
reports that can trigger macros or Visual Basic procedures. You indicate that you want
to respond to an event by providing the name of a macro, a Visual Basic function (pre-
ceded by an equal sign), or the special settings [Event Procedure] or [Embedded Macro]
as the setting of the event property in the Property Sheet window. When you specify
[Event Procedure], Access looks for a Visual Basic procedure in the module stored with
the form or report that has the name of the event. When the event property is set to
[Embedded Macro], Access executes the related macro embedded in the form or report
defi nition. For details about Visual Basic procedures, see Chapter 19, “Understanding
Visual Basic Fundamentals.” For details about creating macros, see Chapter 18, “Auto-
mating Your Application with Macros.”

The tables in this section summarize those events and organize them in the following
functional categories:

O Opening and closing forms and reports

O Changing data

O Detecting focus changes

O Detecting fi lters applied to forms and reports

O Trapping keyboard and mouse events

O Detecting changes in PivotTables and PivotCharts

O Printing

O Trapping errors

O Detecting timer expiration

Chapter 17

870 Chapter 17 Understanding Event Processing
Note
The event property names listed on the following pages are the names you will see

in the property sheet in form or report Design view. To reference an event property

from a macro or a Visual Basic procedure, do not include the blanks in the name. For

example, the On Load event property in a form property sheet is the OnLoad property

of the form. The exceptions to this rule are the 18 events associated with PivotTables and

 PivotCharts. For those event properties, the name of the event property is the same as

the name of the event, which might not match the property name you see in the prop-

erty sheet.

Table 17-1 Opening and Closing Forms and Reports1

Event Property
(Event Name) Description

On Close (Close) Runs the specifi ed macro, Visual Basic function, or Visual
Basic event procedure when the user or a close command in
your code requests to close the form or the report but before
Access clears the screen. Your code that responds to the event
cannot cancel the Close event. For forms, the Close event
occurs after the Unload event.

On Load (Load) Runs the specifi ed macro, Visual Basic function, or Visual Basic
event procedure when Access loads a form or report and then
displays the records in the recordset. Your code that responds
to the event can set values in controls or set form, report,
or control properties. The Load event occurs after the Open
event and before the Resize event. Your code cannot cancel a
Load event.

On Open (Open) Runs the specifi ed macro, Visual Basic function, or Visual Basic
event procedure when the user or an open command in your
code requests to open the form or the report but before
Access displays the fi rst record. To gain access to a control
on the form or report, your code must specify a GoToControl
action or SetFocus method to set the focus on the control.
The Open event occurs before Access loads the form or report
recordset, so your code that responds to the event can prompt
the user for parameters and apply fi lters. Your code can also
change the form or report record source in this event.

On Resize (Resize) Runs the specifi ed macro, Visual Basic function, or Visual
Basic event procedure when a form or report changes size.
This event also occurs when a form or report opens, after the
Load event but before the Activate event. Your code can use
this event to force immediate repainting of the resized form
or report or to recalculate variables that are dependent on
the size of the form. This property has no effect when you are
using the single-document interface unless you have also set
the Pop Up or Modal property to Yes. When you open a report
in Print Preview, this event occurs only when Access opens the
report; the event does not occur again if the user resizes the
window in Print Preview.

Note
The event property names listed on the following pages are the names you will see

in the property sheet in form or report Design view. To reference an event property

from a macro or a Visual Basic procedure, do not include the blanks in the name. For

example, the On Load event property in a form property sheet is the OnLoad property

of the form. The exceptions to this rule are the 18 events associated with PivotTables and

PivotCharts. For those event properties, the name of the event property is the same as

the name of the event, which might not match the property name you see in the prop-

erty sheet.

 Summary of Form and Report Events 871

Ch
ap

te
r 1

7

Event Property
(Event Name) Description

On Unload (Unload) Runs the specifi ed macro, Visual Basic function, or Visual Basic
event procedure when the user or your code requests that the
form or report be closed but before Access removes the form
or report from the screen. Your code can cancel an Unload
event if it determines that a form should not be closed.

1 These events occur for all views of forms and reports except Design view.

Table 17-2 Changing Data2

Event Property
(Event Name) Description

After Del Confi rm
(AfterDelConfi rm)

Runs the specifi ed macro, Visual Basic function, or Visual
Basic event procedure after the user has requested that one
or more rows on the form be deleted and after the user
has confi rmed the deletion. The AfterDelConfi rm event also
occurs if your code that responds to the BeforeDelConfi rm
event cancels the deletion. In a Visual Basic procedure,
you can test a status parameter to determine whether the
deletion was completed, was canceled by your code in the
BeforeDelConfi rm event, or was canceled by the user. If the
deletion was successful, you can use the Requery action within
your code that responds to the AfterDelConfi rm event to
refresh the contents of the form or combo boxes. Your code
cannot cancel this event. In an Access project (.adp), this event
occurs before the Delete event.

After Insert (AfterInsert) Runs the specifi ed macro, Visual Basic function, or Visual Basic
event procedure after the user has saved a new record. Your
code can use this event to requery a recordset after Access
has inserted a new row. Your code cannot cancel this event.

After Update
(AfterUpdate)

Runs the specifi ed macro, Visual Basic function, or Visual
Basic event procedure after the data in the specifi ed form
or form control has been updated. See “Understanding
Event Sequence and Form Editing” on page 882 for details.
Your code that responds to this event cannot cancel it. In
the AfterUpdate event of a control, you can, however, use a
RunCommand action to choose the Undo command from
the Quick Access Toolbar or execute the Undo method of the
control. This event applies to all forms and to combo boxes,
list boxes, option groups, text boxes, and bound object frames
as well as to check boxes, option buttons, and toggle buttons
that are not part of an option group.

Chapter 17

872 Chapter 17 Understanding Event Processing
Event Property
(Event Name) Description

Before Del Confi rm
(BeforeDelConfi rm)

Runs the specifi ed macro, Visual Basic function, or Visual
Basic event procedure after Access has deleted one or more
rows on the form but before Access displays the standard
confi rmation dialog box. If your code cancels this event,
Access replaces the deleted rows and does not display the
confi rmation dialog box. In a Visual Basic procedure, you
can display a custom confi rmation dialog box and then set
a return parameter to suppress the standard confi rmation
dialog box. In an Access project (.adp), this event occurs
before the Delete event.

Before Insert
(BeforeInsert)

Runs the specifi ed macro, Visual Basic function, or Visual
Basic event procedure when the user types the fi rst character
in a new record. This event is useful in providing additional
information to a user who is about to add records. If your
code cancels this event, Access erases any new data on the
form. This event occurs prior to the BeforeUpdate event.

Before Update
(BeforeUpdate)

Runs the specifi ed macro, Visual Basic function, or Visual
Basic event procedure before Access saves changed data in
a control to the form’s record buffer or saves the changed
record to the database. See “Understanding Event Sequence
and Form Editing” on page 882 for details. Your code that
responds to this event can examine both the current and
previous values of a control. Your code can cancel this event
to stop the update and place the focus on the changed
control or record. This event is most useful for performing
complex validations of data on forms or in controls. This event
applies to the same controls as the AfterUpdate event.

On Change (Change) Runs the specifi ed macro, Visual Basic function, or Visual Basic
event procedure whenever the user changes any portion of
the contents of a combo box control or a text box control.
Your code cannot cancel this event. See also the KeyDown and
KeyPress keyboard events.

On Delete (Delete) Runs the specifi ed macro, Visual Basic function, or Visual
Basic event procedure just before Access deletes one or more
rows. This event occurs once per row being deleted, and your
code that responds to the event can examine the data in
each row to be deleted. Your code can provide a customized
warning message. Your code can also provide automatic
deletion of dependent rows in another table (for example,
of all the orders for the customer about to be deleted) by
executing a delete query. Your code can cancel this event
to prevent individual rows from being deleted. (Cancel the
BeforeDelConfi rm event to cancel deletion of all rows.)

 Summary of Form and Report Events 873

Ch
ap

te
r 1

7

Event Property
(Event Name) Description

On Dirty (Dirty) Runs the specifi ed macro, Visual Basic function, or Visual Basic
event procedure whenever the user fi rst changes the contents
of a bound control on a bound form (a form that has a record
source). This event also occurs if your code changes the value
of a bound control from a macro (SetValue) or a Visual Basic
procedure. Your code that responds to this event can verify
that the current record can be updated. Your code can cancel
this event to prevent the update. After this event occurs, the
Dirty property of the form is True until the record is saved.

On Not In List
(NotInList)

Runs the specifi ed macro, Visual Basic function, or Visual Basic
event procedure when the user types an entry in a combo
box that does not exist in the current recordset defi ned by the
Row Source property for the combo box. Your code cannot
cancel this event. Your code can allow the user to create a
new entry for the combo box (perhaps by adding a record to
the table on which the Row Source property is based). You
can also use the List Items Edit Form property to tell Access
to open a form to add or edit the records in the recordset of
the combo box. In a Visual Basic procedure, you can examine
a parameter passed to the event procedure that contains the
unmatched text. Your code can also set a return value to cause
Access to display the standard error message, display no error
message (after your code has issued a custom message), or
requery the list after your code has added data to the Row
Source property.

On Undo (Undo) Runs the specifi ed macro, Visual Basic function, or Visual Basic
event procedure when the user undoes a change in a form or
a text box or combo box control that has been committed to
the form’s record buffer. See “Understanding Event Sequence
and Form Editing” on page 882 for details. The Undo event
does not occur when the user chooses the Undo Typing
command. Your code that responds to the event can examine
both the current and previous values of the control and cancel
the event if the change should not be undone.

On Updated (Updated) Runs the specifi ed macro, Visual Basic function, or Visual
Basic event procedure after the data in a form’s object
frame control changes. Your code cannot cancel this event.
In a Visual Basic procedure, your code can examine a status
parameter to determine how the change occurred.

2 These events occur for forms in Form view or Datasheet view. They do not apply to forms in Design,
PivotTable, PivotChart, or Layout view.

CAUTION!
You can cause an endless loop if your code changes the contents of a control within the

event procedure for the control’s Change event.

C U O !

Chapter 17

874 Chapter 17 Understanding Event Processing
Table 17-3 Detecting Focus Changes3

Event Property
(Event Name) Description

On Activate (Activate) Runs the specifi ed macro, Visual Basic function, or Visual
Basic event procedure in a form or a report when the Form
or Report window receives the focus and becomes the active
window. This event does not occur for pop-up or modal
forms. This event also does not occur when a normal Form
or Report window regains the focus from a pop-up or modal
form unless the focus moves to another form or report. Your
code cannot cancel this event.

On Current (Current) Runs the specifi ed macro, Visual Basic function, or Visual Basic
event procedure in a bound form or report when the focus
moves from one record to another but before Access displays
the new record. Access also triggers the Current event when
the focus moves to the fi rst record as a form or report opens.
This event is most useful for keeping two open and related
forms synchronized. Your code cannot cancel this event. Your
code can, however, use GoToRecord or similar action to move
to another record if it decides that the form display should
not move to the new record. This event does not occur for
reports displayed in Print Preview.

On Deactivate
(Deactivate)

Runs the specifi ed macro, Visual Basic function, or Visual Basic
event procedure when a form or a report loses the focus to a
window within the Access application that is not a pop-up or
modal window. Your code cannot cancel this event.

On Enter (Enter) Runs the specifi ed macro, Visual Basic function, or Visual Basic
event procedure when the focus moves to a bound object
frame, a combo box, a command button, a list box, an option
group, or a text box, as well as when the focus moves to a
check box, an option button, or a toggle button that is not
part of an option group. Your code cannot cancel this event.
This event occurs only when the focus moves from another
control on the same form or report. If the user changes the
focus to another control with the mouse, this event occurs
before LostFocus in the current control and before the Enter,
GotFocus, MouseDown, MouseUp, and Click events for the
new control. If the user changes the focus to a control using
the keyboard, this event occurs after the KeyDown, Exit, and
LostFocus events in the control that previously had the focus
but before the GotFocus, KeyPress, and KeyUp events in the
control that is receiving the focus. This event does not occur
for reports displayed in Print Preview or forms displayed in
PivotTable or PivotChart view.

 Summary of Form and Report Events 875

Ch
ap

te
r 1

7

Event Property
(Event Name) Description

On Exit (Exit) Runs the specifi ed macro, Visual Basic function, or Visual
Basic event procedure when the focus moves from a bound
object frame, a combo box, a command button, a list box, an
option group, or a text box, as well as when the focus moves
from a check box, an option button, or a toggle button that
is not part of an option group to another control on the same
form or report. Your code cannot cancel this event. This event
does not occur when the focus moves to another window. If
the user leaves a control using the mouse, this event occurs
before the Enter, GotFocus, MouseDown, MouseUp, and Click
events in the new control. If the user leaves a control using
the keyboard, the KeyDown and Exit events in this control
occur, and then the Enter, KeyPress, and KeyUp events occur
in the new control. This event does not occur for reports
displayed in Print Preview or forms displayed in PivotTable or
PivotChart view.

On Got Focus
(GotFocus)

Runs the specifi ed macro, Visual Basic function, or Visual
Basic event procedure when an enabled form or report
control receives the focus. If a form or report receives the
focus but has no enabled controls, the GotFocus event occurs
for the form or report. Your code cannot cancel this event.
The GotFocus event occurs after the Enter event. Unlike the
Enter event, which occurs only when the focus moves from
another control on the same form or report, the GotFocus
event occurs every time a control receives the focus, including
from other windows. This event does not occur for reports
displayed in Print Preview or forms displayed in PivotTable or
PivotChart view.

On Lost Focus
(LostFocus)

Runs the specifi ed macro, Visual Basic function, or Visual
Basic event procedure when an enabled form or report
control loses the focus. The LostFocus event for the form or
report occurs whenever a form or report that has no enabled
controls loses the focus. Your code cannot cancel this event.
This event occurs after the Exit event. Unlike the Exit event,
which occurs only when the focus moves to another control
on the same form or report, the LostFocus event occurs every
time a control loses the focus, including to other windows.
This event does not occur for reports displayed in Print
Preview or forms displayed in PivotTable or PivotChart view.

3 These events do not apply to forms or reports in Design view.

Chapter 17

876 Chapter 17 Understanding Event Processing
Table 17-4 Detecting Filters Applied to Forms and Reports4

Event Property
(Event Name) Description

On Apply Filter
(ApplyFilter)

Runs the specifi ed macro, Visual Basic function, or Visual Basic
event procedure when a user applies a fi lter on a form or report
from the user interface or via the ApplyFilter command. Setting
the form or report’s Filter, OrderBy, ServerFilter, FilterOn, or
OrderByOn properties from code does not trigger this event.
Your code can examine and modify the form or report’s Filter
and Order By properties or cancel the event. Within a Visual
Basic procedure, you can examine a parameter that indicates
how the fi lter is being applied.

On Filter (Filter) Runs the specifi ed macro, Visual Basic function, or Visual Basic
event procedure when the user opens the Filter By Form or
the Advanced Filter/Sort window. Your code can use this event
to clear any previous Filter or Order By setting, set a default
Filter or Order By criterion, or cancel the event to prevent the
window from opening and provide your own custom fi lter
form. Within a Visual Basic procedure, you can examine a
parameter that indicates whether a user has asked to open the
Filter By Form or the Advanced Filter/Sort window.

4 These events apply to forms in Form or Datasheet view and reports in Report view.

Table 17-5 Trapping Keyboard and Mouse Events5

Event Property
(Event Name) Description

On Click (Click) Runs the specifi ed macro, Visual Basic function, or Visual Basic event
procedure when the user clicks a command button or clicks an
enabled form, report, or control. Your code cannot cancel this event.
The Click event occurs for a form or report only if no control on the
form or report can receive the focus.

On Dbl Click
(DblClick)

Runs the specifi ed macro, Visual Basic function, or Visual Basic event
procedure when the user double-clicks a bound object frame, a
combo box, a command button, a list box, an option group, or a text
box, as well as when the user double-clicks a check box, an option
button, or a toggle button that is not part of an option group. The
Click event always occurs before DblClick. That is, when the user clicks
the mouse button twice rapidly, the Click event occurs for the fi rst
click followed by DblClick for the second click. Access runs the macro
or Visual Basic procedure before showing the user the normal result
of the double-click. Your code can cancel the event to prevent the
normal response to a double-click of a control, such as activating the
application for an ActiveX object in a bound control or highlighting
a word in a text box. The DblClick event occurs for a form or report
only if no control on that form or report can receive the focus.

 Summary of Form and Report Events 877

Ch
ap

te
r 1

7

Event Property
(Event Name) Description

On Key Down
(KeyDown)

Runs the specifi ed macro, Visual Basic function, or Visual Basic event
procedure when the user presses a key or a combination of keys.
Your code cannot cancel this event. In a Visual Basic procedure, you
can examine parameters to determine the key code (the numeric
code that represents the key pressed) and whether the Shift, Ctrl, or
Alt key was also pressed. You can also set the key code to 0 in Visual
Basic to prevent the control from receiving keystrokes. If the form or
report has a command button whose Default property is set to Yes
(this indicates that the command button responds to Enter as though
the button had been clicked), KeyDown events do not occur when
the Enter key is pressed. If the form or report has a command button
whose Cancel property is set to Yes (this indicates that the command
button responds to the Esc key as though the button had been
clicked), KeyDown events do not occur when the Esc key is pressed.
See also the Change event. The KeyDown event occurs before
KeyPress and KeyUp. If the key the user presses (such as the Tab key)
causes the focus to move to another control, the control that has the
focus when the user presses the key signals a KeyDown event, but the
control that receives the focus signals the KeyPress and KeyUp events.
If you set the form’s KeyPreview property to Yes, this event also
occurs for the form or report.

On Key Press
(KeyPress)

Runs the specifi ed macro, Visual Basic function, or Visual Basic event
procedure when the user presses a key or a combination of keys
that would result in a character being delivered to the control that
has the focus. (For example, KeyPress does not occur for the arrow
keys.) Your code cannot cancel this event. In a Visual Basic procedure,
you can examine the ANSI key value and set the value to 0 to cancel
the keystroke. The KeyPress event occurs after KeyDown and before
KeyUp. If the form or report has a command button whose Default
property is set to Yes, the KeyPress event occurs for the form or
report and the command button when the Enter key is pressed. If
the form or report has a command button whose Cancel property is
set to Yes, the KeyPress event occurs for the form or report and the
command button when the Esc key is pressed. See also the Change
event. If you set the form or report’s KeyPreview property to Yes, this
event also occurs for the form or report.

On Key Up
(KeyUp)

Runs the specifi ed macro, Visual Basic function, or Visual Basic event
procedure when the user releases a key or a combination of keys.
Your code cannot cancel this event. In a Visual Basic procedure, you
can examine parameters to determine the key code and whether the
Shift, Ctrl, or Alt key was also pressed. If you set the form or report’s
KeyPreview property to Yes, this event also occurs for the form or
report. If the form or report has a command button whose Default
property is set to Yes, the KeyUp event occurs for the form or report
and the command button when the Enter key is released. If the form
or report has a command button whose Cancel property is set to Yes,
the KeyUp event occurs for the form or report and the command
button when the Esc key is released.

Chapter 17

878 Chapter 17 Understanding Event Processing
Event Property
(Event Name) Description

On Mouse
Down
(MouseDown)

Runs the specifi ed macro, Visual Basic function, or Visual Basic
event procedure when the user presses any mouse button. Your
code cannot cancel this event. In a Visual Basic procedure, you can
determine which mouse button was pressed (left, right, or middle);
whether the Shift, Ctrl, or Alt key was also pressed; and the X and
Y coordinates of the mouse pointer (in twips) when the button was
pressed. (Note: There are 1440 twips in an inch.)

On Mouse
Move
(MouseMove)

Runs the specifi ed macro, Visual Basic function, or Visual Basic event
procedure when the user moves the mouse over a form, a report,
or a control. Your code cannot cancel this event. In a Visual Basic
procedure, you can determine which mouse button was pressed
(left, right, or middle) and whether the Shift, Ctrl, or Alt key was
also pressed. You can also determine the X and Y coordinates of the
mouse pointer (in twips).

On Mouse Up
(MouseUp)

Runs the specifi ed macro, Visual Basic function, or Visual Basic
event procedure when the user releases any mouse button. Your
code cannot cancel this event. In a Visual Basic procedure, you can
determine which mouse button was released (left, right, or middle);
whether the Shift, Ctrl, or Alt key was also pressed; and the X and
Y coordinates of the mouse pointer (in twips) when the button was
released.

On Mouse
Wheel
(MouseWheel)

Runs the specifi ed macro, Visual Basic function, or Visual Basic event
procedure when the user rolls the mouse wheel while the focus is
on a form or report. In a Visual Basic procedure, you can determine
whether rolling the wheel caused the form to display a new page and
the count of rows that the view was scrolled. (When the user rolls the
mouse wheel, the form scrolls up or down through the records in the
form.)

5 These events apply to forms in Form or Datasheet view and to reports in Report view.

Table 17-6 Detecting Changes in PivotTables and PivotCharts

Event Property
(Event Name) Description

After Final Render
(AfterFinalRender)

In PivotChart view, runs the specifi ed macro, Visual Basic
function, or Visual Basic event procedure after all elements
in the chart have been rendered (drawn on the screen). Your
code cannot cancel this event.

After Layout (AfterLayout) In PivotChart view, runs the specifi ed macro, Visual Basic
function, or Visual Basic event procedure after all charts
have been laid out but before they have been rendered. In a
Visual Basic procedure, you can reposition the title, legend,
chart, and axis objects during this event. Your code can also
reposition and resize the chart plot area. Your code cannot
cancel this event.

 Summary of Form and Report Events 879

Ch
ap

te
r 1

7

Event Property
(Event Name) Description

After Render
(AfterRender)

In PivotChart view, runs the specifi ed macro, Visual Basic
function, or Visual Basic event procedure when a particular
chart object has been rendered. In a Visual Basic procedure,
you can examine the drawing object and the chart objects
and use methods of the drawing object to draw additional
objects. Your code cannot cancel this event. This event
occurs before the AfterFinalRender event.

Before Query
(BeforeQuery)

In PivotTable view, runs the specifi ed macro, Visual Basic
function, or Visual Basic event procedure when the
PivotTable queries its data source. Your code cannot cancel
this event.

Before Render
(BeforeRender)

In PivotChart view, runs the specifi ed macro, Visual Basic
function, or Visual Basic event procedure before an object
is rendered. In a Visual Basic procedure, you can determine
the type of rendering and the type of object that is about to
be rendered. Your code can cancel this event if it determines
that the object should not be rendered. This event occurs
before the AfterRender and AfterFinalRender events.

Before Screen Tip
(BeforeScreenTip)

In PivotTable or PivotChart view, runs the specifi ed macro,
Visual Basic function, or Visual Basic event procedure before
a ScreenTip is displayed. In a Visual Basic procedure, you
can examine and change the text of the tip or hide the tip
by setting the text to an empty string. Your code cannot
cancel this event.

On Cmd Before Execute
(CommandBeforeExecute)

In PivotTable or PivotChart view, runs the specifi ed macro,
Visual Basic function, or Visual Basic event procedure before
a command is executed. In a Visual Basic procedure, you
can determine the command to be executed and cancel
the event if you want to disallow the command. This event
occurs before the CommandExecute event.

On Cmd Checked
(CommandChecked)

In PivotTable and PivotChart view, runs the specifi ed macro,
Visual Basic function, or Visual Basic event procedure when
the user has selected (checked) a command. In a Visual Basic
procedure, you can determine the command selected and
disallow the command by setting the value of the Checked
parameter to False. Your code cannot cancel this event.

On Cmd Enabled
(CommandEnabled)

In PivotTable and PivotChart view, runs the specifi ed macro,
Visual Basic function, or Visual Basic event procedure when
a command has been enabled. In a Visual Basic procedure,
you can determine the type of command and disable it.
Your code cannot cancel this event.

Chapter 17

880 Chapter 17 Understanding Event Processing
Event Property
(Event Name) Description

On Cmd Execute
(CommandExecute)

In PivotTable and PivotChart view, runs the specifi ed macro,
Visual Basic function, or Visual Basic event procedure after
a command has executed. In a Visual Basic procedure, you
can determine the type of command and issue additional
commands if desired. Your code cannot cancel this event.

On Data Change
(DataChange)

In PivotTable view, runs the specifi ed macro, Visual Basic
function, or Visual Basic event procedure when the data
fetched or calculated by the PivotTable has changed. In a
Visual Basic procedure, you can examine the reason for the
change, which could include changing the sort, adding a
total, or defi ning a fi lter. Your code cannot cancel this event.
This event often precedes the DataSetChange event.

On Data Set Change
(DataSetChange)

In PivotTable view, runs the specifi ed macro, Visual Basic
function, or Visual Basic event procedure when the data
source has changed. Your code cannot cancel this event.

On Connect (OnConnect) In PivotTable view, runs the specifi ed macro, Visual Basic
function, or Visual Basic event procedure when the
PivotTable connects to its data source. Your code cannot
cancel this event.

On Disconnect
(OnDisconnect)

In PivotTable view, runs the specifi ed macro, Visual Basic
function, or Visual Basic event procedure when the
PivotTable disconnects from its data source. Your code
cannot cancel this event.

On PivotTable Change
(PivotTableChange)

In PivotTable view, runs the specifi ed macro, Visual Basic
function, or Visual Basic event procedure when a fi eld, fi eld
set, or total is added or deleted. In a Visual Basic procedure,
you can examine the reason for the change. Your code
cannot cancel this event.

On Query (Query) In PivotTable view, runs the specifi ed macro, Visual Basic
function, or Visual Basic event procedure when the
PivotTable must requery its data source. Your code cannot
cancel this event.

On Selection Change
(SelectionChange)

In PivotTable or PivotChart view, runs the specifi ed macro,
Visual Basic function, or Visual Basic event procedure when
the user makes a new selection. Your code cannot cancel
this event.

On View Change
(ViewChange)

In PivotTable or PivotChart view, runs the specifi ed macro,
Visual Basic function, or Visual Basic event procedure when
the table or chart is redrawn. In a Visual Basic procedure,
you can determine the reason for a PivotTable view change.
When the form is in PivotChart view, the reason code is
always –1. Your code cannot cancel this event.

 Summary of Form and Report Events 881

Ch
ap

te
r 1

7

Table 17-7 Printing

Event Property
(Event Name) Description

On Format (Format) Runs the specifi ed macro, Visual Basic function, or Visual
Basic event procedure just before Access formats a report
section to print. This event is useful for hiding or displaying
controls in the report section based on data values. If Access
is formatting a group header, your code has access to the
data in the fi rst row of the Detail section. Similarly, if Access is
formatting a group footer, your code has access to the data
in the last row of the Detail section. Your code can test the
value of the Format Count property to determine whether
the Format event has occurred more than once for a section
(due to page overfl ow). Your code can cancel this event to
keep a section from appearing on the report.

On No Data (NoData) Runs the specifi ed macro, Visual Basic function, or Visual
Basic event procedure after Access formats a report that
has no data for printing and just before the reports prints.
Your code can cancel this event to keep a blank report from
printing.

On Page (Page) Runs the specifi ed macro, Visual Basic function, or Visual
Basic event procedure after Access formats a page for
printing and just before the page prints. In Visual Basic, you
can use this event to draw custom borders around a page or
add other graphics to enhance the look of the report.

On Paint (Paint) Runs the specifi ed macro, Visual Basic function, or Visual
basic event procedure just before Access paints a formatted
section of a form or report. If you open your report in Layout
view or Report view, this event occurs instead of the Format
or Print events. If you are using the Format event during
printing or displaying your report in Print Preview, you might
also need to use the Paint event to see the same result in
Layout view or Report view. Your code cannot cancel this
event.

On Print (Print) Runs the specifi ed macro, Visual Basic function, or Visual
Basic event procedure just before Access prints a formatted
section of a report. If your code cancels this event, Access
leaves a blank space on the report where the section would
have printed.

On Retreat (Retreat) Runs the specifi ed macro, Visual Basic function, or Visual
Basic event procedure when Access has to retreat past
already formatted sections when it discovers that it cannot fi t
a “keep together” section on a page. Your code cannot cancel
this event.

Chapter 17

882 Chapter 17 Understanding Event Processing
Table 17-8 Trapping Errors

Event Property
(Event Name) Description

On Error (Error) Runs the specifi ed macro, Visual Basic function, or Visual Basic
event procedure whenever a run-time error occurs while the form
or report is active. This event does not trap errors in Visual Basic
code; use the On Error statement in the Visual Basic procedure
instead. Your code cannot cancel this event. If you use a Visual
Basic procedure to trap this event, you can examine the error code
to determine an appropriate action.

Table 17-9 Detecting Timer Expiration

Event Property
(Event Name) Description

On Timer (Timer) Runs the specifi ed macro, Visual Basic function, or Visual Basic
event procedure when the timer interval defi ned for the form or
report elapses. The Timer Interval property defi nes how frequently
this event occurs in milliseconds. If the Timer Interval property is
set to 0, no Timer events occur. Your code cannot cancel this event.
However, your code can set the Timer Interval property for the
form to 0 to stop further Timer events from occurring.

You should now have a basic understanding of events and how you might use them. In
the next section, you’ll see some of these events in action.

 Understanding Event Sequence and Form Editing
One of the best ways to learn event sequence is to see events in action. In the
WeddingMC.accdb sample database on the companion CD, you can fi nd a special
form that you can use to study events. Open the sample database, and then open the
WeddingEvents form, as shown in Figure 17-2. (The form’s Caption property is set to
Wedding List.)

When you open the form, it also opens an event display pop-up form that shows the
events that have occurred. All the events (except the Mouse and Paint events that fi re so
frequently that they would make it hard to study other events) are set to write the event
name to the pop-up window. The pop-up window shows the most recent events at the
top. (The event names displayed in the window show an underscore rather than a blank
between words in the name.) When you open the form, the initial events are as follows:

 1. Form Open This signals that the form is about to open.

 2. Form Load This signals that the form is now open and the record source for the
form is about to be loaded.

 3. Form Resize The form’s Auto Resize property is set to Yes, so this indicates that
Access is resizing the window to show an exact multiple of rows. (The form’s
Default View property is set to Continuous Forms.)

 Understanding Event Sequence and Form Editing 883

Ch
ap

te
r 1

7

4. Form Activate The form has now received the focus.

5. Form Current The form has now moved to the fi rst row in the record source.

6. Title Enter The fi rst control in the tab order has been entered.

7. Title GotFocus The fi rst control in the tab order now has the focus.

Figure 17-2 Use the WeddingEvents form to study event sequence.

After the form opened, we pressed the Tab key to move from the Title fi eld to the First
Name fi eld. (The name of the control is First.) The form has its Key Preview property
set to Yes, so you can see the keyboard events for both the form and the controls. The
events occurred in the following sequence:

1. Form KeyDown The form detected that the Tab key (key code 9) was pressed.

2. Title KeyDown The Title combo box control detected that the Tab key was
pressed.

3. Title Exit Pressing the Tab key caused an exit from the Title combo box control.

4. Title LostFocus The Title combo box control lost the focus as a result of
pressing Tab.

5. First Enter The First text box control (First Name) was entered.

6. First GotFocus The First text box control received the focus.

7. Form KeyPress The form received the Tab key.

8. First KeyPress The First text box control received the Tab key.

9. Form KeyUp The form detected that the Tab key was released.

10. First KeyUp The First text box detected that the Tab key was released.

Chapter 17

884 Chapter 17 Understanding Event Processing
In Figure 17-2, you can also see a Form Timer event listed. The Timer Interval property
for this form is set to 20,000 (the value is milliseconds), so you should see the timer
event occur every 20 seconds as long as you have the form open.

You can have fun with this form moving around and typing new data. You’ll be able to
see each character that you enter. You’ll also see the control and form BeforeUpdate and
AfterUpdate events when you commit changed values. You can also switch to Pivot-
Chart or PivotTable view to watch events related to those views.

Figure 17-3 shows you a conceptual diagram of how editing data in a form works and
when the critical Current, BeforeUpdate, and AfterUpdate events occur.

Control ControlControlForm

Record in
Database

Record
Buffer

Control
Buffer

User moves
to a control

User edits
a control

User moves
a control or

undoes changes

User exits a control
(control BeforeUpdate

and AfterUpdate events)

User moves to a record
(form Current event)
or undoes changes

User saves record
(formBeforeUpdate

and AfterUpdate events)
1

5

43

2

6

.

.

.

Figure 17-3 Many events occur behind the scenes when you edit data on a bound form.

Of course, the ultimate goal is to update data in your database table. When Access
opens a form, it builds a special buffer to contain the contents of the current record

 Understanding Event Sequence and Form Editing 885

Ch
ap

te
r 1

7

displayed on the form. As you move from control to control on the form, Access fetches
the fi eld bound to each control from this record buffer and puts it into a special control
buffer. As you type in the control, you’re changing the control buffer and not the record
buffer or the actual record in the table.

If you have changed the data in a control and then you move to another control, Access
signals the BeforeUpdate event for the control. If you do not cancel the event, Access
then copies the updated contents of the control buffer into the record buffer and signals
the control’s AfterUpdate event. Access then fetches into the control buffer the contents
of the fi eld bound to the control to which you moved from the record buffer and dis-
plays it in the control.

If you undo any edit, Access signals the appropriate Undo event and refreshes either
the control buffer from the record buffer (if you undo a control) or the original record
from the table into the record buffer (if you undo all edits). When you save a changed
record—either by clicking the Save button in the Records group on the Home tab, by
moving to another record, or by closing the form—Access fi rst signals the BeforeUpdate
event of the form. If you do not cancel this event, Access writes the changed record to
your table and signals the AfterUpdate event of the form.

Now that you understand events and event sequence, the next chapter discusses
 macros and how you can design macro actions to respond to form and report events.

CHAPTER 18

Automating Your Application
with Macros

In Microsoft Offi ce Access 2007, you can defi ne a macro to execute just about any task
you would otherwise initiate with the keyboard or the mouse. The unique power

of macros in Offi ce Access 2007 is their ability to automate responses to many types
of events without forcing you to learn a programming language. The event might be
a change in the data, the opening or closing of a form or a report, or even a change of
focus from one control to another. Within a macro, you can include multiple actions
and defi ne condition checking so that different actions are performed depending on the
values in your forms or reports.

Macros are particularly useful for building small, personal applications or for proto-
typing larger ones. As you’ll learn in Chapter 19, “Understanding Visual Basic Funda-
mentals,” you probably should use Microsoft Visual Basic for complex applications or
for applications that will be shared by several users over a network. However, even if
you think you’re ready to jump right into Visual Basic, you should study all the macro
actions fi rst. You’ll fi nd that you’ll use nearly all of the available macro actions in Visual
Basic, so learning macros is an excellent introduction to programming in Access in
 general.

Note
The examples in this chapter are based on the Wedding List Macro (WeddingMC.accdb)

sample database on the companion CD included with this book. The results you see from

the samples in this chapter might not exactly match what you see in this book if you have

changed the sample data in the fi les. Also, all the screen images in this chapter were

taken on a Microsoft Windows Vista system with the display theme set to Blue. Your

results might look different if you are using a different operating system or a different

theme.

Note
The examples in this chapter are based on the Wedding List Macro (WeddingMC.accdb)

sample database on the companion CD included with this book. The results you see from

the samples in this chapter might not exactly match what you see in this book if you have

changed the sample data in the fi les. Also, all the screen images in this chapter were

taken on a Microsoft Windows Vista system with the display theme set to Blue. Your

results might look different if you are using a different operating system or a different

theme.

Uses of Macros . 888

The Macro Design Facility—An Overview 890

Defi ning Multiple Actions . 895

Grouping Macros . 897

Understanding Conditional Expressions 900

Using Embedded Macros . 901

Using Temporary Variables . 907

Trapping Errors in Macros . 910

Understanding Macro Actions That Are Not Trusted . 916

Making Your Application Come Alive with Macros . . . 918

Converting Your Macros to Visual Basic 938
 887

Chapter 18

888 Chapter 18 Automating Your Application with Macros
In this chapter, you will

O Learn about the various types of actions you can defi ne in macros

O Tour the macro design facility and learn how to build both a simple macro and a
macro with multiple defi ned actions

O Learn how to manage the many macros you need for a form or a report by creat-
ing a macro group

O See how to add conditional statements to a macro to control the actions Access
performs

O Learn about the new macro features in Access 2007 including embedded macros,
error trapping in macros, temporary variables, and macro actions that are not
trusted.

O Learn how to reference other form and report objects in macros

O Understand some of the actions automated with macros in the Wedding List
Macro sample database

Note
In Article 6, “Macro Actions,” on the companion CD, you’ll fi nd summaries of the macro

actions and of the events that can trigger a macro. You might fi nd that article useful as a

quick reference when you’re designing macros for your applications.

Uses of Macros
Access 2007 provides various types of macro actions that you can use to automate your
application. With macros, you can

O Open any table, query, form, or report in any available view or close any open
table, query, form, or report.

O Open a report in Print Preview or Report view or send a report directly to the
printer.

O Send the output data from a report to a Rich Text Format (.rtf) fi le, a Windows
Notepad (.txt) fi le, or a Snapshot (.snp) format fi le. You can then open the fi le in
Microsoft Word or Notepad.

O Execute a select query or an action query. You can base the parameters of a query
on the values of controls in any open form.

Note
In Article 6, “Macro Actions,” on the companion CD, you’ll fi nd summaries of the macro

actions and of the events that can trigger a macro. You might fi nd that article useful as a

quick reference when you’re designing macros for your applications.

 Uses of Macros 889

Ch
ap

te
r 1

8

O Include conditions that test values in a database, a form, or a report and use the
results of a test to determine what action runs next.

O Execute other macros or execute Visual Basic functions. You can halt the cur-
rent macro or all macros, cancel the event that triggered the macro, or quit the
 application.

O Trap errors caused during execution of macro actions, evaluate the error, and
execute alternate actions.

O Set the value of any form or report control or set selected properties of forms and
form controls.

O Emulate keyboard actions and supply input to system dialog boxes.

O Refresh the values in forms, list box controls, and combo box controls.

O Apply a fi lter to, go to any record in, or search for data in a form’s underlying table
or query.

O Execute any of the commands on any of the Access Ribbons.

O Move and size, minimize, maximize, or restore any window within the Access
workspace when you work in multiple-document interface mode.

O Change the focus to a window or to any control within a window or select a page
of a report to display in Print Preview.

O Display informative messages and sound a beep to draw attention to your mes-
sages. You can also disable certain warning messages when executing action
 queries.

O Rename any object in your database, make another copy of a selected object in
your database, or copy an object to another Access database.

O Delete objects in your database or save an open object.

O Import, export, or attach other database tables or import or export spreadsheet or
text fi les.

O Start an application and exchange data with the application using Dynamic Data
Exchange (DDE) or the Clipboard. You can send data from a table, query, form, or
report to an output fi le and then open that fi le in the appropriate application. You
can also send keystrokes to the target application.

Consider some of the other possibilities for macros. For example, you can make mov-
ing from one task to another easier by using command buttons that open and position
forms and set values. You can create very complex editing routines that validate data
entered in forms, including checking data in other tables. You can even check some-
thing like the customer name entered in an order form and open another form so that
the user can enter detailed data if no record exists for that customer.

Chapter 18

890 Chapter 18 Automating Your Application with Macros

In versions prior to Access 2007, we would have strongly recommended against using

macros. Now that macros offer error trapping and the ability to create and manipulate

simple variables, we can recommend using them for all simple applications and perhaps

even moderately complex ones. Macros still won’t work well for a complex production

application. The debugging facilities are very limited. If you run into any problem in your

macro code, it can be very diffi cult to fi gure out the solution. Most complex applica-

tions also require manipulating recordsets behind the scenes, and you can’t do that at all

with macros.

Even if you plan to use Visual Basic from the very beginning, it’s still worth your while

to learn the basics of programming with macro actions. In truth, the best (and perhaps

only) way to perform certain actions in Visual Basic is to execute the equivalent macro

action. For example, the only way to open a form that does not have any Visual Basic

code is to execute the OpenForm action from within your Visual Basic procedure. (When

a form has a module, an advanced way to open one or more copies of a form is to set

a module object to the form’s module.) As you’ll learn in the next chapter, you execute

macro actions in Visual Basic as methods of a special object called DoCmd. (In Article 6,

on the companion CD, we note the macro actions that have better native equivalents in

Visual Basic.)

The Macro Design Facility—An Overview
The following sections explain how to work with the macro design facility in
Access 2007.

Working with the Macro Design Window
Open the Wedding List Macro sample database (WeddingMC.accdb) from the folder
where you installed the sample fi les. (The default location is \Microsoft Press\Access
2007 Inside Out on your C drive.) As you’ll discover later in this chapter, a special
macro called Autoexec runs each time you open the database. This macro determines
whether the database is trusted, opens an informational form for a few seconds, and
then tells you which macro to run to start the application. We’ll look at that macro in
some detail later.

On the Create tab, in the Other group, click the arrow on the New Object button, and
click Macro from the list of three options. (The top half of the New Object button dis-
plays the last type of new object created—Macro, Module, or Class Module. If you see
the Macro icon in the top half of the New Object button, you can also click that button
to begin creating a new macro.) Access opens a new Macro window similar to the one
shown in Figure 18-1. In the upper part of the Macro window, you defi ne your new
macro; and in the lower part, you enter settings, called arguments, for the actions you’ve

SIDE OUT Do We Recommend Using Macros?

In versions prior to Access 2007, we would have strongly recommended against using

macros. Now that macros offer error trapping and the ability to create and manipulate

simple variables, we can recommend using them for all simple applications and perhaps

even moderately complex ones. Macros still won’t work well for a complex production

application. The debugging facilities are very limited. If you run into any problem in your

macro code, it can be very diffi cult to fi gure out the solution. Most complex applica-

tions also require manipulating recordsets behind the scenes, and you can’t do that at all

with macros.

Even if you plan to use Visual Basic from the very beginning, it’s still worth your while

to learn the basics of programming with macro actions. In truth, the best (and perhaps

only) way to perform certain actions in Visual Basic is to execute the equivalent macro

action. For example, the only way to open a form that does not have any Visual Basic

code is to execute the OpenForm action from within your Visual Basic procedure. (When

a form has a module, an advanced way to open one or more copies of a form is to set

a module object to the form’s module.) As you’ll learn in the next chapter, you execute

macro actions in Visual Basic as methods of a special object called DoCmd. (In Article 6,

on the companion CD, we note the macro actions that have better native equivalents in

Visual Basic.)

 The Macro Design Facility—An Overview 891

Ch
ap

te
r 1

8

selected for your macro. The upper part shows at least two columns, Action and Com-
ment. You can view all fi ve columns shown in Figure 18-1 by clicking the Macro Names,
Conditions, and Arguments buttons in the Show/Hide group on the Design tab.

Note
You can cause the Macro Name and Condition columns to appear automatically for any

new macro by selecting the Names Column and Conditions Column check boxes under

Show In Macro Design in the Display section of the Advanced category in the Access

Options dialog box.

Figure 18-1 A new Macro window displays columns where you can defi ne your macro.

Notice that the area at the lower right displays a brief help message. The message
changes depending on where the insertion point is located in the upper part of the win-
dow. (Remember: You can always press F1 to open a context-sensitive Help topic.)

In the Action column, you can specify any one of the 70 macro actions provided
by Access 2007. If you click any box in the Action column, an arrow appears at the
right side of the box. Click this arrow to open a list of the macro actions, as shown in
Figure 18-2.

Note
You can cause the Macro Name and Condition columns to appear automatically for any

new macro by selecting the Names Column and Conditions Column check boxes under

Show In Macro Design in the Display section of the Advanced category in the Access

Options dialog box.

Chapter 18

892 Chapter 18 Automating Your Application with Macros
Figure 18-2 The list of macro actions displays 70 actions you can use in Access 2007.

TROUBLESHOOTING
Why doesn’t the list include all the macro actions available?
Access 2007 includes 70 macro actions, but not all these actions can run in a database

that is not trusted. By default, Access displays only the macro actions that can run in a

trusted database in the Action column. To see the complete list of macro actions, click

the Show All Actions button in the Show/Hide group on the Design tab. When you select

an action that can run only in a trusted database, Access displays an exclamation point

on the selection button to the left. If a macro in your application includes actions that

can run only in a trusted database, your user must trust your database to be able to run

the macro.

To see how the Macro window works, select the MsgBox action now. (Scroll down the
list to fi nd MsgBox.) You can use the MsgBox action to open a pop-up modal dialog box
with a message in it. This is a great way to display a warning or an informative message
in your database without defi ning a separate form.

Assume that this message will be a greeting, and type Greeting message in the corre-
sponding box in the Comment column. You’ll fi nd the Comment column especially use-
ful for documenting large macros that contain many actions. You can enter additional
comments in any blank box in the Comment column (that is, any box without an action
next to it).

After you select an action such as MsgBox, Access displays argument boxes in the lower
part of the window, as shown in Figure 18-3, in which you enter the arguments for the
action. If you display the Arguments column, Access shows you a summary of the argu-
ments that you have entered for each action. The Arguments column is a new feature in

TROUBLESHOOTING

 The Macro Design Facility—An Overview 893

Ch
ap

te
r 1

8

Access 2007. When you display this column, you can see a summary of the arguments
for each action without having to click each action row to see the arguments in the
lower part of the design window.

Figure 18-3 Enter arguments for the MsgBox action to display a greeting message.

Note
As you can in the Table and Query windows in Design view, you can use the F6 key to

move between the upper and lower parts of the Macro window.

You use the Message argument box in the lower part of the design window to set the
message that you want Access to display in the dialog box you’re creating. The setting
in the Beep argument box tells Access whether to sound a beep when it displays the
message. In the Type argument box, you can choose a graphic indicator, such as a red
critical icon, that will appear with your message in the dialog box. In the Title argument
box, you can type the contents of your dialog box’s title bar. Use the settings shown in
Figure 18-3 in your macro.

Saving Your Macro
You must save a macro before you can run it. Click the Save button on the Quick Access
Toolbar, or click the Microsoft Offi ce Button and then click Save. When you do so,
Access opens the dialog box shown in Figure 18-4. Enter the name TestGreeting, and
click OK to save your macro.

Note
As you can in the Table and Query windows in Design view, you can use the F6 key to

move between the upper and lower parts of the Macro window.

Chapter 18

894 Chapter 18 Automating Your Application with Macros
Figure 18-4 Enter a name for this test macro in the Save As dialog box.

Testing Your Macro
You can run some macros (such as the simple one you just created) directly from the
Navigation Pane or from the Macro window because they don’t depend on controls on
an open form or report. If your macro does depend on a form or a report, you must link
the macro to the appropriate event and run it that way. (You’ll learn how to do this later
in this chapter.) However you run your macro, Access provides a way to test it by allow-
ing you to single step through the macro actions.

To activate single stepping, right-click the macro you want to test in the Navigation
Pane, and then click Design View on the shortcut menu. This opens the macro in the
Macro window. Click the Single Step button in the Tools group on the Design tab.
Now when you run your macro, Access opens the Macro Single Step dialog box before
executing each action in your macro. In this dialog box, you’ll see the macro name, the
action, and the action arguments.

Try this procedure with the TestGreeting macro you just created. Open the Macro win-
dow, click the Single Step button, and then click the Run button in the Tools group on
the Design tab. The Macro Single Step dialog box opens, as shown in Figure 18-5. Later
in this section, you’ll learn how to code a condition in a macro. The Macro Single Step
dialog box also shows you the result of testing your condition.

Figure 18-5 The Macro Single Step dialog box allows you to test each action in your macro.

If you click the Step button in the dialog box, the action you see in the dialog box will
run, and you’ll see the dialog box opened by your MsgBox action with the message you
created, as shown in Figure 18-6. Click the OK button in the message box to dismiss it.
If your macro had more than one action defi ned, you would have returned to the Macro
Single Step dialog box, which would have shown you the next action. In this case, your
macro has only one action, so Access returns you to the Macro window.

 Defi ning Multiple Actions 895

Ch
ap

te
r 1

8

Figure 18-6 Access displays the dialog box you created by using the MsgBox action
in the TestGreeting macro.

If Access encounters an error in any macro during the normal execution of your appli-
cation, Access fi rst displays a dialog box explaining the error it found. You then see an
Action Failed dialog box, which is similar to the Macro Single Step dialog box, contain-
ing information about the action that caused the problem. At this point, you can click
only the Stop All Macros button. You can then edit your macro to fi x the problem. We’ll
discuss handling errors in “Trapping Errors in Macros” on page 910.

Before you read on in this chapter, you might want to return to the Macro window and
click the Single Step button again so that it’s no longer selected. Otherwise you’ll con-
tinue to single step through every macro you run until you exit and restart Access or
click Continue in one of the Single Step dialog boxes.

Defi ning Multiple Actions
In Access 2007, you can defi ne more than one action within a macro, and you can
specify the sequence in which you want the actions performed. The Wedding List
Macro database contains several examples of macros that have more than one action.
Open the database if it is not open already. Click the Navigation menu at the top of the
Navigation Pane, click Object Type under Navigate To Category, and then click Macros
under Filter By Group to display a list of macros available in the Wedding List Macro
database. Right-click the macro named AutoexecXmpl, and then click Design View on
the shortcut menu to open the Macro window. Figure 18-7 shows the macro.

Figure 18-7 The AutoexecXmpl macro defi nes multiple actions that Access executes when you run
the macro.

Chapter 18

896 Chapter 18 Automating Your Application with Macros

If you create a macro and name it Autoexec, Access runs the macro each time you open

the database in which it is stored. The preferred method to run startup code is to defi ne

a startup form in the Application Options section of the Current Database category in

the Access Options dialog box. For details, see Chapter 24, “The Finishing Touches.”

In the Wedding List Macro sample database, the Autoexec macro examines the IsTrusted

property of the CurrentProject object (CurrentProject defi nes all the executable code) to

see whether the database is trusted. (You can trust the database by placing it in a trusted

location.) If the database is not trusted, the macro opens a dialog form with instruc-

tions on how to create a trusted folder. If you open this database in a trusted location,

the macro displays a copyright form followed by a message box telling you to run the

 AutoexecXmpl macro to start the application.

If this macro were named Autoexec, Access would execute each action automatically
whenever you open the database. This sample macro is an example of a macro you
might design to start the application when the user opens your database.

We defi ned eight actions in this macro. First, the Hourglass action displays an hour-
glass mouse pointer to give the user a visual clue that the next several steps might take
a second or two. It’s always a good idea to turn on this visual cue, even if you think the
next several actions won’t take very long. Next, the SelectObject action puts the focus
on a known object in the Navigation Pane, and the RunCommand-WindowHide action
hides the selected window (the Navigation Pane).

The next action, OpenForm, opens the WeddingList form. As you can see in Figure
18-7, the OpenForm action has six arguments that you can use to defi ne how it should
work. The Form Name argument indicates the form you want to open. The View argu-
ment tells Access what view you want. (The seven choices for the View argument are
Form, Design, Print Preview, Datasheet, PivotTable, PivotChart, and Layout.) You can
ask Access to apply a fi lter to the form when it opens either by specifying the name of a
query that defi nes the fi lter in the Filter Name argument or by entering fi lter criteria in
the Where Condition argument. You can click in the argument box and then click the
Build button that Access reveals to open the Expression Builder, which can help you
create the fi lter.

Edit is the default for the Data Mode argument, which allows the user to add, edit,
or delete records while using this form. The other choices for this argument are Add,
which opens the form in Data Entry mode, and Read Only, which opens the form but
does not allow any changes to the data. The default setting for the Window Mode argu-
ment is Normal, which opens the form in the mode set by its design properties. You can
override the design property settings to open the form in Hidden mode, as an icon in
Icon mode, or in the special Dialog mode. When you open a form hidden, the user can
reveal it only by adding the Unhide Window command to the Quick Access Toolbar
and then clicking the command. When you open a form in Dialog mode, Access does
not run further actions or Visual Basic statements until you close that form.

SIDE OUT Autoexec Macros—A Special Type of Macro

If you create a macro and name it Autoexec, Access runs the macro each time you open

the database in which it is stored. The preferred method to run startup code is to defi ne

a startup form in the Application Options section of the Current Database category in

the Access Options dialog box. For details, see Chapter 24, “The Finishing Touches.”

In the Wedding List Macro sample database, the Autoexec macro examines the IsTrusted

property of the CurrentProject object (CurrentProject defi nes all the executable code) to

see whether the database is trusted. (You can trust the database by placing it in a trusted

location.) If the database is not trusted, the macro opens a dialog form with instruc-

tions on how to create a trusted folder. If you open this database in a trusted location,

the macro displays a copyright form followed by a message box telling you to run the

AutoexecXmpl macro to start the application.

 Grouping Macros 897

Ch
ap

te
r 1

8

Access doesn’t always wait for one action to complete before going on to the next one.
For example, an OpenForm action merely starts a task to begin opening the form.
Particularly if the form displays a lot of data, Access might take several seconds to load
all the data and fi nish displaying the form. Because you’re running Windows, your
computer can handle many tasks at once. Access takes advantage of this by going to
the next task without waiting for the form to completely open. However, because this
macro is designed to maximize the WeddingList form, the form must be completely
open in order for this to work.

You can force a form to fi nish opening by telling Access to put the focus on the form.
This macro does so by using the SelectObject action to identify the object to receive the
focus (in this case, the WeddingList form), followed by the GoToControl action to put
the focus on a specifi c control on the form. After the GoToControl action puts the focus
on the control, the Maximize action sizes the active window (the window containing
the object that currently has the focus) to fi t the entire screen. The fi nal action in the
macro (the Hourglass again) restores the mouse pointer to let the user know that the
macro is fi nished.

Note
Because macros might be used by inexperienced programmers, Access automatically

restores Hourglass when it fi nishes running a macro. If it didn’t do this, the mouse

pointer would continue to show an hourglass. The user would think that Access is broken.

However, it’s good practice to always restore what you turn off, which is why the sample

AutoexecXmpl macro includes Hourglass-No at the end even though it isn’t required. As

you’ll learn in the next chapter, Visual Basic isn’t quite so forgiving. If you turn the mouse

pointer to an hourglass in a Visual Basic procedure and forget to turn it back on before

your code exits, your mouse pointer will forever display an hourglass!

Learning to defi ne multiple actions within a macro is very useful when you want to
automate the tasks you perform on a day-to-day basis. Now that you’ve learned how to
do this, the next step is to learn how to group actions by tasks.

Grouping Macros
You’ll fi nd that most of the forms you design for an application require multiple mac-
ros to respond to events—some to edit fi elds, some to open reports, and still others to
respond to command buttons. You could design a separate macro saved with its own
unique name in the Database window to respond to each event, but you’ll soon have
hundreds of macros in your application.

You can create a simpler set of more manageable objects by defi ning macro objects that
contain several named macros within each object. (This sort of macro object is called
a macro group within Access 2007 Help.) One approach is to create one saved macro

Note
Because macros might be used by inexperienced programmers, Access automatically

restores Hourglass when it fi nishes running a macro. If it didn’t do this, the mouse

pointer would continue to show an hourglass. The user would think that Access is broken.

However, it’s good practice to always restore what you turn off, which is why the sample

AutoexecXmpl macro includes Hourglass-No at the end even though it isn’t required. As

you’ll learn in the next chapter, Visual Basic isn’t quite so forgiving. If you turn the mouse

pointer to an hourglass in a Visual Basic procedure and forget to turn it back on before

your code exits, your mouse pointer will forever display an hourglass!

Chapter 18

898 Chapter 18 Automating Your Application with Macros
object per form or report. Another technique is to categorize macros by type of action—
for example, one macro containing all the OpenForm actions and another containing
all the OpenReport actions.

Let’s take a look at a form that depends on a macro group. Figure 18-8 shows the Print-
Options form from the Wedding List Macro database in Form view. This form contains
two command buttons, Print and Cancel, each of which triggers a different macro. The
two macros are contained within a macro object called DoReport.

Figure 18-8 The two command buttons on the PrintOptions form run macros.

To look at the macro object, right-click the DoReport macro in the list of macro objects
in the Navigation Pane, and then click Design view on the shortcut menu to open this
macro object in the Macro window. Figure 18-9 shows the macro.

Figure 18-9 The DoReport macro group includes nine individual macros.

To create a group of named macro procedures within a macro object, you must open the
Macro Name column in the macro design window. (If you don’t see the Macro Name
column, click the Macro Names button in the Show/Hide group on the Design tab.) You
can create a series of actions at the beginning of the macro defi nition, without a name,
that you can reference from an event property or a RunMacro action by using only
the name of the macro object. As you saw earlier in the AutoexecXmpl macro, nam-
ing a macro object in a RunMacro action (without any qualifi er) asks Access to run the
unnamed actions it fi nds in that macro object.

 Grouping Macros 899

Ch
ap

te
r 1

8

To create a set of named actions within a macro object, place a name on the fi rst action
within the set in the Macro Name column. To execute a named set of actions within a
macro object from an event property or a RunMacro action, enter the name of the macro
object, a period, and then the name from the Macro Name column. For example, to
execute the PrintIt set of actions in the DoReport macro, enter DoReport.PrintIt in the
event property or the Macro Name parameter.

In the sample DoReport macro, each of the nine names in this column represents an
individual macro within the object. (You must scroll down to see the other names.) The
fi rst macro, Options (triggered by the Print Report button on the WeddingList form),
opens the PrintOptions form, and the second macro, PrintIt, determines which report
was selected. The next four macros, Groups, Alpha, Accepted, and PrintF, display the
appropriate report in Print Preview mode, based on the result of the second macro. The
Cancel macro merely closes the PrintOptions form if the user clicks the Cancel button.
The NoRecords macro cancels opening a report when the report’s record source has no
data, and the ErrReport macro handles errors. As you might have guessed, Access runs
a macro starting with the fi rst action of the macro name specifi ed and executes each
action in sequence until it encounters a StopMacro action, another macro name, or no
further actions. As you’ll see later, you can control whether some actions execute by
adding tests in the Condition column of the macro.

If you open the PrintOptions form in Design view (see Figure 18-10) and look at the
properties for each of the command buttons, you’ll see that the On Click property con-
tains the name of the macro that executes when the user clicks the command button. If
you open the list for any event property, you can see that Access lists all macro objects
and the named macros within them to make it easy to select the one you want.

Figure 18-10 You can see that Access lists all macro objects and named macros in the various
event properties.

Chapter 18

900 Chapter 18 Automating Your Application with Macros
Remember, the macro name is divided into two parts. The part before the period is the
name of the macro object, and the part after the period is the name of a specifi c macro
within the object. So, for the fi rst command button control, the On Click property is set
to DoReport.PrintIt. When the user clicks this button, Access runs the PrintIt macro in
the DoReport macro object. After you specify a macro name in an event property, you
can click the Build button next to the property, and Access opens that macro in a Macro
window.

 Understanding Conditional Expressions
In some macros, you might want to execute some actions only under certain conditions.
For example, you might want to update a record, but only if new values in the controls
on a form pass validation tests. Or you might want to display or hide certain controls
based on the value of other controls.

The PrintIt macro in the DoReport macro group is a good example of a macro that
uses conditions to determine which action should proceed. Right-click the DoReport
macro in the Navigation Pane, and then click Design View on the shortcut menu to see
the Macro window. Click in the Condition column of the fi rst line of the PrintIt macro,
and press Shift+F2 to open the Zoom window, shown in Figure 18-11. (If you can’t see
the Condition column, click the Conditions button in the Show/Hide group on the
Design tab.)

Figure 18-11 In the Zoom window, you can see we added a condition in the DoReport
macro group.

As you saw earlier, this macro is triggered by the On Click property of the Print button
on the PrintOptions form. This form allows the user to print a specifi c report by select-
ing the appropriate option button and then clicking the Print button. If you look at the
form in Design view (see Figure 18-10), you’ll see that the option buttons are located

 Using Embedded Macros 901

Ch
ap

te
r 1

8

within an option group control on the form. Each option button sets a specifi c numeric
value (in this case 1 for the fi rst button, 2 for the second button, 3 for the third button,
and 4 for the fourth button) in the option group, which you can test in the Condition
column of a macro.

When you include a condition in a macro, Access won’t run the action on that line
unless the condition evaluates to True. If you want to run a series of actions on the basis
of the outcome of a test, you can enter the test in the Condition column on the fi rst
action line and enter an ellipsis (…) in the Condition column for the other actions in the
series. This causes Access to evaluate the condition only once and execute additional
actions (those with an ellipsis in the Condition column) if the original test evaluated
to True.

In this particular example, the condition tests the value of the option group control on
the form. You can reference any control on an open form by using the syntax

FORMS!formname!controlname

where formname is the name of an open form and controlname is the name of a control
on that form. In this case, the direct reference is [FORMS]![PrintOptions]![optPrint].
(optPrint is the name of the option group control. You can see this in the Name prop-
erty on the Other tab of the property sheet for this control.) See “Referencing Form and
Report Objects” on page 919 for more details about the rules for referencing objects in
Access.

If your object names do not contain any embedded blanks or other special characters,

you don’t need to surround formname or controlname with brackets when you use this

syntax to reference a control on a form; Access inserts the brackets as needed.

After you understand how to refer to the value of a control on a form, you can see that
the PrintIt macro tests for each of the possible values of the option group control. When
it fi nds a match, PrintIt runs the appropriate named macro within the macro object to
open the requested report and then stops. If you look at the individual report macros,
you’ll see that they each run a common macro, DoReport.Cancel, to close the Print-
Options form (which isn’t needed after the user chooses a report) and then open the
requested report in Print Preview and put the focus on the window that displays the
report.

Using Embedded Macros
Access 2007 includes a new feature to create embedded macros in the event procedures
for forms, reports, and controls. The macros you have been creating and opening thus
far in this chapter are macro objects that you can access from the Navigation Pane. You

SIDE OUT When to Use Brackets

If your object names do not contain any embedded blanks or other special characters,

you don’t need to surround formname or controlname with brackets when you use this

syntax to reference a control on a form; Access inserts the brackets as needed.

Chapter 18

902 Chapter 18 Automating Your Application with Macros
save embedded macros, however, within the event procedures for forms and reports.
You cannot see or run these macros directly from the Navigation Pane.

Editing an Embedded Macro
To edit an embedded macro, you must fi rst open a form or report in Design view. The
fdlgNotTrusted form in the Wedding List Macro database contains two embedded mac-
ros, each of which is attached to the Click event of one of the two command buttons.
Select this form in the Navigation Pane, and open it in Design view. Click the Property
Sheet button in the Tools group on the Design tab to open the form’s property sheet.
Next, click the command button labeled Print These Instructions, or select cmdPrint
from the selection list on the property sheet to view the properties for this command
button, as shown in Figure 18-12.

Figure 18-12 The property sheet lists any embedded macros attached to events.

Notice that [Embedded Macro] appears in the On Click property—this indicates that a
macro is stored with the form design that responds to this event. To view and edit the
macro attached to this event property, click the Build button on the right side of this
property line. Access opens a macro design window, as shown in Figure 18-13. Notice
that in the macro title bar Access displays the name of the form, the object name the
embedded macro is attached to (in this case, the cmdPrint command button), and the
specifi c event of the object that runs the embedded macro.

With the macro design window open, you can now view and edit the macro conditions
(not used in this sample macro), actions, arguments, and comments. For the cmdPrint
command button, you can see we attached a simple macro that executes the RunCom-
mand action. In the Command argument, we selected the Print command, which tells
Access to print the object that has the focus—in this case, the fdlgNotTrusted form. The
application displays this form only if the database is trusted. We provide this print

 Using Embedded Macros 903

Ch
ap

te
r 1

8

 button so that you can print the instructions for creating a trusted location displayed
on the form.

Figure 18-13 The macro design window shows the embedded macro we created to respond to the
Click event of the cmdPrint button on the fdlgNotTrusted form.

Close the macro design window for this embedded macro, and then click the Close
button on the form (or select cmdCancel from the selection list). You’ll see [Embedded
Macro] displayed in the On Click property for this command button. Click the Build
button for this property to open the macro design window shown in Figure 18-14. This
embedded macro uses the Close action to tell Access to close the fdlgNotTrusted form
when the user clicks this command button.

Figure 18-14 The Close button on the fdlgNotTrusted form executes an embedded macro to close
the form.

Chapter 18

904 Chapter 18 Automating Your Application with Macros
We set the Save argument of the Close action to Prompt, which instructs Access to ask
the user whether any changes to the form design should be saved on closing. (The form
opens in Form view, so the user shouldn’t be able to make any changes.) We selected
this setting because choosing any other option causes the Close action to be not
trusted. We’ll discuss actions that are not trusted later in this chapter.

The two embedded macros you’ve seen on this form are simple macros with only one
action each. You’re not limited to using only one action in an embedded macro. You
can create a very complex macro, such as the DoReport macro you saw previously in
this chapter, with several macro actions using several conditions. However, there is one
important difference when designing a complex embedded macro. If you create named
macro groups in an embedded macro, Access executes only the actions defi ned in the
fi rst group when the event to which this macro responds occurs. To execute the addi-
tional named macro groups, you must create a call within the fi rst set of actions to tell
Access to execute the other groups—as the DoReport macro object demonstrated earlier
in this chapter.

If you attach embedded macros to a specifi c control on a form or report, Access saves

the macro with the control. If you cut or copy this control to the Clipboard and then

paste it back on the form or report, Access keeps the embedded macro attached to

the control.

Creating an Embedded Macro
Close the macro design window if you still have it open, and let’s create a new embed-
ded macro to display a message box when this form opens. From the list under Selec-
tion Type near the top of the property sheet, select Form to display all the properties of
the form. Click the Event tab, and click the On Open property. To create a new embed-
ded macro, click the Build button at the right end of the property. Access opens the
Choose Builder dialog box, as shown in Figure 18-15.

If you select the Macro Builder option, Access opens a new macro design window where
you can create your embedded macro. If you select Expression Builder, Access opens
the Expression Builder dialog box where you can build an expression to enter in the
property. If you select Code Builder, Access opens the Visual Basic Editor where you can
write a Visual Basic code procedure for this event property. (We’ll discuss Visual Basic
in the next two chapters—Chapter 19 and Chapter 20, “Automating Your Application
with Visual Basic.”) Select the Macro Builder option, and then click OK to begin creat-
ing a new embedded macro.

SIDE OUT Embedded Macros Stay with Their Controls

If you attach embedded macros to a specifi c control on a form or report, Access saves

the macro with the control. If you cut or copy this control to the Clipboard and then

paste it back on the form or report, Access keeps the embedded macro attached to

the control.

 Using Embedded Macros 905

Ch
ap

te
r 1

8

Figure 18-15 Select Macro Builder in the Choose Builder dialog box to create an embedded macro.

To display a message box, select MsgBox in the Action column. In the Message argu-
ment, enter the following text:

This database is not trusted, so it cannot execute all the code needed to automate this
application. Please read and follow the instructions displayed in the form that opens
after you close this message in order to have the application function properly.

In the Beep argument, leave the default setting Yes, and change the Type argument to
Warning! to provide a visual cue that something is wrong and call attention to the mes-
sage. In the Title argument, enter Embedded Macro Test. Your fi nished macro should
look something like Figure 18-16.

Figure 18-16 The MsgBox action displays a message box in Access.

Chapter 18

906 Chapter 18 Automating Your Application with Macros

In Chapter 19, you’ll learn that you can select [Event Procedure] from the list in an event

property and then click the Build button to open the Visual Basic Editor to create the

appropriate procedure. In the initial release of Access 2007, Microsoft failed to also pro-

vide an [Embedded Macro] option that you could use in the same way to create a macro

to respond to the event. You also cannot type [Embedded Macro] in the property and

click the Build button. You must leave the property blank, click the Build button, and

choose Macro Builder in the Choose Builder dialog box.

But there’s a catch. To see the Choose Builder dialog box, you must not select the Always

Use Event Procedures check box in the Forms/Reports section in the Object Design-

ers category of the Access Options dialog box. (The option is cleared by default.) If you

select that check box, Access always opens the Visual Basic Editor window when you click

the Build button in any event property. The only way to create a new embedded macro is

to select Macro Builder in the Choose Builder dialog box. If you intend to use embedded

macros, you must leave the Always Use Event Procedures check box cleared.

Click Save on the Quick Access Toolbar to save this new embedded macro, and then
close the macro design window. You’ll notice that Access now displays [Embedded
Macro] on the On Open property line. Note that if you don’t click Save before closing
the macro design window, Access prompts you to save the changes and update the
property. If you click No, Access does not save the embedded macro. Click the Save but-
ton again on the Quick Access Toolbar to save the changes to the form itself. Switch to
Form view (or close the form and then open it in Form view from the Navigation Pane),
and notice that Access now displays a message box, as shown in Figure 18-17. Click OK
in the message box, and Access then displays the not trusted form. Click the Close but-
ton to close the form.

Figure 18-17 Your embedded macro now displays a message box before the form opens.

Deleting an Embedded Macro
If you need to delete a saved macro object, you can easily delete it in the Navigation
Pane. For embedded macros, however, you need to delete the contents in the specifi c
property. Open the fdlgNotTrusted form again in Design view, and then open the prop-
erty sheet for the form. To delete the message box embedded macro you just created,

SIDE OUT Enabling the Choose Builder Dialog Box

In Chapter 19, you’ll learn that you can select [Event Procedure] from the list in an event

property and then click the Build button to open the Visual Basic Editor to create the

appropriate procedure. In the initial release of Access 2007, Microsoft failed to also pro-

vide an [Embedded Macro] option that you could use in the same way to create a macro

to respond to the event. You also cannot type [Embedded Macro] in the property and

click the Build button. You must leave the property blank, click the Build button, and

choose Macro Builder in the Choose Builder dialog box.

But there’s a catch. To see the Choose Builder dialog box, you must not select the Always

Use Event Procedures check box in the Forms/Reports section in the Object Design-

ers category of the Access Options dialog box. (The option is cleared by default.) If you

select that check box, Access always opens the Visual Basic Editor window when you click

the Build button in any event property. The only way to create a new embedded macro is

to select Macro Builder in the Choose Builder dialog box. If you intend to use embedded

macros, you must leave the Always Use Event Procedures check box cleared.

 Using Temporary Variables 907

Ch
ap

te
r 1

8

fi nd the On Open property on the Event tab, highlight [Embedded Macro], and then
press Delete to delete the embedded macro. Click Save on the Quick Access Toolbar to
save your changes, and then close the form.

CAUTION!
Access does not warn you that it deletes the macro associated with an event property

when you clear the property setting. You also cannot undo clearing the property to get

the macro back. If you delete a complex macro that was previously saved in the form

design, click the Microsoft Offi ce Button, and click Save As to save the form with a new

name. (Or close the form without saving if you’re willing to discard other changes.) You

can then open the original form in Design view to recover the macro. Remember that

when you copy and paste a control from one form to another, Access also pastes any

attached embedded macros, so you can copy the control and its macro from the old

form to the new one to get the macro back in the new form.

If you create a database in the .mdb fi le format, Access 2007 allows you to create embed-

ded macros for forms, reports, and controls just like you can in an .accdb fi le format

database. But if you open the .mdb database with an earlier version of Access—2000,

2002, or 2003—the embedded macros do not function. In fact, you cannot see any

[Embedded Macro] entries for event properties when you open an .mdb database with

an earlier Access version. If you create an .mdb format database using Access 2007 that

will be opened and run with a previous version of Access, do not create embedded mac-

ros for your application.

Using Temporary Variables
You can use a temporary variable in Access to store a value that can be used in other
macros, event procedures, expressions, and queries. As you’ll learn in Chapter 24, we
use a variable to store the user name when you log in to the Conrad Systems Contacts
and Housing Reservations sample databases. Variables are very useful when you need
Access to remember something for later use. You can think of a temporary variable in a
macro as writing yourself a note to remember a number, a name, or an address so that
you can recall it at a later time. All variables have a unique name. To fetch, set, or exam-
ine a variable, you reference it by its name. Temporary variables stay in memory until
you close the database, assign a new value, or clear the value.

C U O !

SIDE OUT Embedded Macros Won’t Work with Earlier Access Versions

If you create a database in the .mdb fi le format, Access 2007 allows you to create embed-

ded macros for forms, reports, and controls just like you can in an .accdb fi le format

database. But if you open the .mdb database with an earlier version of Access—2000,

2002, or 2003—the embedded macros do not function. In fact, you cannot see any

[Embedded Macro] entries for event properties when you open an .mdb database with

an earlier Access version. If you create an .mdb format database using Access 2007 that

will be opened and run with a previous version of Access, do not create embedded mac-

ros for your application.

Chapter 18

908 Chapter 18 Automating Your Application with Macros
To see an example of using a temporary variable in the Wedding List Macro sample
database, open the ValidateCitySetStateAndZip macro in Design view. We’ll study this
macro in more detail in “Validating Data and Presetting Values” on page 928, but for
now we’ll focus on creating a temporary variable. Creating a temporary variable in a
macro is easy—Access creates the variable for you when you reference it for the fi rst time
in a SetTempVar action. In Figure 18-18, you can see that in the AskEdit macro in the
ValidateCitySetStateAndZip macro group, we created a new temporary variable called
AddFlag and set its value to True in the Expression argument.

Figure 18-18 The AskEdit macro in the ValidateCitySetStateAndZip macro uses a temporary vari-
able to indicate that the CityInformation form has been opened in Data Entry mode.

The AskEdit macro runs from the BeforeUpdate event of the City combo box on the
WeddingList form when the user enters a new city name that isn’t in the row source.
The macro fi rst executes a MsgBox function in the condition of the fi rst action to ask
the user whether the new city should be added. If the user clicks the Yes button in the
dialog box displayed by the MsgBox function, the function returns the value 6. (We’ll
explain more about the MsgBox function later.) If the user clicks No, the macro halts.
When the user clicks Yes, the macro calls the IsFormLoaded custom Visual Basic func-
tion (in the modUtility module object) to determine whether the CityInformation form
is open. If it is, the macro closes it. The macro then opens the CityInformation form in
Data Entry mode and copies the new city name from the WeddingList form to the City-
Information form.

The application uses the AddFlag variable to let code in another macro know that
this macro has closed and reopened the CityInformation form in Data Entry mode.
The RefreshCityList macro that executes in response to the AfterInsert event in the
CityInformation form is also stored in the ValidateCitySetStateAndZip macro. The
macro tests the AddFlag variable set in the AskEdit macro. Scroll down the macro rows
in the macro design window until you come to the RefreshCityList macro, as shown in
Figure 18-19.

 Using Temporary Variables 909

Ch
ap

te
r 1

8

Figure 18-19 The RefreshCityList macro in the ValidateCitySetStateAndZip macro tests and sets
temporary variables.

In the Condition column for the fi rst action in this macro, you can see the following
expression:

Not [TempVars]![AddFlag]

This test checks to see whether the AddFlag temporary variable has been set. If not,
then the user must be using the CityInformation form to add a new record independent
of the WeddingList form, so the macro closes the form and stops (the StopAllMacros
action). If the AddFlag temporary variable is True, the macro resets the AddFlag tempo-
rary variable to False, sets another temporary variable (RequeryFlag, not shown in the
fi gure) to let the macro that responds to the AfterUpdate event of the City combo box
do a requery, and closes the CityInformation form.

Note the special syntax you need to use to reference a temporary variable anywhere
other than in an action specifi cally related to temporary variables. When you create a
temporary variable in a macro, Access adds the variable to the special collection of the
database called TempVars. When an object is a member of a collection (Access treats
temporary variables as objects), you can reference the object by naming the collection,
using an exclamation point separator, and then naming the object. So, to reference a
temporary variable in macros, queries, event procedures, and even Visual Basic code,
use the following syntax:

[TempVars]![<name of temporary variable>]

You can have as many as 255 temporary variables defi ned at any time in your Access
2007 database. By using temporary variables in the various macros in the Validate-
CitySetStateAndZip macro object, you can change the way Access executes the various
macro actions based on actions taken in other macros.

If you need to clear the value stored in a temporary variable and delete the variable,
you can use the RemoveTempVar macro action. The RemoveTempVar action requires
only one argument—Name—and it clears any value stored in the temporary variable of

Chapter 18

910 Chapter 18 Automating Your Application with Macros
that name and then deletes the variable. If you need to delete all temporary variables
from memory, you can use the RemoveAllTempVars action. This action requires no
arguments because it clears all temporary variables, similar to what would occur if you
closed the database.

Although removing a temporary variable technically deletes it from the TempVars col-
lection, you won’t get an error if you attempt to reference a temporary variable that
doesn’t exist. If you attempt to fetch the value of a nonexistent temporary variable,
Access returns the value Null. For this reason, you should be careful when naming and
using temporary variables. If you set a temporary variable in one macro and then think
you’re referencing the same variable in another macro but slightly misspell the variable
name, you won’t get the results you expect.

Note
Access 2007 allows you to create temporary variables in macros if you save your database

in the .mdb fi le format. If, however, you open the .mdb database with an earlier ver-

sion of Access—2000, 2002, or 2003—the temporary variables do not function, and you

will receive error messages when your macros run. If you have users still using previous

Access versions, do not use temporary variables created in macros for your application.

Trapping Errors in Macros
Access 2007 is the fi rst Access version to support trapping and handling errors within
macros. During the normal process of running your application, Access can (and most
likely will) encounter errors. Access might encounter errors in your code that it cannot
resolve—such as a syntax error in a predicate used to fi lter a form. In those cases, Access
cannot proceed further. Other errors might occur that are not quite so catastrophic but
happen in the normal processing of your application. For example, you might use the
OnNoData event of a report to display a message box saying no records were found. If
your code then cancels the report from opening, Access returns an error if a subsequent
action attempts to reference the report that didn’t open. If there’s no error trap in the
macro, Access displays an ugly and confusing dialog box to the user.

To see how error trapping works in Access 2007, open the ErrorTrapExample macro in
Design view. We created this simple macro specifi cally to show you two things—how
Access handles an unexpected error with no error trapping and how you can trap and
respond to an error. In Figure 18-20, you can see the macro names, conditions, actions,
and arguments for this example macro.

Note
Access 2007 allows you to create temporary variables in macros if you save your database

in the .mdb fi le format. If, however, you open the .mdb database with an earlier ver-

sion of Access—2000, 2002, or 2003—the temporary variables do not function, and you

will receive error messages when your macros run. If you have users still using previous

Access versions, do not use temporary variables created in macros for your application.

 Trapping Errors in Macros 911

Ch
ap

te
r 1

8

Figure 18-20 The ErrorTrapExample macro demonstrates error handling in Access 2007.

In the fi rst line of the macro, we call the MsgBox function in the Condition column to
ask whether you want to use error trapping. (You can learn more about the settings in
the MsgBox function in Table 18-4 on page 932.) If you click the Yes button in the dia-
log box displayed by MsgBox, the function returns the value 6. So when you click Yes,
the condition is True, and the RunMacro action calls the TrapYes macro. If you click
No, the condition is False, so the macro executes the second RunMacro that calls the
TrapNo macro.

The fi rst action in the TrapYes macro uses the new OnError macro action to tell Access
how it should proceed if any error occurs. The OnError action has two arguments—Go
To and Macro Name. The options in the Go To argument are Next, Macro Name, and
Fail. If you select Next in the Go To argument, Access does not halt the macro when an
error occurs—it simply goes on to the next action. If you select Macro Name in the Go
To argument, Access runs the macro you specify in the Macro Name argument. If you
select Fail, you’re basically turning error trapping off.

In all cases, Access records the error number and error description information in the
MacroError object. If you have trapped the error by specifying Macro Name or Next,
you can examine the error in a Condition statement to determine what action, if any,
to take. For simple errors (such as an OpenReport that might be canceled), you can
choose Next and check to see whether an error has occurred in the Condition line on
the next action. For more complex errors, you should go to another macro that can test
for several potential errors that you plan to handle. In this example, we tell Access to
run the Trapped macro if any errors occur.

Note
If you specify a macro name in the Go To argument of the OnError action, the macro

must exist in the same macro object. You cannot reference a macro in a different macro

object when using the OnError action.

Note
If you specify a macro name in the Go To argument of the OnError action, the macro

must exist in the same macro object. You cannot reference a macro in a different macro

object when using the OnError action.

Chapter 18

912 Chapter 18 Automating Your Application with Macros
The next line in the TrapYes macro uses the SetTempVar action to create a temporary
variable named Gorp and set it to an invalid mathematical expression of 1/0—dividing
by zero will cause an error. Because we asked Access to trap any error, Access runs the
Trapped macro when the error occurs. Although we could have examined the error
and perhaps taken some other action, for this simple example we used another MsgBox
action to tell Access to display a message containing the error number and description
of the error. Click this MsgBox action, and notice the following text in the Message
argument:

="Error Trapped: " & [MacroError].[Number] & ", " & [MacroError].[Description]

All errors in Access have both a unique error number and a description. When an error
occurs in a macro, the Number property of the MacroError object contains the error
number, and the Description property of the MacroError object contains text describ-
ing the error associated with the number. The Message argument of the MsgBox action
asks Access to fetch the Number and Description properties and display them in the
message.

Finally, the TrapNo macro executes the assignment of an invalid value to a temporary
variable without fi rst setting an error trap. To see how this process works, click the Run
button in the Tools group on the Design tab. Because the fi rst action contains a call to
the MsgBox function in the Condition column, Access displays the message box shown
in Figure 18-21 asking whether you want to trap the error as part of evaluating the
 condition.

Figure 18-21 When you run the ErrorTrapExample macro, it fi rst asks you whether you want to trap
the error.

Click No to see what happens when the error isn’t trapped. First, Access displays a mes-
sage box telling you the nature of the error, as shown in Figure 18-22.

Figure 18-22 Access cannot divide a number by zero, so it displays an application error message.

Click OK in this message box, and then Access displays the Action Failed dialog box,
as shown in Figure 18-23. Not very user friendly, is it? Access displays the Action Failed
dialog box whenever it encounters an unhandled error while running a macro. Access
displays the specifi cs of where the error occurred in the Macro Name, Condition,
Action Name, and Arguments boxes. Access displays the error number currently stored

 Trapping Errors in Macros 913

Ch
ap

te
r 1

8

in the MacroError object in the Error Number box. The 2950 error number indicates
that Access encountered an application error and had to display an application error
message. As you’ll see when we trap the error, this isn’t the error number associated
with the Divide By Zero error!

Figure 18-23 Access displays an Action Failed dialog box if it encounters an unhandled error.

The only button you can click in this dialog box is the Stop All Macros button. When
you click this button, Access stops running the macro so that you can continue work-
ing in your application. You can imagine the support calls you’re going to get from your
users if this dialog box appears often in your applications. Click the Stop All Macros
button to close the Action Failed dialog box.

Now let’s see what happens when the macro traps the error. Run the macro again, and
click Yes when the code asks you whether you want to trap the error. This runs the
 TrapYes macro (shown earlier in Figure 18-20), which executes OnError followed by the
SetTempVar that generates an error. Access traps the error and executes the Trapped
macro as requested. That macro asks Access to display another message box with the
error number and description, as shown in Figure 18-24. Notice that Access displays
the correct error number (11) and error description (Division By Zero) in the mes-
sage text.

Figure 18-24 By trapping an error in a macro, you can display a helpful message to the user.

In a completed application, you probably would not need to display the error details to
the user, but for debugging your application, the information in the MacroError object
can be very useful. For an end user, it could be more informative to display a message
such as “While attempting to calculate a value, the application divided a number by
zero. Please recheck the numbers you entered before proceeding.”

Chapter 18

914 Chapter 18 Automating Your Application with Macros
Click OK in the message box, and notice what happens when you do trap the error—
nothing! Because we trapped the error, Access does not display the confusing Action
Failed dialog box.

Earlier in this chapter you saw the DoReport macro that is used with the Print Options
form. This macro also uses error trapping to handle the possibility that a report might
not contain any records. Close the ErrorTrapExample macro, and then open the
DoReport macro in Design view. In the Groups, Alpha, Accepted, and PrintF macros,
you can see that we used the OnError action just before each OpenReport action. Scroll
down until you can see the PrintF macro, as shown in Figure 18-25.

Figure 18-25 The DoReport macro uses the OnError action to handle the possibility that no
records are returned in the report.

The fi rst line of the macro turns the mouse pointer into an hourglass. The second line
calls the Cancel macro that closes the PrintOptions form and puts the focus back on
the WeddingList form. The third line sets the error trap. We selected Macro Name in
the Go To argument and ErrReport in the Macro Name argument to tell Access to go to
the ErrReport macro if any errors occur. The fourth line attempts to open the report.

In each of the four reports in this sample database, the On No Data event property
specifi es the NoRecords macro. When the report has no records, this macro executes
the CancelEvent action to prevent the report from opening. If the report opening is can-
celed, Access encounters an error on the next line of our macro—SelectObject. Access
cannot put the focus on a report that isn’t opened, so we need to plan for this possibil-
ity. Because we’re trapping all errors, the user won’t see the ugly Action Failed dialog
box. Instead, the ErrReport macro runs, and this macro restores the mouse pointer
and displays an informative message telling the user that the report requested has no
records.

To test how this works, close the DoReport macro, and then open the WeddingList
form in Form view. Click the Print button on this form to open the PrintOptions form.

 Trapping Errors in Macros 915

Ch
ap

te
r 1

8

On the PrintOptions form, select List Invitees Who Have Accepted. Unless you have
changed the sample data, this report should return no records. Click the Print button
to run the PrintIt macro in the DoReport macro group. This macro looks at the option
you chose on the PrintOptions form and runs the Accepted macro. That macro attempts
to open the WeddingAccepted report with a fi lter to return only the records where the
value in the Accepted fi eld is greater than zero.

Because no records qualify, the NoData event in the WeddingAccepted report runs the
NoRecords macro and cancels the opening of the report. Next, the macro attempts to
set the focus on the WeddingAccepted report. Because the report is now closed, this
causes an error—2489, if you’re curious—that Access returns to the macro that attempted
to set the focus. Because we turned on error trapping, the ErrReport macro displays
a message to inform you that no records were found in the report, as shown in Fig-
ure 18-26.

Figure 18-26 The error handling in the DoReport macro presents an informative message if the
report contains no records.

If you want to see what happens when the error isn’t trapped, open the DoReport macro
object, scroll down to the Accepted macro, type False in the Condition column next to
the OnError action so that the error trap isn’t set, and save the macro. Try to run the
report again from the WeddingList form, and you’ll see the ugly error messages that
result when you don’t trap the error. Be sure to remove the False condition from the
Accepted macro and save it again so that the application works properly.

If you want to use macros in your application, you should add appropriate error han-
dling using the OnError action. A well-designed Access application should always dis-
play helpful messages to users when errors occur.

Chapter 18

916 Chapter 18 Automating Your Application with Macros

The MacroError object contains only the information from the last reported error. Access

retains this information in the MacroError object until either the macro stops running,

another error occurs, or you run the ClearMacroError action. If you need to continue

running your macro after an error is handled and expect to possibly test the Macro Error

object again (perhaps after setting OnError to Next), you can use the ClearMacro Error

action to clear the contents of the MacroError object. The ClearMacroError action

requires no arguments.

Understanding Macro Actions That Are Not Trusted
Earlier in this chapter we mentioned that Access 2007 has trusted and not trusted
macro actions. As you might recall from Chapter 2, “Exploring the New Look of Access
2007,” the Trust Center settings in the Access Options dialog box control whether
Access disables certain content in your database. If your database is not trusted, Access
might silently disable any potentially malicious macros or VBA code depending upon
the Trust Center settings you enabled or disabled. So what exactly is a malicious macro?
In Microsoft’s terms, a malicious macro runs an action that could potentially do harm to
your computer or fi les, such as deleting a fi le.

Access 2007 separates macro actions into two categories—those that will run in any
database, even in a database that is not trusted (trusted macros), and those that can run
only in a database that is trusted (not trusted macros). Note that if you select Enable
All Macros in the Trust Center Macro Settings section (not recommend by Microsoft),
Access treats all macro actions as trusted even when the database is not trusted.

Note
If you are in a corporate network environment, you should check with your Information

Technology department to determine whether your company has established guidelines

concerning enabling content in Access databases.

Access 2007 recognizes 32 macro actions as potentially unsafe to run in a database that
is not trusted. Seven of the actions are not trusted only when you select certain argu-
ments. Table 18-1 lists the macro actions that Access will run only when the database
is trusted. The Comments column lists special cases dependent on the arguments you
choose or an alternative trusted method you can use.

SIDE OUT Clearing the MacroError Object

The MacroError object contains only the information from the last reported error. Access

retains this information in the MacroError object until either the macro stops running,

another error occurs, or you run the ClearMacroError action. If you need to continue

running your macro after an error is handled and expect to possibly test the Macro Error

object again (perhaps after setting OnError to Next), you can use the ClearMacro Error

action to clear the contents of the MacroError object. The ClearMacroError action

requires no arguments.

Note
If you are in a corporate network environment, you should check with your Information

Technology department to determine whether your company has established guidelines

concerning enabling content in Access databases.

 Understanding Macro Actions That Are Not Trusted 917

Ch
ap

te
r 1

8

 Table 18-1 Macro Actions That Are Not Trusted

Action Comments

Close Setting the Save argument to Prompt is trusted.

CopyDatabaseFile

CopyObject

DeleteObject

Echo

OpenDataAccessPage

OpenDiagram

OpenForm Setting the View argument to Design or Layout is not
trusted.

OpenFunction

OpenModule

OpenQuery Setting the View argument to Design is not trusted.

OpenReport Setting the View argument to Design or Layout is not
trusted.

OpenStoredProcedure

OpenTable Setting the View argument to Design is not trusted.

OpenView

Printout

Quit Setting the Options argument to Prompt is trusted.

Rename

RunApp

RunCommand Commands that affect objects in Design or Layout view are
not trusted.

RunSavedImportExport

RunSQL

Save

SendKeys

SetValue Use the trusted SetProperty action instead of SetValue
to change the Enabled, Visible, Locked, Left, Top, Width,
Height, Fore Color, Back Color, or Caption properties of
forms, reports, or controls.

SetWarnings

ShowToolbar

TransferDatabase

Chapter 18

918 Chapter 18 Automating Your Application with Macros
Action Comments

TransferSharePointList

TransferSpreadsheet

TranferSQLDatabase

TransferText

In the Wedding List Macro sample database, you can fi nd a macro that shows you all
the macro actions that are not trusted. Open the mcrXmplNotTrustedActions macro in
Design view to see all 32 macro actions that are not trusted, as shown in Figure 18-27.

Figure 18-27 Macro actions that are not trusted display an exclamation mark in the left column of
the macro design window.

Note that when you select a macro action or argument that is not trusted, Access
displays an exclamation mark on the selector button of the macro line. When you’re
designing your macros, you can use this visual aid to easily see whether any of your
macro actions will not run in a database that is not trusted.

 Making Your Application Come Alive with Macros
Throughout this book, you’ve learned how to perform common tasks by using Ribbon
commands or by fi nding the object you want in the Navigation Pane and opening it.
In working with your database, you’ve probably also noticed that you perform certain
tasks repeatedly or on a regular basis. You can automate these tasks by creating macros
to execute the actions you perform and then associating the macros with various form
or control events, such as the Current event of a form, the Click event of a command

 Making Your Application Come Alive with Macros 919

Ch
ap

te
r 1

8

button, or the DblClick event of a text box. In the following sections, you’ll use exam-
ples from the Wedding List Macro sample database (WeddingMC.accdb) to understand
how macros can help automate your application.

 Referencing Form and Report Objects
As you create macros to automate tasks that you repeat frequently, you’ll often need to
refer to a report, a form, or a control on a form to set its properties or values. Before we
dig into some of the macros in the Wedding List Macro, you need to know how to code
these references. You can fi nd the syntax for referencing reports, forms, report and form
properties, controls, and control properties in the following sections.

Rules for Referencing Forms and Reports
You can refer to a form or a report by name, but you must fi rst tell Access which
 collection contains the named object. Open forms are in the Forms collection, and open
reports are in the Reports collection. To reference a form or a report, you follow the col-
lection name with an exclamation point to separate it from the name of the object to
which you are referring. You must enclose an object name that contains blank spaces
or special characters in brackets ([]). If the object name contains no blanks or special
characters, you can simply enter the name. However, it’s a good idea to always enclose
an object name in brackets so that your name reference syntax is consistent.

For example, you refer to a form named WeddingList as follows:

Forms![WeddingList]

You refer to a report named WeddingList as follows:

Reports![WeddingList]

Rules for Referencing Form and Report Properties
To reference a property of a form or a report, follow the form or report name with a
period and the property name. You can see a list of most property names for a form or
a report by opening the form or the report in Design view and displaying the property
sheet while you have the form or the report selected. With macros, you can change most
form or report properties while the form is in Form view or from the Print, Format, and
Paint events of a report as Access prints or displays it.

You refer to the Scroll Bars property of a form named CityInformation as follows:

Forms![CityInformation].ScrollBars

You refer to the Caption property of a report named CityInformation as follows:

Reports![CityInformation].Caption

Chapter 18

920 Chapter 18 Automating Your Application with Macros
Note
The names of properties do not contain embedded blank spaces, even though the prop-

erty sheet shows blanks within names. For example, BackColor is the name of the prop-

erty listed as Back Color in the property sheet.

Rules for Referencing Form and Report Controls and Their Properties
To reference a control on a form or a report, follow the form or report name with an
exclamation point and then the control name enclosed in brackets. To reference a prop-
erty of a control, follow the control name with a period and the name of the property.
You can see a list of most property names for controls by opening a form or a report in
Design view, selecting a control (note that different control types have different proper-
ties), and opening its property sheet. You can change most control properties while the
form is in Design view.

You refer to a control named State on the WeddingList form as follows:

Forms![WeddingList]![State]

You refer to the Visible property of a control named Accepted on a report named
 WeddingList as follows:

Reports![WeddingList]![Accepted].Visible

Rules for Referencing Subforms and Subreports
When you embed a subform in a form or a report, the subform is contained in a subform
control. A subreport embedded in a report is contained in a subreport control. You can
reference a subform control or a subreport control exactly as you would any other con-
trol on a form or a report. For example, suppose you have a subform called RelativesSub
embedded in the WeddingList form. You refer to the subform control on the Wedding-
List form as follows:

Forms![WeddingList]![RelativesSub]

Likewise, you can reference properties of a subform or a subreport by following the con-
trol name with a period and the name of the property. You refer to the Visible property
of the RelativesSub subform control as follows:

Forms![WeddingList]![RelativesSub].Visible

Subform controls have a special Form property that lets you reference the form that’s
contained in the subform control. Likewise, subreport controls have a special Report
property that lets you reference the report contained in the subreport control. You can
follow this special property name with the name of a control on the subform or the
subreport to access the control’s contents or properties. For example, you refer to the
LastName control on the RelativesSub subform as follows:

Note
The names of properties do not contain embedded blank spaces, even though the prop-

erty sheet shows blanks within names. For example, BackColor is the name of the prop-

erty listed as Back Color in the property sheet.

 Making Your Application Come Alive with Macros 921

Ch
ap

te
r 1

8

Forms![WeddingList]![RelativesSub].Form![LastName]

You refer to the FontWeight property of the LastName control as follows:

Forms![WeddingList]![RelativesSub].Form![LastName].FontWeight

Opening a Secondary Form
As you learned in Chapter 10, “Using Forms,” it’s easier to work with data by using a
form. You also learned in Chapter 13, “Advanced Form Design,” that you can create
multiple-table forms by embedding subforms in a main form, thus allowing you to see
related data in the same form. However, it’s impractical to use subforms in situations
such as the following:

O You need three or more subforms to see related data.

O The main form is too small to display the entire subform.

O You need to see the related information only some of the time.

The solution is to use a separate form to see the related data. You can open this form
by creating a macro that responds to one of several events. For example, you can use a
command button or the DblClick event of a control on the main form to give your users
access to the related data in the secondary form. This technique helps reduce screen
clutter, makes the main form easier to use, and helps to speed up the main form when
you’re moving from record to record.

You could use this technique in the WeddingList form. It would be simple to create a
macro that would respond to clicking the City Info button by opening the CityInfor-
mation form and displaying all records from the CityNames table, including the best
airline to take and the approximate fl ying time from each city to Seattle, Washington.
However, if you’re talking to your friend Jane in Albuquerque, New Mexico, it would be
even more convenient for the CityInformation form to display only Albuquerque-related
data, rather than the data for all cities. In the following section, you’ll create a macro
that opens the CityInformation form based on the city that’s displayed for the current
record in the WeddingList form.

Creating the SeeCityInformation Macro
Open the Wedding List Macro sample database (WeddingMC.accdb). Click OK on the
opening message so that no objects are opened. Click the arrow on the New Object
button in the Other group on the Create tab, and select Macro from the list of three
options. (The top half of the New Object button displays the last type of new object cre-
ated—Macro, Module, or Class Module. If you see the Macro icon in the top half of the
New Object button, you can click that button to begin creating a new macro.) When
the Macro window opens, collapse the Navigation Pane. Next, click the Macro Names
button and the Conditions button in the Show/Hide group on the Design tab to display
the Macro Name and Condition columns in the Design window. Although you won’t
use these columns for this macro, it’s a good idea to get in the habit of displaying them
because you will use them often when creating new macros.

Chapter 18

922 Chapter 18 Automating Your Application with Macros

You can display the Macro Name and Condition columns by default by clicking the

Microsoft Offi ce Button, clicking Access Options, clicking the Advanced category, and

selecting both the Names Column and Conditions Column check boxes under Show In

Macro Design in the Display section. The next time you create a macro, the columns will

be displayed automatically.

Figure 18-28 shows the macro you are going to create. (If you simply want to view the
macro, it is saved as XmplSeeCityInformation in the sample database.)

Figure 18-28 When triggered from an event on the WeddingList form, this macro opens the City-
Information form fi ltered on the city name.

The macro contains only one action, OpenForm. The OpenForm action not only opens
the CityInformation form but also applies a fi lter so that the city that will be displayed
matches the city currently displayed in the WeddingList form. Click in the Action col-
umn, and then choose OpenForm from the list of actions. In the Action Arguments sec-
tion of the Macro window, enter the following Where Condition argument:

[CityName]=Forms![WeddingList]![City]

The Where Condition argument causes the OpenForm action to open the City-
Information form showing only the rows in the form’s record source whose CityName
fi eld equals the value currently shown in the City combo box on the open the Wedding-
List form. (Later, you’ll learn how to create a macro to synchronize these two forms as
you move to different rows in the WeddingList form.)

SIDE OUT Always Show Macro Names and Conditions

You can display the Macro Name and Condition columns by default by clicking the

Microsoft Offi ce Button, clicking Access Options, clicking the Advanced category, and

selecting both the Names Column and Conditions Column check boxes under Show In

Macro Design in the Display section. The next time you create a macro, the columns will

be displayed automatically.

 Making Your Application Come Alive with Macros 923

Ch
ap

te
r 1

8

Set the rest of the action arguments for the OpenForm action, as shown in Figure 18-28.
After you fi nish creating the action for the macro, it’s a good idea to use the Comment
column to document your macro. Documenting your macro makes it easier to debug,
modify, or enhance the macro in the future. It’s also easier to read in English what each
macro action does rather than have to view the arguments for each action line by line.
Refer to Figure 18-28, and enter the information displayed in the Comment column.
You can see that we’ve added comments about the macro in general and about the
specifi c action the macro is designed to perform. Click the Save button on the Quick
Access Toolbar, and save the macro as SeeCityInformation.

Next, you can associate the macro with the City combo box control on the WeddingList
form. Click the WeddingList form in the Navigation Pane, right-click the name, and
click Design View to open the form in Design view. Click the City combo box control,
and then click the Property Sheet button in the Tools group on the Design tab. When
the property sheet opens, click the Event tab. You’ll want to trigger the SeeCityInforma-
tion macro from the DblClick event, so click the On Dbl Click property box, and select
the macro from the On Dbl Click event property’s drop-down list. You’ll fi nd a macro
called SeeCityInfo already entered here, as shown in Figure 18-29. We created a slightly
different version of the macro and saved it in the form so that the application is fully
functional when you fi rst open it. You can change the event property to your macro
(SeeCityInformation) to test what you’ve built.

Figure 18-29 Select the macro you created for the DblClick event of the City combo box control.

You can also associate the macro with the City Info button by changing the button’s
On Click event property to point to the macro. Click Save on the Quick Access Tool-
bar to save your changes, switch to Form view, and then maximize the form. Scroll
down one or two records, and double-click the City combo box. The CityInformation

Chapter 18

924 Chapter 18 Automating Your Application with Macros
form opens, and the data displayed should be for the city in the current record in the
 WeddingList form. Your screen should look like the one shown in Figure 18-30.

Figure 18-30 The CityInformation form displays a matching city in the WeddingList form.

Linking two related forms in this manner is very useful, but what happens to the
data displayed in the CityInformation form when you move to a new record in the
 WeddingList form? Try scrolling through the records using the record selector. You’ll
fi nd that the data in the CityInformation form changes as you move through records
in the WeddingList form. The data changes because we’ve set one of the events on the
WeddingList form to execute a macro that keeps the data displayed on the two forms
synchronized. In the next section, you’ll walk through the steps to re-create this macro
yourself.

Synchronizing Two Related Forms
In the previous section, you learned how to open a secondary form from a main form
based on matching values of two related fi elds in the two forms. In the following sec-
tions, you’ll create a macro that synchronizes the data in a companion form when the
selected record changes in a main form.

 Making Your Application Come Alive with Macros 925

Ch
ap

te
r 1

8

Creating the SyncWeddingAndCity Macro
Click the arrow on the New Object button in the Other group on the Create tab, and
click Macro from the list of three options to create a new query. When the macro design
window opens, maximize it so that it fi lls the entire screen. Figure 18-31 shows the
actions and comments you’ll create for this macro. (You can fi nd this sample macro
saved as XmplSyncWeddingAndCity.)

Figure 18-31 You’ll create these conditions, actions, and comments for the SyncWeddingAndCity
macro.

You’ll create this macro in the same basic manner that you created the SeeCity-
Information macro. Enter the needed conditions in the Condition column, select the
actions from the Action column, and type the associated comments in the Comment
column. Table 18-2 lists the settings for the actions.

Note
Some code and expression examples in this chapter are too long to fi t on a single printed

line. A line that ends with the symbol means that the code shown on the following line

should be entered on the same line.

Note
Some code and expression examples in this chapter are too long to fi t on a single printed

line. A line that ends with the symbol means that the code shown on the following line

should be entered on the same line.

Chapter 18

926 Chapter 18 Automating Your Application with Macros
Table 18-2 Actions, Arguments, and Settings in SyncWeddingAndCity

Condition Action Argument Setting

Not IsFormLoaded
("CityInformation")

StopMacro

IsNull([Forms]!
[WeddingList]!
[City])
…
…

SelectObject Object Type Form

Object Name CityInformation

In Database Window No

SetProperty Control Name

Property Visible

Value 0

StopMacro

SelectObject Object Type Form

Object Name CityInformation

In Database Window No

Requery

SetTempVar Name AddFlag

Expression False

SelectObject Object Type Form

Object Name WeddingList

In Database Window No

This macro has a couple of conditions that determine which parts of the macro exe-
cute. The fi rst condition uses the IsFormLoaded function, which is included in the
 modUtility module of the Wedding List Macro database. This function checks to see
whether a form (whose name you’ve provided to the function) is currently open. (The
form can be hidden.) The syntax for the function is IsFormLoaded("formname"), where
formname is the name of the form in question. You must enclose the name of the form in
double quotation marks in order for the function to work. The Not before the function
expression tells Access to evaluate the converse of the True/False value returned from
the function. So, this condition will be true only if the form is not loaded. If the com-
panion CityInformation form isn’t open, there’s nothing to synchronize, so the macro
action on this line—StopMacro—executes and the macro ends.

Now that we know the companion CityInformation is open, we need to decide whether
the value on which that form is fi ltered is valid. Remember, when you created the
SeeCityInformation macro that opens the CityInformation form, you included a Where
Condition to fi lter what’s displayed in the CityInformation form to match the city in the
current record in the WeddingList form. However, it’s a bad idea to reference an empty
value in a Where Condition argument. In fact, in some cases you’ll get an error mes-
sage. When you move beyond the last row in the WeddingList form or click New Record
under the Go To button in the Find group on the Home tab, you’ll be in a new blank

 Making Your Application Come Alive with Macros 927

Ch
ap

te
r 1

8

row in which the City fi eld has no value. In this case if you force the CityInformation
form to refresh, it will go blank because it’s a read-only form and there will be no rows
returned if the fi lter compares to an empty value.

It probably makes more sense to test for an empty, or Null, value and hide the com-
panion form if you’re in a new row in the WeddingList form. The second line in this
macro uses the IsNull built-in function to check for this condition. If City is Null, the
macro hides the CityInformation form by setting the value of the Visible property to
0 (or false), and then the macro ends. On the third line, the ellipsis (…) in the Condi-
tion column tells Access to run this action only if the previous condition is true. This
lets you enter the condition only once—and Access tests the condition only once. In
this case, if the City is Null, Access runs not only the SetProperty action on line 3 but
also the StopMacro action on line 4—which ends macro execution at this point. Note
that the form is still open even though you can’t see it. If you move back to a row in the
 WeddingList form that contains data, this macro executes again, but the actions to hide
the CityInformation form and to stop will be skipped because the City fi eld won’t be
Null anymore.

The CityInformation form displays the city details for the current record in the
Wedding List form because your macro opened the CityInformation form with a fi lter
pointing to the City control on the WeddingList form. However, the CityInformation
form doesn’t “know” when you move to a different record in the WeddingList form, so
Access never reapplies the fi lter. Access does save the Where Condition argument you
specifi ed in the Filter property of the CityInformation form. To display the appropriate
city information when the user moves to a new record in the WeddingList form, all you
need to do is requery the CityInformation form to make Access reevaluate the fi lter. The
macro selects the CityInformation form to make sure it has the focus (this also reveals
the form if it was hidden) and then executes a Requery action with no value specifi ed in
the Control Name argument. With no control name specifi ed, Access knows to requery
whatever form or report has the focus.

Finally, the SetTempVar action sets a value that’s tested by other macros, and the Select-
Object command ensures that the form has the focus after setting the value of the
AddFlag temporary variable. We’ll explain more about using SetTempVar in “Passing
Status Information Between Linked Forms” on page 934.

After you have the synchronization macro you need, save it as SyncWeddingAndCity.
The last step is to associate the macro with the Current event of the WeddingList form.
To do that, right-click the WeddingList form in the Navigation Pane, and click Design
View to open the form in Design view. Click the Property Sheet button in the Tools
group on the Design tab to open the property sheet for the form, and then click the On
Current property box. Use the list to select your SyncWeddingAndCity macro. (You’ll
fi nd the example XmplSyncWeddingAndCity macro set in this property in the form.)
Your screen should look like the one shown in Figure 18-32.

When you fi nish, save and close the form. Open the form in Form view, double-click the
City combo box control, and move to the second record. Your screen should look like
the one shown in Figure 18-30, assuming that Jane Crowley’s record is the current one.

Chapter 18

928 Chapter 18 Automating Your Application with Macros
Figure 18-32 Associate the SyncWeddingAndCity macro with the On Current event property of
the WeddingList form.

Test the macro by moving through the records in the WeddingList form. As you move
from record to record, the data in the CityInformation form should change to refl ect the
city displayed in the current record of the WeddingList form. If you move to the blank
record at the end of the recordset, the CityInformation form disappears. Move back to a
row containing data, and it reappears!

Using a macro to synchronize two forms containing related data is a technique that
works well with almost any set of forms, and you can use it in a number of situations. In
the next section, you’ll learn how to create a more complex macro set of named macros
within a macro object, also sometimes referred to as a macro group. When you group
macros by task, you’ll see that this is a good way to organize your work and to keep
from cluttering your database with dozens of macro objects.

 Validating Data and Presetting Values
Two tasks you’ll commonly automate in your applications are validating data that a user
enters in a fi eld and automatically setting values for specifi c fi elds. You’ll now explore
several macro objects saved in the sample database and learn how they perform these
tasks on both the WeddingList form and the CityInformation form.

Validating Data
A problem you’ll often encounter when you create database applications is ensuring
that the data the users enter is valid. Three types of invalid data are unknown entries,
misspelled entries, and multiple versions of the same entry:

O Unknown entries A good example of this error is an entry such as AX in a state
fi eld. No state name is abbreviated as AX, but a user who tries to enter AZ might
accidentally hit the X key instead of the Z key.

O Misspelled entries This sort of error is quite common among users with poor
typing or spelling skills and among very fast typists. In this case, you might see
entries such as Settle, Seatle, or Saettle for Seattle.

 Making Your Application Come Alive with Macros 929

Ch
ap

te
r 1

8

O Multiple versions These errors are common in poorly designed databases
and in databases that are shared by a number of users. You might see entries
such as ABC Company, Inc.; ABC Company, Incorporated; ABC Co., Inc.; or A B C
Company Inc.

You can use macros to validate data and help reduce errors. In the next section, you’ll
create a macro for the WeddingList form that validates the city that the user enters in
the City fi eld. If the city doesn’t exist in the CityNames table, the macro then executes
the following steps:

1. It displays a message indicating that the city is currently unlisted and asks
whether the user wants to enter a new city name.

2. If the user wants to create a new city record, another macro runs that opens the
CityInformation form in Data Entry mode and copies the city name the user just
typed.

3. If the user successfully saves a new row, a macro associated with the AfterInsert
event of the CityInformation form sets a temporary variable.

4. Back in the WeddingList form, the city name gets revalidated, and if the city entry
is a new one, a macro triggered by the AfterUpdate property of the City fi eld sets
the combo box to the new name. When the city name is validated, this macro also
automatically enters the state name and the fi rst three digits of the ZIP Code.

Understanding the ValidateCitySetStateAndZip Macro Group
In the Navigation Pane, fi nd the ValidateCitySetStateAndZip macro, and open it in
Design view. Be sure the Macro Name and Condition columns are displayed. Figure
18-33 shows the fi rst macro and its associated actions.

Chapter 18

930 Chapter 18 Automating Your Application with Macros
Figure 18-33 This fi gure shows the Macro window for the fi rst two macros in the
ValidateCity SetStateAndZip macro group.

The fi rst three lines of the macro are comments, and TestCity is the name of the fi rst
macro in the object. You can see the actions for this macro listed in Table 18-3.

Table 18-3 Actions, Arguments, and Settings in the TestCity Macro

Action Argument Setting

CancelEvent

RunMacro Macro Name ValidateCitySetStateAndZip.AskEdit

To understand how this macro works, let’s take a look at the condition that validates
the city name. What we want to do is look up the name just entered in the CityName
fi eld to fi nd out whether it exists in the CityNames table. If it doesn’t exist, the fi rst line
of the macro executes a CancelEvent action. The second line then calls another macro
that we’ll examine later.

To see this condition easily, click the fi rst line of the macro in the Condition column.
Press Shift+F2 to open the expression in the Zoom box, as shown in Figure 18-34.

 Making Your Application Come Alive with Macros 931

Ch
ap

te
r 1

8

Figure 18-34 The conditional expression in the TestCity macro uses the DLookup function to try to
fi nd the city in the CityNames table.

This condition uses two built-in functions: DLookup and IsNull. The DLookup function
looks up the city name in the CityNames table. The IsNull function checks the return
value of the DLookup function. If the DLookup function doesn’t fi nd the city name,
it returns a Null value. This causes the IsNull function to return a True value because
the return value of the DLookup function is indeed Null. If no row in the CityNames
table matches the current city name in the WeddingList form, Access then executes the
action associated with this condition because the condition evaluated to True. In this
case, the CancelEvent macro action tells Access not to store the new value in the City-
Name fi eld. By including an ellipsis (…) in the Condition column of the second action,
you tell Access to run the second action only if the previous condition is true. (When
you use an ellipsis, you enter the condition only once, and Access performs the evalua-
tion only once.) So if the city doesn’t exist in the CityNames table, the RunMacro action
on the second line calls the AskEdit macro, which we’ll look at in a moment.

On the other hand, if the DLookup function does fi nd the city name, it returns the city
name to the IsNull function. The IsNull function then returns a value of False because
the return value of the DLookup function is not Null. Access disregards the action
associated with this condition. Because you included an ellipsis on the second condi-
tion line, the False evaluation applies there also, so the macro ends without taking any
further action.

What’s the point of all of this? If you open the WeddingList form in Design view, click
the City combo box, and look at its event properties, you’ll fi nd this macro “wired” into
the Before Update property. If you remember from the previous chapter, you can use the
BeforeUpdate event of a form or control to verify what’s about to be saved. If the data is
not valid, you can cancel the event to tell Access not to save the change. This is exactly
what the fi rst line of this macro is doing.

When you don’t cancel a BeforeUpdate event on a control, Access accepts the changes
and gives you a chance to look at the result in the AfterUpdate event. The AfterUpdate
event isn’t what you want to use to validate data because the data has already been
saved, but it’s perfect for fi lling in other fi elds on the form based on what the user just
entered. As you’ll see later, this application uses AfterUpdate on this control to fi ll in the
correct state and part of the ZIP Code.

Chapter 18

932 Chapter 18 Automating Your Application with Macros

The NotInList event occurs when the user types a name that’s not in the row source of a

combo box. The CityNames table is the row source of the City combo box, so NotInList

seems to be an ideal choice to detect a name that’s not in the CityNames table. But for

NotInList to work properly, you need to be able to return a response code to the event to

let Access know whether you’ve handled the problem and inserted a new city name. You

can do that only in Visual Basic code, not in a macro. We set the Limit To List property of

the combo box to No so that the NotInList event never happens. By trapping the prob-

lem in the BeforeUpdate event of the combo box, we can test the value and take appro-

priate action without having to return a response code to Access. As you’ll learn later in

the Visual Basic chapters, the NotInList event is a much better choice as long as you can

return a response code.

So what happens if the user enters a city name that’s not yet in the database? The
AskEdit macro runs, and the fi rst step it takes is to evaluate another condition. As you’ll
learn in later chapters, this sort of IF…THEN…IF logic testing is much easier to do with
procedures written in Visual Basic. With macros, you have to do the fi rst test in one
macro, and if that returns a True value, you have to call another nested macro to per-
form a further test.

The condition on the fi rst line of the AskEdit macro is as follows:

6<>MsgBox(“The city you entered is not in the
 database. Do you want to enter a new one?",36)

You’ve seen the MsgBox action before. This condition uses a built-in function called
MsgBox that’s a lot more powerful. The MsgBox function lets you not only display a
message but also specify what icon you want displayed, and it provides several options
for buttons to display in the message box. You set these options by adding number
selections and providing the result as the second argument to MsgBox. In this case, 36
is the sum of 32, which asks for a question icon, and 4, which requests Yes and No but-
tons. (Intuitive, isn’t it?) You can fi nd all the option settings by searching for MsgBox
Function in Access Help. For your convenience, we’ve listed all the option settings for
the MsgBox function in Table 18-4. In addition, the function returns an integer value
depending on the button the user clicks in the message box. If you look at the MsgBox
Function help topic, you’ll fi nd out that when the user clicks Yes, MsgBox returns the
value 6. Table 18-5 shows you the MsgBox return value settings. So if the user doesn’t
click Yes, the fi rst line of this macro—a StopAllMacros action—executes, and the macro
ends. If the user does click Yes, the rest of the macro executes. Table 18-6 lists all the
actions and arguments for this macro.

SIDE OUT Why Aren’t We Using the NotInList Event to Test for a New
City Name?

The NotInList event occurs when the user types a name that’s not in the row source of a

combo box. The CityNames table is the row source of the City combo box, so NotInList

seems to be an ideal choice to detect a name that’s not in the CityNames table. But for

NotInList to work properly, you need to be able to return a response code to the event to

let Access know whether you’ve handled the problem and inserted a new city name. You

can do that only in Visual Basic code, not in a macro. We set the Limit To List property of

the combo box to No so that the NotInList event never happens. By trapping the prob-

lem in the BeforeUpdate event of the combo box, we can test the value and take appro-

priate action without having to return a response code to Access. As you’ll learn later in

the Visual Basic chapters, the NotInList event is a much better choice as long as you can

return a response code.

 Making Your Application Come Alive with Macros 933

Ch
ap

te
r 1

8

 Table 18-4 Option Settings for the MsgBox Function

Value Meaning

Button Settings (Choose One)

0 OK button only

1 OK and Cancel buttons

2 Abort, Retry, and Ignore buttons

3 Yes, No, and Cancel buttons

4 Yes and No buttons

5 Retry and Cancel buttons

Icon Settings (Choose One)

0 No icon

16 Critical (red X) icon

32 Warning query (question mark) icon

48 Warning message (exclamation point) icon

64 Information message (letter i) icon

Default Button Settings (Choose One)

0 First button is the default

256 Second button is the default

512 Third button is the default

Table 18-5 Return Values for the MsgBox Function

Value Meaning

1 OK button clicked

2 Cancel button clicked

3 Abort button clicked

4 Retry button clicked

5 Ignore button clicked

6 Yes button clicked

7 No button clicked

Table 18-6 Actions, Arguments, and Settings in the AskEdit Macro

Action Argument Setting

StopAllMacros

Close Object Type Form

Object Name CityInformation

Chapter 18

934 Chapter 18 Automating Your Application with Macros
Action Argument Setting

Save Prompt

OpenForm Form Name CityInformation

View Form

Data Mode Add

Window Mode Normal

SetValue Item [Forms]![CityInformation]![CityName]

Value [Forms]![WeddingList]![City]

GoToControl Control Name State

SetTempVar Name AddFlag

Expression True

The AskEdit macro contains several actions that Access executes if the user enters the
data for a new city name and responds by clicking Yes in the MsgBox that asks whether
the user wants to add the new city. The macro uses the IsFormLoaded function you
saw earlier to determine whether the CityInformation form is open. If it is, the macro
instructs Access to close the form. Next, Access opens the CityInformation form in
Add mode and copies the city name from the WeddingList form to the CityName fi eld
of the CityInformation form by using the SetValue action. (Note that SetValue has an
exclamation mark icon on the selection button to the left of the action line indicating
Access will not run this action in a database that is not trusted.) SetValue inserts the
city name the user typed for user convenience and to ensure that the user starts with
the city name just entered. After the macro copies the city name to the CityName fi eld,
it tells Access to move the focus to the State fi eld using the GoToControl action. Finally,
the macro creates a temporary variable called AddFlag and sets the value to True to
indicate that the CityInformation form is now opened in Data Entry mode. The macro
attached to the AfterInsert event checks this temporary variable to determine whether
it should notify the AfterUpdate event of the City control on the WeddingList form to
refresh its list.

 Passing Status Information Between Linked Forms
As you just saw, the AskEdit macro creates a temporary variable called AddFlag to tell
the CityInformation form’s AfterInsert event macro that the WeddingList form needs
to know whether a new row has been added successfully. Likewise, when the user
adds a new row using the CityInformation form, the macro that runs in response to an
AfterInsert event (the event that Access uses to let you know when a new row has been
added via a form) needs to check the fl ag and pass an indicator back to the macro that
responds to the AfterUpdate event of the City combo box on the WeddingList form.
You’ll learn in later chapters that you can also do this sort of “status indicator” passing
by using variables in Visual Basic procedures.

Figure 18-35 shows the macro you need in order to respond to the AfterInsert event of
the CityInformation form. You might recall from the previous chapter that Access trig-
gers this event right after it has saved a new row. You could save the row by clicking
Save in the Records group on the Home tab, moving to a new row, or closing the form.

 Making Your Application Come Alive with Macros 935

Ch
ap

te
r 1

8

The fi rst line has a condition that tests to be sure that the user asked to add a new row.
The condition is as follows:

Not [TempVars]![AddFlag]

Figure 18-35 The RefreshCityList macro sets a temporary variable to indicate a requery is needed.

If the AddFlag temporary variable is not true, the fi rst action closes the form, and the
StopAllMacros action causes the macro to end. If the variable is true, the SetTempVar
action creates another temporary variable called RequeryFlag and sets the fl ag to let the
macro that responds to the AfterUpdate event of the City combo box know that it must
refresh the list in the combo box at its earliest opportunity. Finally, the macro closes
the CityInformation form. Remember that the AfterInsert event could be triggered as a
result of clicking the form’s Close button after entering new data. Normally, you would
expect an error if you try to execute a Close command while the form is already in the
process of closing (you will get an error in Visual Basic). Because Access assumes that
macros are most often used by beginning programmers, it is kind enough not to gener-
ate any error from either of the Close actions in this macro if this is the case.

If the user triggers the AfterInsert event by moving to another row, closing the form
makes sense after adding the one row you need. If the user closes the form without
entering any new data, the AfterInsert event won’t happen. The user will be back in the
WeddingList form with the unmatched city data still typed in the City combo box. If
the user attempts to save the unmatched name again, the BeforeUpdate event runs the
TestCity macro that cancels the update when the city isn’t in the CityNames table. The
user must either add the new value or enter a value in the list.

As a fi nal touch, the SetTempVar action in the SyncWeddingAndCity macro that you
created in Figure 18-31 sets the AddFlag temporary variable to False when you move
to a new row on the WeddingList form. When you have just moved to a new row, you
clearly aren’t worried about adding a new row to the CityNames table. Also, there’s a
SelectObject action in the macro to make sure the focus is back on the WeddingList
form after the macro updates the temporary variable.

Chapter 18

936 Chapter 18 Automating Your Application with Macros
Presetting Values
Validating data is just one of the many ways you can ensure data integrity in a database.
Presetting values for certain fi elds is another way. Although you can set the Default
property of a fi eld, sometimes you’ll need to set the value of a fi eld based on the value
of another fi eld in a form. For example, you’ll want to set the values of the State fi eld
and the Zip fi eld in the WeddingList form based on the value of the City fi eld. You can
accomplish this with a macro.

In this section, you’ll examine actions in the ValidateCitySetStateAndZip macro group
that set the values of the State and Zip fi elds in the WeddingList form based on the
city entered. If you scroll down the macro design window, you can see the additional
actions, as shown in Figure 18-36.

Figure 18-36 The SetStateAndZip macro uses SetValue actions to automatically fi ll in the State and
Zip controls.

Table 18-7 lists the actions and arguments in this macro.

Table 18-7 Actions, Arguments, and Settings in the SetStateAndZip Macro

Action Argument Setting

SetValue Item [State]

Expression DLookup("[State]","[CityNames]",
"[CityNames].[CityName]=City")

SetValue Item [Zip]

Expression DLookup("[Zip]","[CityNames]",
"[CityNames].[CityName]=City")

GoToControl Control Name Zip

SetValue Item [Forms]![WeddingList]!
[Zip].[SelStart]

 Making Your Application Come Alive with Macros 937

Ch
ap

te
r 1

8

Action Argument Setting

Expression 255

Requery Control Name City

SetTempVar Name RequeryFlag

Expression False

When the user enters a valid city name, the fi rst SetValue action uses the DLookup
function to retrieve the matching State value from the CityNames table. If the value for
State isn’t blank or Null, the second SetValue action retrieves the fi rst three digits of the
ZIP Code from the table, moves the focus to the Zip control with a GoToControl action,
and sets the SelStart property of the Zip control to a high value (255) to place the inser-
tion point at the end of the data displayed in the control. Pressing the F2 key after you
move to a control also places the insertion point at the end of the data in the control, so
you could use a SendKeys action here instead. However, setting the SelStart property
is faster and more reliable. (See Access Help for more information about the SelStart
property.) The user can now enter the last two digits of the ZIP Code on the main form
before moving on to the Expected fi eld. The Condition column for the second action is
as follows:

Not ([State]="" Or [State] Is Null)

The set of macros in this macro object is now complete. You can see how these macros
help implement data integrity by validating data and presetting specifi c values. This
decreases the likelihood that users will make errors. Now you’ll see how to associate
these macros with the appropriate events on the WeddingList form and the CityInfor-
mation form.

Right-click the WeddingList form in the Navigation Pane, and click Design View to open
the form in Design view. Click the City combo box control, and then click the Property
Sheet button in the Tools group on the Design tab. After the property sheet opens, click
the Event tab. You should see the ValidateCitySetStateAndZip.TestCity macro associ-
ated with the BeforeUpdate event of the City combo box. Remember, this is the macro
you should run to verify whether the user has entered a valid city name. The After-
Update event property should be set to ValidateCitySetStateAndZip.SetStateAndZip.
This macro automatically sets the matching State and Zip values whenever the user
specifi es a new City value. Figure 18-37 shows the result.

Chapter 18

938 Chapter 18 Automating Your Application with Macros
Figure 18-37 The Before Update and After Update event properties for the City control on the
WeddingList form are set to run macros in the ValidateCitySetStateAndZip macro.

Close the WeddingList form. Open the CityInformation form in Design view, and click
the Property Sheet button in the Tools group on the Design tab to open the property
sheet. The ValidateCitySetStateAndZip.RefreshCityList macro is set in the form’s After
Insert event property, as shown in Figure 18-38. Recall from the previous chapter that
you could also use the form’s AfterUpdate event to see changed data. However, in this
case you don’t care about existing rows that change. The AfterInsert event is more
appropriate because Access fi res this event only when a new row is saved, but not when
an existing row is saved.

Figure 18-38 The ValidateCitySetStateAndZip.RefreshCityList macro executes when the AfterInsert
event of the CityInformation form occurs.

Close the CityInformation form. Now that you’ve verifi ed that the macros are associated
with the appropriate objects and events, you’re ready to test how this works. Begin by
closing all open objects, and then double-click the AutoexecXmpl macro in the Naviga-
tion Pane to run the macro and open the WeddingList form. Move to a new record in
the WeddingList form, and enter a title, a name, an address, and a group. When the
insertion point moves to the City combo box, enter Miami. After you press Enter or Tab,
Access runs the ValidateCitySetStateAndZip.TestCity macro. Because this city doesn’t
currently exist in the CityNames table, the AskEdit macro runs, and Access displays the
message box shown in Figure 18-39.

 Converting Your Macros to Visual Basic 939

Ch
ap

te
r 1

8

Figure 18-39 The AskEdit macro displays a message box if you enter a new city.

After you click the Yes button, Access executes the remaining actions in the macro.
Access opens the CityInformation form in Data Entry mode, copies the city name to the
CityName text box control on the form, and moves the insertion point to the State fi eld.
Figure 18-40 shows the result of these actions.

Figure 18-40 The AskEdit macro then opens the CityInformation form where you can enter the
details of the new city.

After you enter information in the remaining fi elds and close the CityInformation form,
the AfterInsert event of the form triggers the ValidateCitySetStateAndZip.RefreshCity-
List macro. After the form closes, Access moves the focus back to the WeddingList
form. When you fi nally leave the now valid City control, the macro triggered by After-
Update requeries the City combo box control and automatically updates the State and
Zip fi elds.

Converting Your Macros to Visual Basic
As you’ll learn in the rest of this book, Visual Basic, rather than macros, is what you
should use to automate any serious applications. If you’ve spent some time getting
familiar with programming in Access in macros but would now like to move to Visual
Basic, you’re in luck! Access provides a handy tool to convert the actions in macros
called from events on your forms and reports to the equivalent Visual Basic statements.

To see how this works, open the WeddingList form in Design view. On the Database
Tools tab, in the Macro group, click the Convert Form’s Macros To Visual Basic button,
as shown in Figure 18-41.

Chapter 18

940 Chapter 18 Automating Your Application with Macros
Figure 18-41 Access includes a command to convert a form’s macros to Visual Basic.

In the next dialog box, the Convert tool offers you the option to insert error-handling
code and to copy the comments from your macros into the new code. You should leave
both check boxes selected and then click Convert to change your macros to Visual
Basic. After the tool is fi nished, you should see all macro references in event properties
changed to [Event Procedure]. Click the On Current event property for the WeddingList
form, and then click the Build button (...) to the right of the property. You’ll see the con-
verted code displayed, as shown in Figure 18-42.

Note
Converting your macros to Visual Basic does not delete any of your original macros.

However, Access removes any embedded macros assigned to form and control proper-

ties and converts them to Visual Basic. Also, the tool doesn’t convert any macros refer-

enced by a RunMacro command—you’ll have to do that yourself.

In Chapter 20, we’ll introduce you to some enhancements we made to the Wedding List
sample database after we converted all the macros to Visual Basic using this wizard. You can
fi nd this version of the database saved as WeddingList.accdb on the companion CD.

Note
Converting your macros to Visual Basic does not delete any of your original macros.

However, Access removes any embedded macros assigned to form and control proper-

ties and converts them to Visual Basic. Also, the tool doesn’t convert any macros refer-

enced by a RunMacro command—you’ll have to do that yourself.

CHAPTER 19

Understanding
Visual Basic Fundamentals

The Visual Basic Development Environment 942

Variables and Constants . 961

Declaring Constants and Variables 965

Collections, Objects, Properties, and Methods 978

Functions and Subroutines . 1005

Understanding Class Modules 1009

Controlling the Flow of Statements 1016

Running Macro Actions and Menu Commands 1026

Trapping Errors . 1028

Some Complex Visual Basic Examples 1030

In this chapter, you’ll learn how to create, edit, and test Microsoft Visual Basic code
in your Microsoft Offi ce Access 2007 applications. The chapter covers the following

major topics:

O The Visual Basic Editor (VBE) and its debugging tools

O Variables and constants and how to declare them

O The primary object models defi ned in access—the Access model, the Data Access
Objects (DAO) model, and the ActiveX Data Objects (ADO) model.

You’ll need to understand these models to be able to manipulate objects such as
forms, form controls, and recordsets in your code.

O Visual Basic procedural statements

Function and Sub statements
Property Get, Property Let, and Property Set (for use in class
modules) statements
Flow-control statements, including Call, Do, For, If, and Select
Case
DoCmd and RunCommand statements
On Error statements

O A walk-through of some example code you’ll fi nd in the sample databases

If you’re new to Visual Basic, you might want to read through the chapter from begin-
ning to end, but keep in mind that the large section in the middle of the chapter on
procedural statements is designed to be used primarily as a reference. If you’re already
familiar with Visual Basic, you might want to review the sections on the Visual Basic
Editor and the object models, and then use the rest of the chapter as reference material.

•
•

•

•
•

 941

Chapter 19

942 Chapter 19 Understanding Visual Basic Fundamentals
Note
You can fi nd many of the code examples from this chapter in the modExamples module

in the Contacts.accdb and Housing.accdb sample databases on the companion CD.

The Visual Basic Development Environment
In Access for Windows 95 (version 7.0), Visual Basic replaced the Access Basic program-
ming language included with versions 1 and 2 of Access. The two languages are very
similar because both Visual Basic and Access Basic evolved from a common design cre-
ated before either product existed. (It’s called Visual Basic because it was the fi rst ver-
sion of Basic designed specifi cally for the Windows graphical environment.) In recent
years, Visual Basic has become the common programming language for Microsoft
Offi ce applications, including Access, Excel, Word, and PowerPoint. Some of the 2007
Offi ce system products (including Word and Excel) can work with an even newer vari-
ant of Visual Basic—Visual Basic .NET—but Access does not.

Having a common programming language across applications provides several advan-
tages. You have to learn only one programming language, and you can easily share
objects across applications by using Visual Basic with object automation. Offi ce Access
2007 uses the Visual Basic Editor common to all Microsoft Offi ce applications and to
the Visual Basic programming product. The Visual Basic Editor provides color-coded
syntax, an Object Browser, and other features. It also provides excellent tools for testing
and confi rming the proper execution of the code you write.

Modules
You save all Visual Basic code in your database in modules. Access 2007 provides two
ways to create a module: as a module object or as part of a form or report object.

Module Objects
You can view the module objects in your database by clicking the top of the Navigation
Pane and then clicking Object Type under Navigate To Category. Click the Navigation
Pane menu again, and click Modules under Filter By Group. Figure 19-1 shows the
standard and class modules in the Conrad Systems Contacts sample database. (We also
right-clicked the top of the Navigation Pane, clicked View By on the shortcut menu, and
then Details on the submenu so you can see the descriptions we’ve attached to all the
modules.) You should use module objects to defi ne procedures that you need to call
from queries or from several forms or reports in your application. You can call a public
procedure defi ned in a module from anywhere in your application.

Note
You can fi nd many of the code examples from this chapter in the modExamples module

in the Contacts.accdb and Housing.accdb sample databases on the companion CD.

 The Visual Basic Development Environment 943

Ch
ap

te
r 1

9

Figure 19-1 To see all the modules in your database, click Modules under Filter By Group on the
Navigation Pane menu when you have Navigate To Category set to Object Type. On the Create tab,
in the Other group, click the arrow under the Macro command and then click Module to create a
new standard module.

To create a new module, on the Create tab, in the Other group, click the arrow under
the Macro command, and click either Module or Class Module, also shown in Figure
19-1. (This button remembers the last object type you created in your current Access
session, so it might say Module or Class Module.) When you click Module, Access cre-
ates a new standard module. You use a standard module to defi ne procedures that you
can call from anywhere in your application. It’s a good idea to name modules based
on their purpose. For example, you might name a module that contains procedures
to perform custom calculations for queries modQueryFunctions, and you might
name a module containing procedures to work directly with Windows functions
 modWindowsAPIFunctions.

Advanced developers might want to create a special type of module object called a class
module. A class module is a specifi cation for a user-defi ned object in your application,
and the Visual Basic procedures you create in a class module defi ne the properties and
methods that your object supports. You create a new class module by clicking the arrow
under the Macro command and then clicking Class Module. You’ll learn more about
objects, methods, properties, and class modules later in this chapter.

Chapter 19

944 Chapter 19 Understanding Visual Basic Fundamentals
Form and Report Modules
To make it easy to create Visual Basic procedures that respond to events on forms or
reports, Access 2007 supports a class module associated with each form or report. (You
can design forms and reports that do not have a related class module.) A module associ-
ated with a form or report is also a class module that allows you to respond to events
defi ned for the form or report as well as defi ne extended properties and methods of the
form or report. Within a form or report class module, you can create specially named
event procedures to respond to Access-defi ned events, private procedures that you can
call only from within the scope of the class module, and public procedures that you
can call as methods of the class. See “Collections, Objects, Properties, and Methods” on
page 978 for more information about objects and methods. You can edit the module for
a form or a report by opening the form or report in Design view and then clicking the
View Code button in the Tools group on the Design contextual tab (located under Form
Design Tools). As you’ll learn later, you can also open a form or a report by setting an
object equal to a new instance of the form or report’s class module.

Using form and report modules offers three main advantages over module objects.

O All the code you need to automate a form or a report resides with that form or
report. You don’t have to remember the name of a separate form-related or report-
related module object.

O Access loads module objects into memory when you fi rst reference any procedure
or variable in the module and leaves them loaded as long as the database is open.
Access loads the code for a form or a report only when the form or the report is
opened. Access unloads a form or a report class module when the object is closed;
therefore, form and report modules consume memory only when you’re using the
form or the report to which they are attached.

O If you export a form or report, all the code in the form or report module is
exported with it.

However, form and report modules have one disadvantage: Because the code must be
loaded each time you open the form or report, a form or report with a large supporting
module opens noticeably more slowly than one that has little or no code. In addition,
saving a form or report design can take longer if you have also opened the associated
module and changed any of the code.

One enhancement that fi rst appeared in Microsoft Access 97 (version 8.0)—the addi-
tion of the HasModule property—helps Access load forms and reports that have no code
more rapidly. Access automatically sets this property to Yes if you try to view the code
for a form or report, even if you don’t defi ne any event procedures. If HasModule is No,
Access doesn’t bother to look for an associated Visual Basic module, so the form or
report loads more quickly.

CAUTION!
If you set the HasModule property to No in the Properties window, Access deletes the

code module associated with the form or report. However, Access warns you and gives

you a chance to change your mind if you set the HasModule property to No in error.

CAUTION!

 The Visual Basic Development Environment 945

Ch
ap

te
r 1

9

The Visual Basic Editor Window
When you open a module in Design view, Access 2007 opens the Visual Basic Editor
and asks the editor to display your code. Open the Conrad Systems Contacts sample
database (Contacts.accdb), view the Modules list in the Navigation Pane, and then
either right-click the modExamples object and click Design View on the shortcut menu
or double-click the modExamples object to see the code for this module opened in
the Visual Basic Editor, as shown in Figure 19-2. Notice that the Visual Basic Editor in
Access 2007 uses the older menu and toolbar technology from previous releases, not
the Ribbon used in the main Access window.

Return to Microsoft Access window
Insert a new module or procedure

Open Project Explorer window
Open Properties window

Open Object BrowserRun procedure
Pause execution

Halt execution and reset
Design mode

Properties window

Project Explorer window Code window

Immediate window Locals window

Figure 19-2 Use the Visual Basic Editor to view and edit all Visual Basic code in your database.

Chapter 19

946 Chapter 19 Understanding Visual Basic Fundamentals
What you see on your screen might differ from Figure 19-2, particularly if you have
opened the Visual Basic Editor previously and moved some windows around. In the
upper-left corner of the fi gure, you can see the Visual Basic Project Explorer window
docked in the workspace. (Click Project Explorer on the View menu or press Ctrl+R to
see this window if it’s not visible.) In this window, you can discover all module objects
and form and report class modules saved in the database. You can double-click any
module to open it in the Code window, which you can see maximized in the upper-
right corner.

Docked in the lower-left corner is the Properties window. (Click Properties Window on
the View menu or press F4 to see this window if it’s not visible.) When you have a form
or report that has a Visual Basic module open in Design view in Access, you can click
that object in the Project Explorer to see all its properties. If you modify a property in
the Properties window, you’re changing it in Access. To open a form or report that is not
open, you can select it in the Project Explorer and then click Object on the View menu.

In the lower-right corner you can see the Locals window docked. (Click Locals Window
on the View menu to see this window if it’s not visible.) As you will see later, this win-
dow allows you to instantly see the values of any active variables or objects when you
pause execution in a procedure. In the lower center you can see the Immediate window
docked. (Click Immediate window on the View menu or press Ctrl+G to see this win-
dow if it’s not visible.) It’s called the Immediate Window because you can type any valid
Visual Basic statement and press Enter to execute the statement immediately. You can
also use a special “what is” command character (?) to fi nd out the value of an expres-
sion or variable. For example, you can type ?5*20 and press Enter, and Visual Basic
responds with the answer on the following line: 100.

You can undock any window by grabbing its title bar and dragging it away from its
docked position on the edge toward the center of the screen. You can also undock a
window by right-clicking anywhere in the window and clearing the Dockable property.
As you will see later, you can set the Dockable property of any window by clicking
Options on the Tools menu. When a window is set as Dockable but not docked along
an edge, it becomes a pop-up window that fl oats on top of other windows—similar to
the way an Access form works when its Pop Up property is set to Yes, as you learned
in Chapter 12, “Customizing a Form.” When you make any window not Dockable, it
shares the space occupied by the Code window.

You cannot set the Code window as Dockable. The Code window always appears in the
part of the workspace that is not occupied by docked windows. You can maximize the
Code window to fi ll this remaining space, as shown in Figure 19-2. You can also click
the Restore button for this window and open multiple overlaid Code windows for differ-
ent modules within the Code window space.

At the top of the Code window, just below the toolbar, you can see two drop-down lists.

O Object list When you’re editing a form or report class module, open this list on
the left to select the form or the report, a section on the form or the report, or any
control on the form or the report that can generate an event. The Procedure list
then shows the available event procedures for the selected object. Select General
to view the Declarations section of the module, where you can set options or

 The Visual Basic Development Environment 947

Ch
ap

te
r 1

9

declare variables shared by multiple procedures. In a form or a report class mod-
ule, General is also where you’ll see any procedures you have coded that do not
respond to events. When you’re editing a standard module object, this list dis-
plays only the General option. In a class module object, you can choose General
or Class.

O Procedure list Open this list on the right to select a procedure in the module and
display that procedure in the Code window. When you’re editing a form or report
module, this list shows the available event procedures for the selected object and
displays in bold type the event procedures that you have coded and attached to
the form or the report. When you’re editing a module object, the list displays in
alphabetic order all the procedures you coded in the module. In a class module
when you have selected Class in the Object list, you can choose the special Initial-
ize or Terminate procedures for the class.

In Figure 19-2, we dragged the divider bar at the top of the scroll bar on the right of the
Code window downward to open two edit windows. We clicked in the lower window
and then clicked ShowTables in the Procedure list box. You might fi nd a split window
very handy when you’re tracing calls from one procedure to another. The Procedure list
box always shows you the name of the procedure that currently has the focus. In the
Code window, you can use the arrow keys to move horizontally and vertically. When
you enter a new line of code and press Enter, Visual Basic optionally verifi es the syntax
of the line and warns you of any problems it fi nds.

If you want to create a new procedure in a module, you can type either a Function state-
ment, a Sub statement, or a Property statement on any blank line above or below an
existing procedure and then press Enter, or click anywhere in the module and click the
arrow to the right of the Insert button on the toolbar and then click Procedure, or click
Procedure on the Insert menu. (For details about the Function and Sub statements, see
“Functions and Subroutines” on page 1005. For details about the Property statement,
see “Understanding Class Modules,” page 1009.) Visual Basic creates a new procedure
for you (it does not embed the new procedure in the procedure you were editing) and
inserts an End Function, End Sub, or End Property statement. When you create a new
procedure using the Insert button or the Insert menu, Visual Basic opens a dialog box
where you can enter the name of the new procedure, select the type of the procedure
(Sub, Function, or Property), and select the scope of the procedure (Public or Private).
To help you organize your procedures, Visual Basic inserts the new procedure in alpha-
betical sequence within the existing procedures.

CAUTION!
If you type a Function, Sub, or Property statement in the middle of an existing proce-

dure, Visual Basic accepts the statement if it’s syntactically correct, but your project won’t

compile because you cannot place a Function, Sub, or Property procedure inside another

Function, Sub, or Property procedure.

CAUTION!

Chapter 19

948 Chapter 19 Understanding Visual Basic Fundamentals
If you’re working in a form or report module, you can select an object in the Object list
and then open the Procedure list to see all the available events for that object. An event
name displayed in bold type means you have created a procedure to handle that event.
Select an event whose name isn’t displayed in bold type to create a procedure to handle
that event.

Visual Basic provides many options that you can set to customize how you work with
modules. Click Options on the Tools menu, and then click the Editor tab to see the set-
tings for these options, as shown in Figure 19-3.

Figure 19-3 You can customize the Visual Basic Editor by using the settings on the Editor tab in the
Options dialog box.

On the Editor tab, some important options to consider are Auto Syntax Check, to check
the syntax of lines of code as you enter them; and Require Variable Declaration, which
forces you to declare all your variables. (Require Variable Declaration is not selected by
default—you’ll see later why it’s important to select it.) If you want to see required and
optional parameters as you type complex function calls, select the Auto List Members
check box. Auto Quick Info provides drop-down lists where appropriate built-in con-
stants are available to complete parameters in function or subroutine calls. When you’re
debugging code, Auto Data Tips lets you discover the current value of a variable by
pausing your mouse pointer on any usage of the variable in your code.

Drag-And-Drop Text Editing allows you to highlight code and drag it to a new location.
Default To Full Module View shows all your code for multiple procedures in a module
in a single scrollable view. If you clear that check box, you will see only one procedure
at a time and must page up or down or select a different procedure in the Procedure list
box to move to a different part of the module. When you’re in full module view, select-
ing the Procedure Separator check box asks Visual Basic to draw a line between proce-
dures to make it easy to see where one procedure ends and another begins.

Selecting the Auto Indent check box asks Visual Basic to leave you at the same indent
as the previous line of code when you press the Enter key to insert a new line. We
wrote all of the sample code you’ll see in this book and in the sample databases with
indents to make it easy to see related lines of code within a loop or an If…Then…Else

 The Visual Basic Development Environment 949

Ch
ap

te
r 1

9

construct. You can set the Tab Width to any value from 1 through 32. This setting tells
Visual Basic how many spaces you want to indent when you press the Tab key while
writing code.

On the Editor Format tab of the Options dialog box, you can set custom colors for
various types of code elements and also choose a display font. We recommend using a
monospaced font such as Courier New for all code editing.

On the General tab, shown in Figure 19-4, you can set some important options that dic-
tate how Visual Basic acts as you enter new code and as you debug your code. You can
ignore all the settings under Form Grid Settings because they apply to forms designed
in Visual Basic, not Access.

Figure 19-4 You can modify settings to help you debug your code on the General tab in the
Options dialog box.

If your code has halted, in many cases you can enter new code or correct problems
in code before continuing to test. Some changes you make, however, will force Visual
Basic to reset rather than let you continue to run from the halted point. If you select the
Notify Before State Loss check box, Visual Basic will warn you before allowing you to
make code changes that would cause it to reset.

In the Error Trapping section, you can select one of three ways to tell Visual Basic how
to deal with errors. As you’ll discover later in this chapter, you can write statements in
your code to attempt to catch errors. If you think you have a problem in your error-
 trapping code, you can select Break On All Errors. With this setting, Visual Basic
ignores all error trapping and halts execution on any error. If you have written class
modules that can be called from other modules, to catch an untrapped error that occurs
within a class module, choose Break In Class Module to halt on the statement within
the class module that failed. (We recommend this setting for most testing.) If you
choose Break On Unhandled Errors, and an untrapped error occurs within a class mod-
ule, Visual Basic halts on the statement that invoked the class module.

The last two important options on this tab are Compile On Demand and Background
Compile. With the Compile On Demand check box selected, Visual Basic compiles any

Chapter 19

950 Chapter 19 Understanding Visual Basic Fundamentals
previously uncompiled new code whenever you run that code directly or run a proce-
dure that calls that code. Background Compile lets Visual Basic use spare CPU cycles to
compile new code as you are working in other areas.

Finally, on the Docking tab you can specify whether the Immediate window, Locals
window, Watch window, Project Explorer, Properties window, or Object Browser can
be docked. We will take a look at the Immediate window and Watch window in the
next section. You can use the Object Browser to discover all the supported properties
and methods of any object or function defi ned in Access, Visual Basic, or your database
application.

Access 2007 and Visual Basic work as two separate but interlinked products in your

Access application. Access handles the storage of the Visual Basic project (both the

source code and the compiled code) in your desktop database (.accdb) or project (.adp)

fi le, and it calls Visual Basic to manage the editing and execution of your code.

Because Access tightly links your forms and reports with class modules stored in the

Visual Basic project, some complex synchronization must happen between the two prod-

ucts. For example, when you open a form module and enter a new event procedure in

the Visual Basic Code window, Access must set the appropriate event property to [Event

Procedure] so that both the form and the code are correctly linked. Likewise, when you

delete all the code in an event procedure, Access must clear the related form or control

property. So, when you open a form or report module from the Visual Basic Editor win-

dow, you’ll notice that Access also opens the related form or report object in the Access

window.

When Access fi rst began using Visual Basic (instead of Access Basic) in version 7.0

 (Microsoft Access for Windows 95), it was possible to end up with a corrupted Visual

Basic project or corrupted form or report object if you weren’t careful to always com-

pile and save both the code and the form or report defi nition at the same time when

you made changes to either. It was particularly easy to encounter corruption if multiple

developers had the database open at the same time. This corruption most often occurred

when Access failed to merge a changed module back into the Visual Basic project when

the developer saved changes.

Microsoft greatly improved the reliability of this process when it switched in version 9.0

(Microsoft Access 2000) to saving the entire Visual Basic project whenever you save a

change. However, this change means that two developers can no longer have the same

database open and be working in the code at the same time. This also means that your

Access fi le can grow rapidly if you’re making frequent changes to the code and saving

your changes.

When you’re making multiple changes in an Access application, we recommend that you

always compile your project when you have fi nished changing a section of code. (Click

Compile on the Debug menu in the Visual Basic Editor.) You should also save all at once

multiple objects that you have changed by clicking the Save button in the Visual Basic

Editor window and always responding Yes to the Save dialog box that Access shows you

when you have multiple changed objects open.

SIDE OUT Understanding the Relationship Between Access and
Visual Basic

Access 2007 and Visual Basic work as two separate but interlinked products in your

Access application. Access handles the storage of the Visual Basic project (both the

source code and the compiled code) in your desktop database (.accdb) or project (.adp)

fi le, and it calls Visual Basic to manage the editing and execution of your code.

Because Access tightly links your forms and reports with class modules stored in the

Visual Basic project, some complex synchronization must happen between the two prod-

ucts. For example, when you open a form module and enter a new event procedure in

the Visual Basic Code window, Access must set the appropriate event property to [Event

Procedure] so that both the form and the code are correctly linked. Likewise, when you

delete all the code in an event procedure, Access must clear the related form or control

property. So, when you open a form or report module from the Visual Basic Editor win-

dow, you’ll notice that Access also opens the related form or report object in the Access

window.

When Access fi rst began using Visual Basic (instead of Access Basic) in version 7.0

(Microsoft Access for Windows 95), it was possible to end up with a corrupted Visual

Basic project or corrupted form or report object if you weren’t careful to always com-

pile and save both the code and the form or report defi nition at the same time when

you made changes to either. It was particularly easy to encounter corruption if multiple

developers had the database open at the same time. This corruption most often occurred

when Access failed to merge a changed module back into the Visual Basic project when

the developer saved changes.

Microsoft greatly improved the reliability of this process when it switched in version 9.0

(Microsoft Access 2000) to saving the entire Visual Basic project whenever you save a

change. However, this change means that two developers can no longer have the same

database open and be working in the code at the same time. This also means that your

Access fi le can grow rapidly if you’re making frequent changes to the code and saving

your changes.

When you’re making multiple changes in an Access application, we recommend that you

always compile your project when you have fi nished changing a section of code. (Click

Compile on the Debug menu in the Visual Basic Editor.) You should also save all at once

multiple objects that you have changed by clicking the Save button in the Visual Basic

Editor window and always responding Yes to the Save dialog box that Access shows you

when you have multiple changed objects open.

 The Visual Basic Development Environment 951

Ch
ap

te
r 1

9

Working with Visual Basic Debugging Tools
You might have noticed that the debugging tools for macros are very primitive. You
can’t do much more than run macros in single-step mode to try to fi nd the source of
an error. The debugging tools for Visual Basic are signifi cantly more extensive. The fol-
lowing sections describe many of the tools available in Visual Basic. You might want to
scan these sections fi rst and then return after you have learned more about the Visual
Basic language and have begun writing procedures that you need to debug.

Setting Breakpoints
If you still have the modExamples module open, scroll down until you can see all of the
ShowTables function, as shown in Figure 19-5. This sample function examines all the
table defi nitions in the current database and displays the table name, the names of any
indexes defi ned for the table, and the names of columns in each index by printing to a
special object called Debug (another name for the Immediate window).

Figure 19-5 You can set a breakpoint in a Visual Basic module to help you debug your code.

One of the most common ways to test particularly complex code is to open the module
you want to examine, set a stopping point in the code (called a breakpoint), and then
run the code. Visual Basic halts before executing the statement on the line where you
set the breakpoint. As you’ll soon see, when Visual Basic stops at a breakpoint, you can

Chapter 19

952 Chapter 19 Understanding Visual Basic Fundamentals
examine all sorts of information to help you clean up potential problems. While a pro-
cedure is stopped, you can look at the values in variables—including all object variables
you might have defi ned. In addition, you can also change the value of variables, single-
step through the code, reset the code, or restart at a different statement.

To set a breakpoint, click anywhere on the line of code where you want Visual Basic
execution to halt and either click the Toggle Breakpoint button on the Debug toolbar
(open this toolbar by right-clicking any toolbar and clicking Debug on the shortcut
menu), click Toggle Breakpoint on the Debug menu, or press F9 to set or clear a break-
point. When a breakpoint is active, Access highlights the line of code (in red by default)
where the breakpoint is established and displays a dot on the selection bar to the left
of the line of code. Note that you can set as many breakpoints as you like, anywhere in
any module. After you set a breakpoint, the breakpoint stays active until you close the
current database, specifi cally clear the breakpoint, or click Clear All Breakpoints on
the Debug menu (or press Ctrl+Shift+F9). In the example shown in Figure 19-5, we set
a breakpoint to halt the procedure at the bottom of the loop that examines each table.
When you run the procedure later, you’ll see that Visual Basic will halt on this state-
ment just before it executes the statement.

Using the Immediate Window
“Action central” for all troubleshooting in Visual Basic is a special edit window called
the Immediate window. You can open the Immediate window while editing a module
by clicking the Immediate Window button on the Debug toolbar or clicking Immediate
Window on the View menu. Even when you do not have a Visual Basic module open,
you can open the Immediate window from anywhere in Access by pressing Ctrl+G.

Executing Visual Basic Commands in the Immediate Window In the Immediate
window (shown earlier in Figure 19-2), you can type any valid Visual Basic command
and press Enter to have it executed immediately. You can also execute a procedure by
typing the procedure name followed by any parameter values required by the proce-
dure. You can ask Visual Basic to evaluate any expression by typing a question mark
character (sometimes called the “what is” character) followed by the expression. Access
displays the result of the evaluation on the line below. You might want to experiment by
typing ?(5 * 4) / 10. You will see the answer 2 on the line below.

Because you can type any valid Visual Basic statement, you can enter an assignment
statement (the name of a variable, an equals sign, and the value you want to assign to the
variable) to set a variable that you might have forgotten to set correctly in your code. For
example, there’s a public variable (you’ll learn more about variables later in this chap-
ter) called gintDontShowCompanyList that the Conrad Systems Contacts sample appli-
cation uses to save whether the current user wants to see the Select Companies pop-up
window when clicking Companies on the main switchboard. Some users may prefer to
go directly to the Companies/Organizations form that edits all companies rather than
select or fi lter the list. If you have been running the Conrad Systems Contacts applica-
tion, you can fi nd out the current value of the string by typing

?gintDontShowCompanyList

 The Visual Basic Development Environment 953

Ch
ap

te
r 1

9

Visual Basic displays the value of this variable, which should be either 0 or –1. You can
set the value of this string to False (0) by typing

gintDontShowCompanyList = 0

You can verify the value of the variable you just set by typing

?gintDontShowCompanyList

If you assigned 0 to the variable, you should see that value echoed in the Immediate
window.

To have a sense of the power of what you’re doing, go to the Database window in Access
by clicking the View Microsoft Access button on the left end of the toolbar in the Visual
Basic Editor window. Open the frmMain form in Form view. Click the Companies but-
ton to fi nd out whether the Select Companies form or the Companies/Organizations
form opens. If you go directly to the Select Companies form, then gintDontShowCom-
panyList must be False (0). Close the form that opens.

Now, go back to the Visual Basic Editor window. (An easy way to do this is to use the
Windows Alt+Tab feature.) In the Visual Basic Immediate window, set the value to True
by entering in the Immediate window

gintDontShowCompanyList = True

Go back to the main switchboard and try the Companies button again. Because you
set the public variable to True, you should go directly to the Companies/Organizations
form. Now that you have the form open to edit companies, you can set a fi lter directly
from the Immediate window. Go back to that window and enter the expression

Forms!frmCompanies.Filter = "[StateOrProvince] = 'PA'"

If you want, you can ask what the fi lter property is to see if it is set correctly. Note that
nothing has happened yet to the form. Next, turn on the form’s FilterOn property by
entering

Forms!frmCompanies.FilterOn = True

Return to the form, and you should now see the form fi ltered down to two rows—all the
companies in the state of Pennsylvania. If you want to try another example, return to
the Immediate window and enter

Forms!frmCompanies.Section(0).Backcolor = 255

The background of Section(0), the detail area of the form, should now appear red! Note
that none of these changes affect the design of the form. You can close the form, and the
next time you open it, the form will have a normal background color, and the records
won’t be fi ltered.

Chapter 19

954 Chapter 19 Understanding Visual Basic Fundamentals
Using Breakpoints You saw earlier how to set a breakpoint within a module proce-
dure. To see how a breakpoint works, open the modExamples module in the Visual
Basic Editor window, fi nd the ShowTables function, and be sure you have set a break-
point on the Next tbl statement as shown in Figure 19-6.

Because the ShowTables procedure is a function that might return a value, you have
to ask Visual Basic to evaluate the function in order to run it. The function doesn’t
require any parameters, so you don’t need to supply any. To run the function, type
?ShowTables() in the Immediate window, as shown in Figure 19-6, and press Enter.

Note
You can also ask Visual Basic to run any public procedure by clicking in the procedure

and clicking the Run button on either the Standard or Debug toolbar.

Figure 19-6 You can execute a module function from the Immediate window.

Visual Basic runs the function you requested. Because you set a breakpoint, the code
stops on the statement with the breakpoint, as shown in Figure 19-7. The fi rst table
in the database is actually a linked table (an Excel spreadsheet), so you won’t see any

Note
You can also ask Visual Basic to run any public procedure by clicking in the procedure

and clicking the Run button on either the Standard or Debug toolbar.

 The Visual Basic Development Environment 955

Ch
ap

te
r 1

9

 output. Click the Continue button on the toolbar to run through the loop a second time
to display the fi rst table.

Note that we clicked Locals Window on the View menu to reveal the Locals window
you can see across the bottom of Figure 19-7. (We undocked the Immediate window
so you can see more of the Locals window.) In the Locals window, Visual Basic shows
you all the active variables. You can, for example, click the plus sign next to the word
cat (a variable set to the currently opened database catalog) to browse through all the
property settings for the database and all the objects within the database. You can click
on the tbl variable to explore the columns and properties in the table. See “Collections,
Objects, Properties, and Methods” on page 978 for details about all the objects you see
in the “tree” under the database catalog.

The Immediate window displays the output of three Debug.Print statements within the
function you’re running, as also shown in Figure 19-7.

Figure 19-7 When your Visual Basic code stops at a breakpoint, you can use the Locals window to
examine variable and object values.

The fi rst line shows the name of the fi rst table (Errorlog) that the function found in the
database. The second (indented) line shows the name of the index for that table. The
third line shows the name of the one column in the index.

Chapter 19

956 Chapter 19 Understanding Visual Basic Fundamentals
If you want to see the results of executing the next loop in the code (examining the next
table object in the catalog), click the Continue button on the toolbar. If you want to run
the code a single statement at a time, click Step Into or Step Over on the Debug menu or
open the Debug toolbar and click the Step Into or Step Over button. Step Into and Step
Over work the same unless you’re about to execute a statement that calls another pro-
cedure. If the next statement calls another procedure, Step Into literally steps into the
called procedure so that you can step through the code in the called procedure one line
at a time. Step Over calls the procedure without halting and stops on the next statement
in the current procedure.

When you are fi nished studying the loop in the ShowTables function, be sure to click
the Reset button on the toolbar to halt code execution.

Note
The Tables collection in the catalog includes tables, linked tables, system tables, and

queries. Because the ShowTables procedure only looks for tables, you will need to loop

through the code several times until the procedure fi nds the next object that defi nes a

table. You should quickly fi nd the ErrorLog, ErrTable, and ErrTableSample tables, but the

code must then loop through all the queries and linked tables (more than 40 of them)

before fi nding the SwitchboardDriver table.

Working with the Watch Window
Sometimes setting a breakpoint isn’t enough to catch an error. You might have a vari-
able that you know is being changed somewhere by your code (perhaps incorrectly).
By using the Watch window, you can examine a variable as your code runs, ask Visual
Basic to halt when an expression that uses the variable becomes true, or ask Visual
Basic to halt when the variable changes.

An interesting set of variables in the Conrad Systems Contacts sample database are
gintDontShowCompanyList, gintDontShowContactList, and gintDontShowInvoiceList
(all defi ned in the modGlobals module). When any of these variables are set to True, the
main switchboard bypasses the intermediate list/search form for companies, contacts,
and invoices, respectively. You played with one of these variables earlier, but it would be
interesting to trap when these are set or reset.

Note
The Tables collection in the catalog includes tables, linked tables, system tables, and

queries. Because the ShowTables procedure only looks for tables, you will need to loop

through the code several times until the procedure fi nds the next object that defi nes a

table. You should quickly fi nd the ErrorLog, ErrTable, and ErrTableSample tables, but the

code must then loop through all the queries and linked tables (more than 40 of them)

before fi nding the SwitchboardDriver table.

 The Visual Basic Development Environment 957

Ch
ap

te
r 1

9

CAUTION!
There are a couple of known issues with setting breakpoints in Access 2007. First, code

will not halt if you have cleared the Use Access Special Keys check box in the Application

Options section of the Current Database category of the Access Options dialog box (click

the Microsoft Offi ce Button and then click Access Options). Second, the Break When

Value Is True and Break When Value Changes options in the Add Watch dialog box will

not work if the value or expression you’re watching is changed in a form or report mod-

ule that is not already open in the Visual Basic Editor. For this example to work, the form

modules for frmMain, frmSignon, and frmUsers must be open. You can verify that these

modules are open by opening the Windows menu in the Visual Basic Editor window. The

Contacts.accdb sample fi le should have modules open, but these modules might not

be open in your copy if you have closed them and compiled and saved the project. You

can fi nd these modules in the Project Explorer window. Open the list of objects in the

 Microsoft Class Objects category and then double-click the form modules that you need

to open them.

To set a watch for when the value changes, open the Watch window by clicking it on
the View menu, right-click in the Watch window, and click Add Watch on the short-
cut menu. You can also click Add Watch on the Debug menu. You should see the Add
Watch dialog box, as shown in Figure 19-8.

Figure 19-8 You can set a watch for when a variable’s value changes.

In the Expression box, enter the name of the variable you want the code to watch. In
this case, you want to watch when the gintDontShowContactList variable changes. You
don’t know where the variable is set, so set the Procedure and Module selections to (All
Procedures) and (All Modules), respectively. Under Watch Type, select the Break When
Value Changes option, and click OK to set the watch. Go to the Immediate window and
set gintDontShowContactList to True by entering gintDontShowContactList = True and
pressing Enter. Now return to the Navigation Pane and start the application by open-
ing the frmSplash form. (Code in the Load event of this form hides the Navigation Pane
and then opens the Conrad Systems Contacts Sign On form.) Because you set a watch

C U O !

Chapter 19

958 Chapter 19 Understanding Visual Basic Fundamentals
to halt when gintDontShowContactList changes, the code execution should halt in the
module for the frmSignOn form as shown in Figure 19-9.

Figure 19-9 Visual Basic code halts immediately after a watch variable has changed.

Note that the code halts on the statement immediately after the one that reset the
watched variable. If you didn’t set the variable to True before you started the applica-
tion, Visual Basic won’t halt because the value won’t be changing.

Click the Continue button (or press F5) to let the code continue executing. Return to
the Access window, and in the Conrad Systems Contacts Sign On dialog box, select my
name (John Viescas) and press Enter or click the Sign On button. The sign on dialog
box will close, and the main switchboard form opens. In the main switchboard, click
the Users button to open the user edit form. The second record should be my record
unless you’ve created other users. Select the Don’t Show Contact List check box in my
record and click the Save button. The procedure halts again, as shown in Figure 19-10.

It appears that this code is setting the gintDontShowContactList variable to some value
on the user edit form. (As you’ll learn later, Me is a shorthand way to reference the form
object where your code is running, so Me.DontShowContactList references a control on
the form.) Click the Continue button again to let the code fi nish execution. Return to
the Access window and click the Close button on the Users form to return to the main
switchboard.

 The Visual Basic Development Environment 959

Ch
ap

te
r 1

9

Figure 19-10 The gintDontShowContactList variable is set to the value of a form control.

If you open frmUsers in Design view (you can’t do this while the procedure is still
halted) and examine the names of the check box controls on the form, you’ll fi nd that
the check box you selected is named DontShowContactList. When the code behind
frmUsers detects a change to the options for the currently signed-on user, it makes sure
the option variables in modGlobals get changed as well. Be sure to close the frmUsers
form when you’re fi nished looking at it.

Examining the Procedure Call Sequence (Call Stack)
After stopping code that you’re trying to debug, it’s useful sometimes to fi nd out what
started the current sequence of code execution and what procedures have been called
by Visual Basic. For this example, you can continue with the watch on the gintDont-
ShowContactList variable.

You should now be at the main switchboard form (frmMain) in the application. Click
the Exit button to close the application and return to the Navigation Pane. (You’ll see
a prompt asking you if you’re sure you want to exit—click Yes. You might also see a
prompt offering to back up the data fi le—click No.) The code should halt again in the
Close event of the frmMain form. Click the Call Stack button on the toolbar or click
Call Stack on the View menu to see the call sequence shown in Figure 19-11.

Chapter 19

960 Chapter 19 Understanding Visual Basic Fundamentals
Figure 19-11 When your code is halted, you can see the chain of code executed to the point of the
halt in the Call Stack dialog box.

The Call Stack dialog box shows the procedures that have executed, with the most
recent procedure at the top of the list, and the fi rst procedure at the bottom. You can
see that the code started executing in the cmdExit_Click procedure of the frmMain
form. This happens to be the Visual Basic event procedure that runs when you click the
Exit button. If you click that line and then click the Show button, you should see the
cmdExit_Click procedure in the module for the frmMain form (the switchboard) with
the cursor on the line that executes the DoCmd.Close command to close the form. This
line calls the Access built-in Close command (the <Non-Basic Code> you see in the call
stack list), which in turn triggered the Close event procedure for the form. It’s the Close
event procedure code that sets the gintDontShowContactList variable back to False (0).
Be sure that the Call Stack dialog box is closed and click Continue on the toolbar to let
the code fi nish running.

Note
Be sure to delete the watch after you are fi nished seeing how it works by right-clicking it

in the Watch window and clicking Delete on the shortcut menu.

Note
Be sure to delete the watch after you are fi nished seeing how it works by right-clicking it

in the Watch window and clicking Delete on the shortcut menu.

 Variables and Constants 961

Ch
ap

te
r 1

9

Variables and Constants
In addition to using Visual Basic code to work with the controls on any open forms or
reports (as you can with macros), you can declare and use named variables in Visual
Basic code for storing values temporarily, calculating a result, or manipulating any of
the objects in your database. To create a value available anywhere in your code, you
can defi ne a global variable, as you can fi nd in the modGlobals module in the Conrad
 Systems Contacts sample database.

Another way to store data in Visual Basic is with a constant. A constant is a data object
with a fi xed value that you cannot change while your application is running. You’ve
already encountered some of the built-in constants in Access 2007—Null, True, and
False. Visual Basic also has a large number of intrinsic constants—built-in constants
that have meaningful names—that you can use to test for data types and other attributes
or that you can use as fi xed arguments in functions and expressions. You can view the
list of intrinsic constants by searching for the Visual Basic Constants topic in Help. You
can also declare your own constant values to use in code that you write.

In the following sections, you’ll learn about using variables to store and calculate data
and to work with database objects.

Data Types
Visual Basic supports data types for variables and constants that are similar to the
data types you use to defi ne fi elds in tables. It also allows you to defi ne a variable that
is a pointer to an object (such as a form or a recordset). The data types are described in
Table 19-1.

Table 19-1 Visual Basic Data Types

Data
Type Size

Data-Typing
Character

Can
Contain

Boolean 2 bytes (none) True (–1) or False (0)

Byte 1 byte (none) Binary data ranging in value from 0
through 255

Integer 2 bytes % Integers from –32,768 through 32,767

Long 4 bytes & Integers from –2,147,483,648 through
2,147,483,647

Single 4 bytes ! Floating-point (imprecise) numbers
from approximately –3.4 × 1038
through 3.4 × 1038

Double 8 bytes # Floating-point (imprecise) numbers
from approximately –1.79 × 10308
through 1.79 × 10308

Chapter 19

962 Chapter 19 Understanding Visual Basic Fundamentals
Data
Type Size

Data-Typing
Character

Can
Contain

Currency 8 bytes @ A scaled integer with four
decimal places from
–922,337,203,685,477.5808 through
922,337,203,685,477.5807

Decimal 14 bytes (none) A precise number with up to 29
digits and up to 28 decimal places
from –79.228 × 1027 to 79.228 × 1027
(Visual Basic in Access supports the
Decimal data type only as a type
within the Variant data type.)

String 10 bytes plus
2 bytes per
character

$ Any text or binary string up to
approximately 2 billion bytes in
length, including text, hyperlinks,
memo data, and “chunks” from an
ActiveX object; a fi xed-length string
can be up to 65,400 characters long

Date 8 bytes (none) Date/time values ranging from
January 1, 100, to December 31, 9999

Object 4 bytes (none) A pointer to an object—you can
also defi ne a variable that contains
a specifi c type of object, such as the
Database object

Variant 16 bytes
through
approximately
2 billion bytes

(none) Any data, including Empty, Null, and
date/time data (Use the VarType
function to determine the current
data type of the data in the variable.
A Variant can also contain an array
of Variants. Use the IsArray function
to determine whether a Variant is an
array.)

User-defi ned Depends on
elements
defi ned

(none) Any number of variables of any of the
above data types

You can implicitly defi ne the data type of a variable by appending a data-typing charac-
ter, as noted in the table above, the fi rst time you use the variable. For example, a vari-
able named MyInt% is an integer variable. If you do not explicitly declare a data variable
that you reference in your code and do not supply a data-typing character, Visual Basic
assigns the Variant data type to the variable. (See “Declaring Constants and Variables”
on page 965 to learn how to explicitly declare data variables.) Note that although the
Variant data type is the most fl exible (and, in fact, is the data type for all controls on
forms and reports), it is also the least effi cient because Visual Basic must do extra work
to determine the current data type of the data in the variable before working with it in
your code. Variant is also the only data type that can contain the Null value.

 Variables and Constants 963

Ch
ap

te
r 1

9

The Object data type lets you defi ne variables that can contain a pointer to an object.
See “Collections, Objects, Properties, and Methods” on page 978 for details about
objects that you can work with in Visual Basic. You can declare a variable as the generic
Object data type, or you can specify that a variable contains a specifi c type of object.
The major object types are AccessObject, Application, Catalog, Column, Command,
Connection, Container, Control, Database, Document, Error, Field, Form, Group,
Index, Key, Parameter, Procedure, Property, QueryDef, Recordset, Relation, Report,
Table, TableDef, User, View, and Workspace.

You can request that Visual Basic generate all new modules with an Option Explicit state-

ment by selecting the Require Variable Declaration check box on the Editor tab of the

Options dialog box, as shown in Figure 19-3. If you set this option, Visual Basic includes

an Option Explicit statement in the Declarations section of every new module. This helps

you avoid errors that can occur when you use a variable in your code that you haven’t

properly declared in a Dim, Public, Static, or Type statement or as part of the param-

eter list in a Function statement or a Sub statement. (See “Functions and Subroutines”

on page 1005.) When you specify this option in a module, Visual Basic fl ags any unde-

clared variables it fi nds when you ask it to compile your code. Using an Option Explicit

statement helps you fi nd variables that you might have misspelled when you entered

your code.

Variable and Constant Scope
The scope of a variable or a constant determines whether the variable or the constant
is known to only one procedure, all procedures in a module, or all procedures in your
database. You can create variables or constants that can be used by any procedure in
your database (public scope). You can also create variables or constants that apply only
to the procedures in a module or only to a single procedure (private scope). A variable
declared inside a procedure is always private to that procedure (available only within
the procedure). A variable declared in the Declarations section of a module can be
private (available only to the procedures in the module) or public. You can pass values
from one procedure to another using a parameter list, but the values might be held in
variables having different names in the two procedures. See the sections on the Func-
tion, Sub, and Call statements later in this chapter.

To declare a public variable, use the Public statement in the Declarations section of a
standard module or a class module. All modules attached to forms or reports are class
modules. To declare a public constant, use the Public keyword with a Const statement in
the Declarations section of a standard module. You cannot declare a public constant in
a class module. To declare a variable or a constant that all procedures in a module can
reference, defi ne that variable or constant in the Declarations section of the module. (A
variable defi ned in a Declarations section is private to the module unless you use the

SIDE OUT Using Option Explicit Is a Good Idea

You can request that Visual Basic generate all new modules with an Option Explicit state-

ment by selecting the Require Variable Declaration check box on the Editor tab of the

Options dialog box, as shown in Figure 19-3. If you set this option, Visual Basic includes

an Option Explicit statement in the Declarations section of every new module. This helps

you avoid errors that can occur when you use a variable in your code that you haven’t

properly declared in a Dim, Public, Static, or Type statement or as part of the param-

eter list in a Function statement or a Sub statement. (See “Functions and Subroutines”

on page 1005.) When you specify this option in a module, Visual Basic fl ags any unde-

clared variables it fi nds when you ask it to compile your code. Using an Option Explicit

statement helps you fi nd variables that you might have misspelled when you entered

your code.

Chapter 19

964 Chapter 19 Understanding Visual Basic Fundamentals
Public statement.) To declare a variable or a constant used only in a particular proce-
dure, defi ne that variable or constant as part of the procedure.

Visual Basic in Access 2007 allows you to use the same name for variables or constants
in different module objects or at different levels of scope. In addition, you can declare
public variables and constants in form and report modules as well as public variables
and constants in standard modules.

To use the same name for public variables and constants in different module objects or
form or report modules, specify the name of the module to which it belongs when you
refer to it. For example, you can declare a public variable named intX in a module object
with the name modMyModule and then declare another public variable named intX in
a second module object, named modMyOtherModule. If you want to reference the intX
variable in modMyModule from a procedure in modMyOtherModule (or any module
other than modMyModule), you must use

modMyModule.intX

You can also declare variables or constants with the same name at different levels of
scope within a module object or a form or report module. For example, you can declare
a public variable named intX and then declare a local variable named intX within a
procedure. (You can’t declare a public variable within a procedure.) References to intX
within the procedure refer to the local variable, while references to intX outside the pro-
cedure refer to the public variable. To refer to the public variable from within the proce-
dure, qualify it with the name of the module, just as you would refer to a public variable
from within a different module.

Declaring a public variable in a form or report module can be useful for variables that
are logically associated with a particular form or report but that you might also want to
use elsewhere. Like the looser naming restrictions, however, this feature can sometimes
create confusion. In general, it’s still a good idea to keep common public variables and
constants in standard modules and to give public variables and constants names that
are unique across all variable names in your application.

Note
For information on the syntax conventions used in the remainder of this chapter, refer to

“Syntax Conventions” in the “Conventions Used In This Book” section at the beginning of

this book.

Note
For information on the syntax conventions used in the remainder of this chapter, refer to

“Syntax Conventions” in the “Conventions Used In This Book” section at the beginning of

this book.

 Declaring Constants and Variables 965

Ch
ap

te
r 1

9

 Declaring Constants and Variables
The following sections show the syntax of the statements you can use to defi ne con-
stants and variables in your modules and procedures.

Const Statement
Use a Const statement to defi ne a constant.

Syntax
[Public | Private] Const {constantname [As datatype]
 = <const expression>},...

Notes
Include the Public keyword in the Declarations section of a standard module to defi ne a
constant that is available to all procedures in all modules in your database. Include the
Private keyword to declare constants that are available only within the module where
the declaration is made. Constants are private by default, and a constant defi ned within
a procedure is always private. You cannot defi ne a Public constant in a class module.
(All constants in a class module are private.)

The datatype can be Byte, Boolean, Integer, Long, Currency, Single, Double, Date, String,
or Variant. You cannot declare a constant as an object. Use a separate As datatype clause
for each constant being declared. If you don’t declare a type, Visual Basic assigns the
data type that is most appropriate for the expression provided. (You should always
explicitly declare the data type of your constants.)

The <const expression> cannot include variables, user-defi ned functions, or Visual Basic
built-in functions (such as Chr). You can include simple literals and other previously
defi ned constants.

Example
To defi ne the constant PI to be available to all procedures in all modules, enter the fol-
lowing in the Declarations section of any standard module.

Public Const PI As Double = 3.14159

Chapter 19

966 Chapter 19 Understanding Visual Basic Fundamentals

It’s a good idea to prefi x all variable names you create with a notation that indicates the

data type of the variable, particularly if you create complex procedures. This helps ensure

that you aren’t attempting to assign or calculate incompatible data types. (For example,

the names will make it obvious that you’re creating a potential error if you try to assign

the contents of a long integer variable to an integer variable.) It also helps ensure that

you pass variables of the correct data type to procedures. Finally, including a prefi x helps

ensure that you do not create a variable name that is the same as an Access or Visual

Basic reserved word. The following table suggests data type prefi xes that you can use for

many of the most common data types.

Data Type Prefi x Data Type Prefi x

Boolean bol Document doc

Byte byt Field fl d

Currency cur Form frm

Double dbl Index idx

Integer int Key key

Long lng Parameter prm

Single sgl Procedure prc

String str Property prp

User-defi ned (using the
Type statement)

usr QueryDef qdf

Variant var Recordset rst

Catalog cat Report rpt

Column col Table tbl

Command cmd TableDef tbl

Connection cn View vew

Control ctl Workspace wks

Database db

Dim Statement
Use a Dim statement in the Declarations section of a module to declare a variable or a
variable array that can be used in all procedures in the module. Use a Dim statement
within a procedure to declare a variable used only in that procedure.

SIDE OUT Use Variable Naming Conventions

It’s a good idea to prefi x all variable names you create with a notation that indicates the

data type of the variable, particularly if you create complex procedures. This helps ensure

that you aren’t attempting to assign or calculate incompatible data types. (For example,

the names will make it obvious that you’re creating a potential error if you try to assign

the contents of a long integer variable to an integer variable.) It also helps ensure that

you pass variables of the correct data type to procedures. Finally, including a prefi x helps

ensure that you do not create a variable name that is the same as an Access or Visual

Basic reserved word. The following table suggests data type prefi xes that you can use for

many of the most common data types.

Data Type Prefi x Data Type Prefi x

Boolean bol Document doc

Byte byt Field fl d

Currency cur Form frm

Double dbl Index idx

Integer int Key key

Long lng Parameter prm

Single sgl Procedure prc

String str Property prp

User-defi ned (using the
Type statement)

usr QueryDef qdf

Variant var Recordset rst

Catalog cat Report rpt

Column col Table tbl

Command cmd TableDef tbl

Connection cn View vew

Control ctl Workspace wks

Database db

 Declaring Constants and Variables 967

Ch
ap

te
r 1

9

Syntax
Dim {[WithEvents] variablename
 [([<array dimension>],...)] [As [New]
 datatype]},...

where <array dimension> is

[lowerbound To] upperbound

Notes
If you do not include an <array dimension> specifi cation but you do include the paren-
theses, you must include a ReDim statement in each procedure that uses the array to
dynamically allocate the array at run time. You can defi ne an array with as many as 60
dimensions. If you do not include a lowerbound value in an <array dimension> specifi ca-
tion, the default lower bound is 0. You can reset the default lower bound to 1 by includ-
ing an Option Base 1 statement in the module Declarations section. The lowerbound and
upperbound values must be integers, and upperbound must be greater than or equal to
lowerbound. The number of members of an array is limited only by the amount of mem-
ory on your computer.

Valid datatype entries are Byte, Boolean, Integer, Long, Currency, Single, Double, Date,
String (for variable-length strings), String * length (for fi xed-length strings), Object,
 Variant, or one of the object types described earlier in this chapter. You can also declare
a user-defi ned variable structure using the Type statement and then use the user type
name as a data type. You should always explicitly declare the data type of your vari-
ables. If you do not include the As datatype clause, Visual Basic assigns the Variant
data type.

Use the New keyword to indicate that a declared object variable is a new instance of an
object that doesn’t have to be set before you use it. You can use the New keyword only
with object variables to create a new instance of that class of object without requiring
a Set statement. You can’t use New to declare dependent objects. If you do not use the
New keyword, you cannot reference the object or any of its properties or methods until
you set the variable to an object using a Set statement.

Use the WithEvents keyword to indicate an object variable within a class module
that responds to events triggered by an ActiveX object. Form and report modules that
respond to events on the related form and report objects are class modules. You can
also defi ne custom class modules to create custom objects. If you use the WithEvents
keyword, you cannot use the New keyword.

Visual Basic initializes declared variables at compile time. Numeric variables are initial-
ized to zero (0), variant variables are initialized to empty, variable-length string vari-
ables are initialized as zero-length strings, and fi xed-length string variables are fi lled
with ANSI zeros (Chr(0)). If you use a Dim statement within a procedure to declare vari-
ables, Visual Basic reinitializes the variables each time you run the procedure.

Chapter 19

968 Chapter 19 Understanding Visual Basic Fundamentals
Examples
To declare a variable named intMyInteger as an integer, enter the following:

Dim intMyInteger As Integer

To declare a variable named dbMyDatabase as a database object, enter the following:

Dim dbMyDatabase As Database

To declare an array named strMyString that contains fi xed-length strings that are 20
characters long and contains 50 entries from 51 through 100, enter the following:

Dim strMyString(51 To 100) As String * 20

To declare a database variable, a new table variable, and two new fi eld variables for the
table; set up the objects; and append the new table to the Tabledefs collection, enter the
following:

Public Sub NewTableExample()
 Dim db As DAO.Database
 Dim tdf As New DAO.TableDef, _
 fl d1 As New DAO.Field, _
 fl d2 As New DAO.Field
 ' Initialize the table name
 tdf.Name = "MyTable"
 ' Set the name of the fi rst fi eld
 fl d1.Name = "MyField1"
 ' Set its data type
 fl d1.Type = dbLong
 ' Append the fi rst fi eld to the Fields
 ' collection of the table
 tdf.Fields.Append fl d1
 ' Set up the second fi eld
 fl d2.Name = "MyField2"
 fl d2.Type = dbText
 fl d2.Size = 20
 ' Append the second fi eld to the table
 tdf.Fields.Append fl d2
 ' Establish an object on the current database
 Set db = CurrentDb
 ' Create a new table by appending tdf to
 ' the Tabledefs collection of the database
 db.TableDefs.Append tdf
End Sub

See “Collections, Objects, Properties, and Methods” on page 978 for details about working
with DAO objects. See “Functions and Subroutines” on page 1005 for details about the Sub
statement.

 Declaring Constants and Variables 969

Ch
ap

te
r 1

9

To declare an object variable to respond to events in another class module, enter the
following:

Option Explicit
Dim WithEvents objOtherClass As MyClass

Sub LoadClass ()
 Set objOtherClass = New MyClass
End Sub

Sub objOtherClass_Signal(ByVal strMsg As string)
 MsgBox "MyClass Signal event sent this " & _
 "message: " & strMsg
End Sub

In class module MyClass, code the following:

Option Explicit
Public Event Signal(ByVal strMsg As String)

Public Sub RaiseSignal(ByVal strText As String)
 RaiseEvent Signal(strText)
End Sub

In any other module, execute the following statement:

MyClass.RaiseSignal "Hello"

Enum Statement
Use an Enum statement in a module Declarations section to assign long integer val-
ues to named members of an enumeration. You can use an enumeration name as a
restricted Long data type.

Syntax
[Public | Private] Enum enumerationname
 <member> [= <long integer expression>]
 ...
End Enum

Notes
Enumerations are constant values that you cannot change when your code is running.
Include the Public keyword to defi ne an enumeration that is available to all procedures
in all modules in your database. Include the Private keyword to declare an enumeration
that is available only within the module where the declaration is made. Enumerations
are public by default.

Chapter 19

970 Chapter 19 Understanding Visual Basic Fundamentals
You must declare at least one member within an enumeration. If you do not provide a
<long integer expression> assignment, Visual Basic adds 1 to the previous value or assigns
0 if the member is the fi rst member of the enumeration. The <long integer expression>
 cannot include variables, user-defi ned functions, or Visual Basic built-in functions (such
as CLng). You can include simple literals and other previously defi ned constants or
enumerations.

Enumerations are most useful as a replacement for the Long data type in a Function or
Sub statement. When you call the function or sub procedure in code, you can use one of
the enumeration names in place of a variable, constant, or literal. If you select the Auto
List Members option (see Figure 19-3), Visual Basic displays the available names in a
drop-down list as you type the sub or function call in your code.

Example
To declare a public enumeration for days of the week and use the enumeration in a pro-
cedure, enter the following:

Option Explicit
Public Enum DaysOfWeek
 Sunday = 1
 Monday
 Tuesday
 Wednesday
 Thursday
 Friday
 Saturday
End Enum

Public Function NextDate(lngDay As DaysOfWeek) As Date
' This function returns the next date
' that matches the day of week requested
Dim intThisDay As Integer, datDate As Date
 ' Get today
 datDate = Date
 ' Figure out today's day of week
 intThisDay = WeekDay(datDate)
 ' Calculate next day depending on
 ' whether date requested is higher or lower
 If intThisDay < lngDay Then
 NextDate = datDate + (lngDay – intThisDay)
 Else
 NextDate = datDate + (lngDay + 7) – intThisDay
 End If
End Function

You can test the function from the Immediate window by entering the following:

?NextDate(Monday)

 Declaring Constants and Variables 971

Ch
ap

te
r 1

9

Event Statement
Use the Event statement in the Declarations section of a class module to declare an
event that can be raised within the module. In another module, you can defi ne an object
variable using the WithEvents keyword, set the variable to an instance of this class
module, and then code procedures that respond to the events declared and triggered
within this class module.

Syntax
[Public] Event eventname ([<arguments>])

where <arguments> is

{[ByVal | ByRef] argumentname [As datatype]},...

Notes
An Event must be public, which makes the event available to all other procedures in all
modules. You can optionally include the Public keyword when coding this statement.

You should declare the data type of any arguments in the event’s argument list. Note
that the names of the variables passed by the triggering procedure can be different from
the names of the variables known by this event. If you use the ByVal keyword to declare
an argument, Visual Basic passes a copy of the argument to your event. Any change you
make to a ByVal argument does not change the original variable in the triggering pro-
cedure. If you use the ByRef keyword, Visual Basic passes the actual memory address
of the variable, allowing the event to change the variable’s value in the triggering proce-
dure. (If the argument passed by the triggering procedure is an expression, Visual Basic
treats it as if you had declared it by using ByVal.) Visual Basic always passes arrays by
reference (ByRef).

Example
To declare an event that can be triggered from other modules, enter the following in the
class module MyClass:

Option Explicit
Public Event Signal(ByVal strMsg As String)

Public Sub RaiseSignal(ByVal strText As String)
 RaiseEvent Signal(strText)
End Sub

To respond to the event from another module, enter the following:

Option Explicit
Dim WithEvents objOtherClass As MyClass

Sub LoadClass ()
 Set objOtherClass = New MyClass
End Sub

Chapter 19

972 Chapter 19 Understanding Visual Basic Fundamentals
Sub objOtherClass_Signal(ByVal strMsg As string)
 MsgBox "MyClass Signal event sent this " & _
 "message: " & strMsg
End Sub

To trigger the event in any other module, execute the following:

MyClass.RaiseSignal "Hello"

Private Statement
Use a Private statement in the Declarations section of a standard module or a class
module to declare variables that you can use in any procedure within the module. Pro-
cedures in other modules cannot reference these variables.

Syntax
Private {[WithEvents] variablename
 [([<array dimension>],...)]
 [As [New] datatype]},...

where <array dimension> is

[lowerbound To] upperbound

Notes
If you do not include an <array dimension> specifi cation but you do include the paren-
theses, you must include a ReDim statement in each procedure that uses the array
to dynamically allocate the array at run time. You can defi ne an array with up to 60
dimensions. If you do not include a lowerbound value in an <array dimension> specifi ca-
tion, the default lower bound is 0. You can reset the default lower bound to 1 by includ-
ing an Option Base 1 statement in the module Declarations section. The lowerbound and
upperbound values must be integers, and upperbound must be greater than or equal to
lowerbound. The number of members of an array is limited only by the amount of mem-
ory on your computer.

Valid datatype entries are Byte, Boolean, Integer, Long, Currency, Single, Double, Date,
String (for variable-length strings), String * length (for fi xed-length strings), Object, Vari-
ant, or one of the object types described earlier in this chapter. You can also declare a
user-defi ned variable structure using the Type statement and then use the user type
name as a data type. You should always explicitly declare the data type of your variables.
If you do not include the As datatype clause, Visual Basic assigns the Variant data type.

Use the New keyword to indicate that a declared object variable is a new instance of an
object that doesn’t have to be set before you use it. You can use the New keyword only
with object variables to create a new instance of that class of object without requiring
a Set statement. You can’t use New to declare dependent objects. If you do not use the
New keyword, you cannot reference the object or any of its properties or methods until
you set the variable to an object using a Set statement.

 Declaring Constants and Variables 973

Ch
ap

te
r 1

9

Use the WithEvents keyword to indicate an object variable within a class module
that responds to events triggered by an ActiveX object. Form and report modules that
respond to events on the related form and report objects are class modules. You can
also defi ne custom class modules to create custom objects. If you use the WithEvents
keyword, you cannot use the New keyword.

Visual Basic initializes declared variables at compile time. Numeric variables are initial-
ized to zero (0), variant variables are initialized to empty, variable-length string vari-
ables are initialized as zero-length strings, and fi xed-length string variables are fi lled
with ANSI zeros (Chr(0)).

Example
To declare a long variable named lngMyNumber that can be used in any procedure
within this module, enter the following:

Private lngMyNumber As Long

Public Statement
Use a Public statement in the Declarations section of a standard module or a class mod-
ule to declare variables that you can use in any procedure anywhere in your database.

Syntax
Public {[WithEvents] variablename
 [([<array dimension>],...)]
 [As [New] datatype]},...

where <array dimension> is

[lowerbound To] upperbound

Notes
If you do not include an <array dimension> specifi cation but you do include the paren-
theses, you must include a ReDim statement in each procedure that uses the array
to dynamically allocate the array at run time. You can defi ne an array with up to 60
dimensions. If you do not include a lowerbound value in an <array dimension> specifi ca-
tion, the default lower bound is 0. You can reset the default lower bound to 1 by includ-
ing an Option Base 1 statement in the module Declarations section. The lowerbound and
upperbound values must be integers, and upperbound must be greater than or equal to
lowerbound. The number of members of an array is limited only by the amount of mem-
ory on your computer.

Valid datatype entries are Byte, Boolean, Integer, Long, Currency, Single, Double, Date,
String (for variable-length strings), String * length (for fi xed-length strings), Object,
 Variant, or one of the object types described earlier in this chapter. Note, however,
that you cannot declare a Public fi xed-length string within a class module. You can
also declare a user-defi ned variable structure using the Type statement and then use

Chapter 19

974 Chapter 19 Understanding Visual Basic Fundamentals
the user type name as a data type. You should always explicitly declare the data type
of your variables. If you do not include the As datatype clause, Visual Basic assigns the
Variant data type.

Use the New keyword to indicate that a declared object variable is a new instance of an
object that doesn’t have to be set before you use it. You can use the New keyword only
with object variables to create a new instance of that class of object without requiring
a Set statement. You can’t use New to declare dependent objects. If you do not use the
New keyword, you cannot reference the object or any of its properties or methods until
you set the variable to an object using a Set statement.

Use the WithEvents keyword to indicate an object variable within a class module
that responds to events triggered by an ActiveX object. Form and report modules that
respond to events on the related form and report objects are class modules. You can
also defi ne custom class modules to create custom objects. If you use the WithEvents
keyword, you cannot use the New keyword.

Visual Basic initializes declared variables at compile time. Numeric variables are initial-
ized to zero (0), variant variables are initialized to empty, variable-length string vari-
ables are initialized as zero-length strings, and fi xed-length string variables are fi lled
with ANSI zeros (Chr(0)).

Example
To declare a long variable named lngMyNumber that can be used in any procedure in
the database, enter the following:

Public lngMyNumber As Long

ReDim Statement
Use a ReDim statement to dynamically declare an array within a procedure or to
 redimension a declared array within a procedure at run time.

Syntax
ReDim [Preserve] {variablename
 (<array dimension>,...) [As datatype]},...

where <array dimension> is

[lowerbound To] upperbound

Notes
If you’re dynamically allocating an array that you previously defi ned with no <array
dimension> specifi cation in a Dim, Public, or Private statement, your array can have
up to 60 dimensions. You cannot dynamically reallocate an array that you previously
defi ned with an <array dimension> specifi cation in a Dim, Public, or Private state-
ment. If you declare the array only within a procedure, your array can have up to 60

 Declaring Constants and Variables 975

Ch
ap

te
r 1

9

 dimensions. If you do not include a lowerbound value in an <array dimension> specifi ca-
tion, the default lower bound is 0. You can reset the default lower bound to 1 by includ-
ing an Option Base 1 statement in the module Declarations section. The lowerbound and
upperbound values must be integers, and upperbound must be greater than or equal to
lowerbound. The number of members of an array is limited only by the amount of mem-
ory on your computer. If you previously specifi ed dimensions in a Public, Private, or
Dim statement or in another ReDim statement within the same procedure, you cannot
change the number of dimensions.

Include the Preserve keyword to ask Visual Basic not to reinitialize existing values in
the array. When you use Preserve, you can change the bounds of only the last dimen-
sion in the array.

Valid datatype entries are Byte, Boolean, Integer, Long, Currency, Single, Double, Date,
String (for variable-length strings), String * length (for fi xed-length strings), Object, Vari-
ant, or one of the object types described earlier in this chapter. You can also declare a
user-defi ned variable structure using the Type statement and then use the user type
name as a data type. You should always explicitly declare the data type of your vari-
ables. If you do not include the As datatype clause, Visual Basic assigns the Variant data
type. You cannot change the data type of an array that you previously declared with a
Dim, Public, or Private statement. After you establish the number of dimensions for an
array that has module or global scope, you cannot change the number of its dimensions
using a ReDim statemetnt.

Visual Basic initializes declared variables at compile time. Numeric variables are initial-
ized to zero (0), variant variables are initialized to empty, variable-length string vari-
ables are initialized as zero-length strings, and fi xed-length string variables are fi lled
with ANSI zeros (Chr(0)). When you use the Preserve keyword, Visual Basic initializes
only additional variables in the array. If you use a ReDim statement within a procedure
to both declare and allocate an array (and you have not previously defi ned the array
with a Dim, Public, or Private statement), Visual Basic reinitializes the array each time
you run the procedure.

Example
To dynamically allocate an array named strProductNames that contains 20 strings,
each with a fi xed length of 25, enter the following:

ReDim strProductNames(20) As String * 25

Static Statement
Use a Static statement within a procedure to declare a variable used only in that proce-
dure and that Visual Basic does not reinitialize while the module containing the proce-
dure is open. Visual Basic opens all standard and class modules (objects you can see in
the Modules list in the Navigation Pane) when you open the database containing those
objects. Visual Basic keeps form or report class modules open only while the form or
the report is open.

Chapter 19

976 Chapter 19 Understanding Visual Basic Fundamentals
Syntax
Static {variablename [({<array dimension>},...)]
 [As [New] datatype]},...

where <array dimension> is

[lowerbound To] upperbound

Notes
If you do not include an <array dimension> specifi cation but you do include the paren-
theses, you must include a ReDim statement in each procedure that uses the array
to dynamically allocate the array at run time. You can defi ne an array with up to 60
dimensions. If you do not include a lowerbound value in an <array dimension> specifi ca-
tion, the default lower bound is 0. You can reset the default lower bound to 1 by includ-
ing an Option Base 1 statement in the module Declarations section. The lowerbound and
upperbound values must be integers, and upperbound must be greater than or equal to
lowerbound. The number of members of an array is limited only by the amount of mem-
ory on your computer.

Valid datatype entries are Byte, Boolean, Integer, Long, Currency, Single, Double, Date,
String (for variable-length strings), String * length (for fi xed-length strings), Object,
Variant, or one of the object types described in this chapter. You can also declare a user-
defi ned variable structure using the Type statement and then use the user type name as
a data type. You should always explicitly declare the data type of your variables. If you
do not include the As datatype clause, Visual Basic assigns the Variant data type.

Use the New keyword to indicate that a declared object variable is a new instance of an
object that doesn’t have to be set before you use it. You can use the New keyword only
with object variables to create a new instance of that class of object without requiring
a Set statement. You can’t use New to declare dependent objects. If you do not use the
New keyword, you cannot reference the object or any of its properties or methods until
you set the variable to an object using a Set statement.

Visual Basic initializes declared variables at compile time. Numeric variables are initial-
ized to zero (0), variant variables are initialized to empty, variable-length string vari-
ables are initialized as zero-length strings, and fi xed-length string variables are fi lled
with ANSI zeros (Chr(0)).

Examples
To declare a static variable named intMyInteger as an integer, enter the following:

Static intMyInteger As Integer

To declare a static array named strMyString that contains fi xed-length strings that are
20 characters long and contains 50 entries from 51 through 100, enter the following:

Static strMyString(51 To 100) As String * 20

 Declaring Constants and Variables 977

Ch
ap

te
r 1

9

Type Statement
Use a Type statement in a Declarations section to create a user-defi ned data structure
containing one or more variables.

Syntax
[Public | Private] Type typename
 {variablename [({<array dimension>},...)]
 As datatype}
 ...
End Type

where <array dimension> is

[lowerbound To] upperbound

Notes
A Type statement is most useful for declaring sets of variables that can be passed to
procedures (including Windows API functions) as a single variable. You can also use
the Type statement to declare a record structure. After you declare a user-defi ned data
structure, you can use typename in any subsequent Dim, Public, Private, or Static state-
ment to create a variable of that type. You can reference variables in a user-defi ned data
structure variable by entering the variable name, a period, and the name of the variable
within the structure. (See the second part of the example that follows.)

Include the Public keyword to declare a user-defi ned type that is available to all proce-
dures in all modules in your database. Include the Private keyword to declare a user-
defi ned type that is available only within the module in which the declaration is made.
You must enter each variablename entry on a new line. You must indicate the end of
your user-defi ned data structure using an End Type statement.

Valid datatype entries are Byte, Boolean, Integer, Long, Currency, Single, Double, Date,
String (for variable-length strings), String * length (for fi xed-length strings), Object, Vari-
ant, or one of the object types described earlier in this chapter. You can also declare a
user-defi ned variable structure using the Type statement and then use the user type
name as a data type. You should always explicitly declare the data type of your variables.
If you do not include the As datatype clause, Visual Basic assigns the Variant data type.

If you do not include an <array dimension> specifi cation but you do include the paren-
theses, you must include a ReDim statement in each procedure that uses the array to
dynamically allocate the array at run time in any variable that you declare as this Type.
You can defi ne an array with as many as 60 dimensions. If you do not include a lower-
bound value in an <array dimension> specifi cation, the default lower bound is 0. You can
reset the default lower bound to 1 by including an Option Base 1 statement in the mod-
ule Declarations section. The lowerbound and upperbound values must be integers, and
upperbound must be greater than or equal to lowerbound. The number of members of an
array is limited only by the amount of memory on your computer.

Chapter 19

978 Chapter 19 Understanding Visual Basic Fundamentals
Note that a Type declaration does not reserve any memory. Visual Basic allocates the
memory required by the Type statement when you use typename as a data type in a
Dim, Public, Private, or Static statement.

Example
To defi ne a user type structure named MyRecord containing a long integer and three
string fi elds, declare a variable named usrContacts using that user type, and then set
the fi rst string to “Jones”, fi rst enter the following:

Type MyRecord
 lngID As Long
 strLast As String
 strFirst As String
 strMid As String
End Type

Within a procedure, enter the following:

Dim usrContacts As MyRecord
usrContacts.strLast = "Jones"

 Collections, Objects, Properties, and Methods
You’ve already dealt with two of the main collections supported by Access 2007—Forms
and Reports. The Forms collection contains all the form objects that are open in your
application, and the Reports collection contains all the open report objects.

As you’ll learn in more detail later in this section, collections, objects, properties, and
methods are organized in several object model hierarchies. An object has properties
that describe the object and methods that are actions you can ask the object to execute.
For example, a Form object has a Name property (the name of the form) and a Requery
method (to ask the form to requery its record source). Many objects also have collec-
tions that defi ne sets of other objects within the object. For example, a Form object has
a Controls collection that is the set of all control objects (text boxes, labels, and so on)
defi ned on the form.

You don’t need a thorough understanding of collections, objects, properties, and meth-
ods to perform most application tasks. It’s useful, however, for you to know how Access
and Visual Basic organize these items so that you can better understand how Access
works. If you want to study advanced code examples available in the many sample data-
bases that you can download from public forums, you’ll need to understand collections,
objects, properties, and methods and how to correctly reference them.

The Access Application Architecture
An Access 2007 desktop application (.accdb) has two major components—the appli-
cation engine, which controls the programming and the user interface, and the
 Microsoft Access Database Engine (DBEngine), which controls the storage of data and
the defi nition of all the objects in your database. An Access project (.adp) also uses

 Collections, Objects, Properties, and Methods 979

Ch
ap

te
r 1

9

the application engine, but it depends on its Connection object to defi ne a link to the
 Microsoft SQL Server database that contains the tables, views, functions, and stored
procedures used by the application.

As you’ll see later, Visual Basic supports two distinct object models (Data Access
Objects–DAO, and ActiveX Data Objects–ADO) for manipulating objects stored by the
database engine. Figure 19-12 shows the application architecture of Access.

When you open a database, the application engine loads the appropriate object col-
lections from the database and application fi les to enable it to list the names of all the
tables, queries, views, database diagrams, stored procedures, forms, reports, macros,
and modules to appear in the Navigation Pane. The application engine establishes the
top-level Application object, which contains several useful collections, including a
Forms collection (all the open forms), a Reports collection (all the open reports), a Mod-
ules collection (all the open modules, including form and report modules), a References
collection (all Visual Basic library references), and a TempVars collection (all temporary
variables created by macros). Each form and report, in turn, contains a Controls col-
lection (all of the controls on the form or report). Among some of the more interesting
properties of the Application object is the ADOConnectString property that contains
the information you can use to connect to this database from another database.

Note
For backward compatibility with earlier versions and database fi les in the .mdb format,

the Access object architecture continues to support obsolete collections, objects, and

properties. For example, the Application object continues to support a CommandBars

collection to allow you to manipulate any custom menus or toolbars that might have

been defi ned using Microsoft Offi ce Access 2003 or earlier. The CurrentProject object

continues to support the AllDataAccessPages collection to allow you to fi nd any data

access pages defi ned in an older .mdb format fi le; however, the AllDataAccessPages col-

lection is hidden and appears only when you request it or instruct the Visual Basic Editor

to show hidden members. Finally, the Screen object continues to support the ActiveData-

AccessPage property, but only as a hidden property.

The Application object also contains two special objects, the Screen object and the
DoCmd object. The Screen object has six very useful properties: ActiveForm, Active-
Report, ActiveDatasheet, ActiveControl, PreviousControl, and MousePointer. Without
knowing the actual names, you can reference the control (if any) that currently has the
focus, the datasheet (if any) that has the focus, the form (if any) that has the focus, the
report (if any) that has the focus, or the name of the control that previously had the
focus. You can use the MousePointer property to examine the current status of the
mouse pointer (arrow, I-beam, hourglass, and so on) and set the pointer. (Additional
details about referencing properties of objects appear later in this chapter.) The DoCmd
object lets you execute most macro actions within Visual Basic. See “Running Macro
Actions and Menu Commands” on page 1026. If your application is an Access desktop
database (.accdb), the DBEngine object under the Application object connects you to the

Note
For backward compatibility with earlier versions and database fi les in the .mdb format,

the Access object architecture continues to support obsolete collections, objects, and

properties. For example, the Application object continues to support a CommandBars

collection to allow you to manipulate any custom menus or toolbars that might have

been defi ned using Microsoft Offi ce Access 2003 or earlier. The CurrentProject object

continues to support the AllDataAccessPages collection to allow you to fi nd any data

access pages defi ned in an older .mdb format fi le; however, the AllDataAccessPages col-

lection is hidden and appears only when you request it or instruct the Visual Basic Editor

to show hidden members. Finally, the Screen object continues to support the ActiveData-

AccessPage property, but only as a hidden property.

Chapter 19

980 Chapter 19 Understanding Visual Basic Fundamentals
Microsoft Access Database Engine (ACE) to manipulate its objects using the Data
Access Objects (DAO) model.

Application Object

Collections

Forms

Reports

Modules

References

CommandBars*

Controls*

Properties Returning
Strings

ADOConnectString

Properties Running Objects

DBEngine

DoCmd

Screen

Properties Returning
Objects

ActiveForm

ActiveReport

ActiveDataAccessPage*+

ActiveDataSheet

ActiveControl

PreviousControl

MousePointer

CurrentData

Collections

AllTables

AllQueries

AllViews

AllFunctions

AllStoredProcedures

AllDatabaseDiagrams

Properties Returning
Objects

Connection

Current Project

Collections

AllForms

AllReports

AllDataAccessPages*+

AllMacros

AllModules

Properties Returning
Strings

FullName

Name

To ADO Objects

To DAO Objects

* Supported for backward
 compatibility with
 Access 2003 and earlier.

+ Hidden collection
 or object

TempVars

Figure 19-12 You can explore objects in the Access application architecture from the Application
object.

 Collections, Objects, Properties, and Methods 981

Ch
ap

te
r 1

9

Two properties allow you to directly fi nd out the names of all objects stored in your
database without having to call the database engine. In an Access desktop database
(.accdb), you can fi nd out the names of all your tables and queries via the CurrentData
property. In an Access project fi le (.adp) that is connected to SQL Server, you can addi-
tionally fi nd out the names of database diagrams, stored procedures, functions, and
views via this same property. In either type of Access fi le, you can discover the names of
all your forms, reports, macros, and modules via the CurrentProject property. Finally,
the FullName property of the CurrentProject object tells you the full path and fi le name
of your application fi le, and the Name property tells you the fi le name only.

The Data Access Objects (DAO) Architecture
The fi rst (and older) of the two models you can use to fetch data and examine or create
new data objects is the Data Access Objects (DAO) model. This model is best suited for
use within Access desktop applications (.accdb) because it provides objects, methods,
and properties specifi cally tailored to the way Access and the Access Database Engine
work together. The latest version included with Access 2007 includes enhancements
to manipulate the complex Attachment data type and multi-value fi elds. To use this
model, you must ask Visual Basic to load a reference to the Microsoft Offi ce 12.0 Access
Database Engine Object Library. To verify that your project includes this reference,
open any module in Design view and click References on the Tools menu. If you don’t
see the check box for this library selected at the top of the References dialog box, scroll
down the alphabetical list until you fi nd the library, select its check box, and click OK
to add the reference. Access 2007 creates this reference for you in any new database that
you create.

Absolutely not! First, you need to know a bit of history. Beginning with version 9.0

(Access 2000), the Access development team introduced ActiveX Data Objects (ADO)

to make it easier to work with SQL Server or other server databases as the data store

for Access applications. ADO was touted as the “new direction” for data engine object

models because it was designed to be more generic to work with different databases.

Access 2000 also introduced the project fi le format (.adp) that lets you create an Access

application linked directly to a database on SQL Server. Both Access 2000 and Access

XP (2002) provided a default reference to the ADO library in a new database, and you

had to add the DAO library if you wanted to use it. Microsoft also declared DAO “stable”

(read: no new enhancements) and began distributing the Access JET database engine as

part of Microsoft Data Access Components (MDAC) that you install with your operating

system—Windows 98, Windows 2000, Windows XP, or Windows Vista. And so, the devel-

oper community began to think that DAO was “dead.”

SIDE OUT Is the Rumor That “DAO Is Dead” Really True?

Absolutely not! First, you need to know a bit of history. Beginning with version 9.0

(Access 2000), the Access development team introduced ActiveX Data Objects (ADO)

to make it easier to work with SQL Server or other server databases as the data store

for Access applications. ADO was touted as the “new direction” for data engine object

models because it was designed to be more generic to work with different databases.

Access 2000 also introduced the project fi le format (.adp) that lets you create an Access

application linked directly to a database on SQL Server. Both Access 2000 and Access

XP (2002) provided a default reference to the ADO library in a new database, and you

had to add the DAO library if you wanted to use it. Microsoft also declared DAO “stable”

(read: no new enhancements) and began distributing the Access JET database engine as

part of Microsoft Data Access Components (MDAC) that you install with your operating

system—Windows 98, Windows 2000, Windows XP, or Windows Vista. And so, the devel-

oper community began to think that DAO was “dead ”

Chapter 19

982 Chapter 19 Understanding Visual Basic Fundamentals
But DAO in many cases really works better if you’re building a desktop application. DAO

gives you direct access not only to all your table and query defi nitions but also forms,

reports, macros, and modules. Also, the record source for all forms and reports creates a

DAO recordset, so it doesn’t make sense to try to use the entirely different ADO record-

set object in your code. As of Access 2002, you can assign a recordset object you open in

code directly to the Recordset property of a form. But if you’re using an ADO recordset,

features that you expect to work—such as updating across a join or autolookup when

you set a foreign key—don’t work correctly. In short, DAO was designed to work best

with Access desktop applications.

When Microsoft stopped providing DAO as a default reference in new databases, many

in the developer community pointed out to Microsoft that this really isn’t a good idea for

desktop applications. Microsoft listened to its users and changed the default library back

to DAO in Offi ce Access 2003. However, the Access development team couldn’t plan any

major enhancements because the JET engine had become part of Windows.

For Access 2007, the development team began creating its own new version of the JET

engine—now called the Access Database Engine or ACE for short. ACE includes the new

features to support the Attachment data type as well as multi-value fi elds, and it also

supports all the features of the old JET engine, but uses an enhanced version of DAO.

So no, DAO is not dead—it in a sense has been reborn in the new database engine for

Access 2007.

The Application object’s DBEngine property serves as a bridge between the applica-
tion engine and the Access Database Engine. The DBEngine property represents the
 DBEngine object, which is the top-level object in the DAO hierarchy. Figure 19-13 shows
you a diagram of the hierarchy of collections defi ned in the DAO model.

The DBEngine object controls all the database objects in your database through a hier-
archy of collections, objects, and properties. When you open an Access database, the
DBEngine object fi rst establishes a Workspaces collection and a default Workspace
object (the fi rst object in the Workspaces collection). If you are opening a secured data-
base created in the prior version format (.mdb, .mde) and your workgroup is secured,
Access prompts you for a password and a user ID so that the DBEngine can create a
User object in the Users collection and a Group object in the Groups collection within
the default workspace. If your workgroup is not secured, the DBEngine signs you on as
a default user called Admin.

Finally, the DBEngine creates a Database object within the Databases collection of the
default Workspace object. If your prior version format fi le is secured, the DBEngine uses
the current User and/or Group object information to determine whether you’re autho-
rized to access any of the objects within the database.

But DAO in many cases really works better if you’re building a desktop application. DAO

gives you direct access not only to all your table and query defi nitions but also forms,

reports, macros, and modules. Also, the record source for all forms and reports creates a

DAO recordset, so it doesn’t make sense to try to use the entirely different ADO record-

set object in your code. As of Access 2002, you can assign a recordset object you open in

code directly to the Recordset property of a form. But if you’re using an ADO recordset,

features that you expect to work—such as updating across a join or autolookup when

you set a foreign key—don’t work correctly. In short, DAO was designed to work best

with Access desktop applications.

When Microsoft stopped providing DAO as a default reference in new databases, many

in the developer community pointed out to Microsoft that this really isn’t a good idea for

desktop applications. Microsoft listened to its users and changed the default library back

to DAO in Offi ce Access 2003. However, the Access development team couldn’t plan any

major enhancements because the JET engine had become part of Windows.

For Access 2007, the development team began creating its own new version of the JET

engine—now called the Access Database Engine or ACE for short. ACE includes the new

features to support the Attachment data type as well as multi-value fi elds, and it also

supports all the features of the old JET engine, but uses an enhanced version of DAO.

So no, DAO is not dead—it in a sense has been reborn in the new database engine for

Access 2007.

 Collections, Objects, Properties, and Methods 983

Ch
ap

te
r 1

9

* Default collection of any object contained in the parent collection.

+ The Access Database Engine (ACE) for Access 2007 also supports

 Recordset2 and Field2 objects to manipulate complex fields

 (attachment and multi-value).

‡ Supported for backward compatibility of user-level security in

 .mdb and .mde files.

DBEngine Object
(Application.DBEngine)

Collections

Errors

Workspaces

Users‡

Groups

Connections (ODBC Direct)

Users

Groups‡

Databases*

Parameters*

Fields

QueryDefsTableDefs*

Fields

IndexesFields*

Relations

Fields

Recordsets+

Fields+

Containers

Documents

Figure 19-13 The Data Access Objects (DAO) model is specifi cally designed to manipulate data
objects in an Access desktop database.

After the DBEngine creates a Database object, the application engine determines
whether the database contains any potentially untrustworthy objects. Any database
containing tables, queries, macros or Visual Basic code is deemed potentially untrust-
worthy. If the database is signed with a certifi cate that you have accepted as trustworthy
or the database resides in a trusted location, the application engine enables all code. If
the database is not trusted, the application engine displays a security warning message
and provides the option to temporarily enable the database.

Chapter 19

984 Chapter 19 Understanding Visual Basic Fundamentals
Next, the application engine checks the database’s application options to fi nd out
whether to open a display form, load an application icon, and display a title or to use
one or more of the other application options. You can set these options when you have
your database open by clicking the Microsoft Offi ce Button, clicking Access Options,
and clicking the Current Database category in the Access Options dialog box. After
checking the application options, the application engine checks to see whether a
macro group named Autoexec exists in the database. If it fi nds Autoexec, the applica-
tion engine runs this macro group. In versions 1 and 2 of Access, you’d often use the
Autoexec macro group to open a startup form and run startup routines. In Access 2007,
however, you should use the application options to specify a display form, and then
use the event procedures or embedded macros of the startup form to run your startup
routines.

See Chapter 24, “The Finishing Touches,” for details on creating startup properties and custom
Ribbons.

You can code Visual Basic procedures that can create additional Database objects in the
Databases collection by opening additional .accdb fi les. Each open Database object has
a Containers collection that the DBEngine uses to store the defi nition (using the Docu-
ments collection) of all your tables, queries, forms, reports, macros, and modules.

You can use the TableDefs collection to examine and modify existing tables. You can
also create new TableDef objects within this collection. Each TableDef object within the
TableDefs collection has a Fields collection that describes all the fi elds in the table, and
an Indexes collection (with a Fields collection for each Index object) that describes any
indexes that you created on the table. Likewise, the Relations collection contains Rela-
tion objects that describe how tables are related and what integrity rules apply between
tables, and each Relation object has a Fields collection that describes the fi elds that par-
ticipate in the relation.

The QueryDefs collection contains QueryDef objects that describe all the queries in
your database. You can modify existing queries or create new ones. Each QueryDef
object has a Parameters collection for any parameters required to run the query and a
Fields collection that describes the fi elds returned by the query. Finally, the Recordsets
collection contains a Recordset object for each open recordset in your database, and the
Fields collection of each Recordset object tells you the fi elds in the recordset.

To reference any object within the DAO model, you can always start with the DBEngine
object. If you want to work in the current database, that Database object is always the
fi rst database in the Databases collection of the fi rst Workspace object. For example:

Dim dbMyDB As DAO.Database
Set dbMyDB = DBEngine.Workspaces(0).Databases(0)

Access also provides a handy shortcut object to the current database called CurrentDb.
So, you can also establish a pointer to the current database as follows:

Set dbMyDB = CurrentDb

 Collections, Objects, Properties, and Methods 985

Ch
ap

te
r 1

9

Note
In one of the examples at the end of this chapter, you’ll learn how to create a new

TableDef object and then open a Recordset object on the new table to insert rows. You

can fi nd code examples in the Conrad Systems Contacts application that manipulate

objects using both DAO and ADO.

The ActiveX Data Objects (ADO) Architecture
With Access 2000, Microsoft introduced a more generic set of data engine object mod-
els to provide references not only to objects stored by the Access Database Engine but
also to data objects stored in other database products such as SQL Server. These mod-
els are called the ActiveX Data Objects (ADO) architecture. With Access 97 (version
8.0), you could download the Microsoft Data Access Components from the Microsoft
Web site to be able to use the ADO model. Access 2000 and Access XP (2002) provided
direct support for ADO with built-in libraries and direct references to key objects in
the model from the Access Application object. As noted earlier, Access 2003 and Access
2007 provide a default reference to the Data Access Objects library (DAO), not ADO.

Because these models are designed to provide a common set of objects across any data
engine that supports the ActiveX Data Objects, they do not necessarily support all the
features you can fi nd in the DAO architecture that was specifi cally designed for the
Access Database Engine. For this reason, if you are designing an application that will
always run with the Access Database Engine, you are better off using the DAO model.
If, however, you expect that your application might one day “upsize” to an ActiveX data
engine such as SQL Server, you should consider using the ADO architecture as much as
possible. If you create your Access application as an Access project (.adp) linked to SQL
Server, you should use only the ADO models.

Figure 19-14 shows you the two major models available under the ADO architecture.
The basic ADODB model lets you open and manipulate recordsets via the Recordset
object and execute action or parameter queries via the Command object. The ADO
Extensions for DDL and Security model (ADOX) allows you to create, open, and
manipulate tables, views (non-parameter unordered queries), and procedures (action
queries, parameter queries, ordered queries, functions, triggers, or procedures) within
the data engine Catalog object (the object that describes the defi nition of objects in your
database). You can also examine and defi ne Users and Groups collections defi ned in the
Catalog object with ADOX.

Note
In one of the examples at the end of this chapter, you’ll learn how to create a new

TableDef object and then open a Recordset object on the new table to insert rows. You

can fi nd code examples in the Conrad Systems Contacts application that manipulate

objects using both DAO and ADO.

Chapter 19

986 Chapter 19 Understanding Visual Basic Fundamentals
Collections

Users

Groups

Users

Groups

Tables*

Columns*

Indexes

Columns

Keys

Columns

Views

Properties Returning Objects

View

Command

Procedures

Properties Returning Objects

Procedure

Command

Properties Returning Objects

ActiveConnection
(Application.CurrentProject.Connection)

Catalog Object (ADOX)

*Default collection of any object contained in the parent collection

Connection Object (ADODB)
(Application.CurrentProject.Connection)

Collections

Errors

Properties Returning Objects

Command

Collections

Parameters

Fields

Recordset

Figure 19-14 The ActiveX Data Objects (ADODB) and ActiveX Data Objects Extensions for DDL and
Security (ADOX) models provide another way to work with the data and objects in your database.

 Collections, Objects, Properties, and Methods 987

Ch
ap

te
r 1

9

To use the ADODB model, you must instruct Visual Basic to load a reference to the
Microsoft ActiveX Data Objects Library. For objects in the ADOX model, you need the
Microsoft ADO Extensions for DDL and Security Library. (You should normally fi nd
only one version on your computer. If you fi nd multiple versions in the list, select the
latest one.) To verify that your project includes these references, open any module in
Design view and click References on the Tools menu. If you don’t see the check boxes
for these libraries selected at the top of the References dialog box, scroll down the
alphabetical list until you fi nd the library you need, select its check box, and click OK to
add the reference. Access 2007 does not automatically create a reference to the ADODB
library for you in any new database that you create.

Note that there are some objects in common between DAO, ADODB, and ADOX. If
you use multiple models in an application, you must be careful to qualify object dec-
larations. For example, a Recordset object type in the DAO model is DAO.Recordset,
whereas a Recordset in the ADODB model is ADODB.Recordset. You cannot freely
interchange a DAO recordset with an ADODB recordset—they are completely different
objects.

The link to ADODB and ADOX is via the CurrentProject.Connection property. After
you open an ADODB.Connection object, you can work with other collections, objects,
and properties within the ADODB model. Likewise, by establishing an ADOX.Catalog
object and setting its Connection property, you can work with any collection, object, or
property within the ADOX model.

For all objects within either ADODB or ADOX, you must fi rst establish a base object
(connection or catalog, respectively). For example:

Dim cn As ADODB.Connection, rst As New ADODB.Recordset
Set cn = CurrentProject.Connection
rst.Open = "tblContacts", cn

Or

Dim catThisDB As New ADOX.Catalog, tbl As ADOX.Table
Set catThisDB.ActiveConnection = CurrentProject.Connection
Set tbl = catThisDB.Tables("tblContacts")

Note
One of the extensive examples at the end of this chapter uses ADO exclusively to manip-

ulate recordsets in the Conrad Systems Contacts sample database.

Referencing Collections, Objects, and Properties
In the previous chapter, you were introduced to the most common way to reference
objects in the Forms and Reports collections, controls on open forms and reports, and

Note
One of the extensive examples at the end of this chapter uses ADO exclusively to manip-

ulate recordsets in the Conrad Systems Contacts sample database.

Chapter 19

988 Chapter 19 Understanding Visual Basic Fundamentals
properties of controls. There are two alternative ways to reference an object within a
collection. The three ways to reference an object within a collection are as follows:

O CollectionName![Object Name] This is the method you used in the previous
chapter. For example: Forms![frmContacts].

O CollectionName("Object Name") This method is similar to the fi rst method
but uses a string constant (or a string variable) to supply the object name, as in
Forms("frmContacts") or Forms(strFormName).

O CollectionName(RelativeObjectNumber) Visual Basic numbers objects within
most collections from zero (0) to CollectionName.Count minus 1. You can deter-
mine the number of open forms by referring to the Count property of the Forms
collection: Forms.Count. You can refer to the second open form in the Forms col-
lection as Forms(1).

Forms and Reports are relatively simple because they are top-level collections within
the application engine. As you can see in Figure 19-13, when you reference a collection
or an object maintained by the DBEngine, the hierarchy of collections and objects is
quite complex. If you want to fi nd out the number of Workspace objects that exist in the
Workspaces collection, for example, you need to reference the Count property of the
Workspaces collection like this:

DBEngine.Workspaces.Count

(You can create additional workspaces from Visual Basic code.)

Using the third technique described above to reference an object, you can reference the
default (fi rst) Workspace object by entering the following:

DBEngine.Workspaces(0)

Likewise, you can refer to the currently open database in a desktop application (.accdb)
by entering the following:

DBEngine.Workspaces(0).Databases(0)

When you want to refer to an object that exists in an object’s default (or only) collection
(see Figures 22-13 and 22-14), you do not need to include the collection name. There-
fore, because the Databases collection is the default collection for the Workspaces col-
lection, you can also refer to the currently open database by entering the following:

DBEngine.Workspaces(0)(0)

As you can see, even with this shorthand syntax, object names can become quite cum-
bersome if you want to refer, for example, to a particular fi eld within an index defi nition
for a table within the current database in the default Workspace object—or a column
within an index defi nition for a table within the current catalog. For example, using
this full syntax, you can reference the name of the fi rst fi eld in the tblContacts table in
Contacts.accdb like this:

DBEngine(0)(0).TableDefs("tblContacts").Fields(0).Name

(Whew!) If for no other reason, object variables are quite handy to help minimize name
complexity.

 Collections, Objects, Properties, and Methods 989

Ch
ap

te
r 1

9

In particular, you can reduce name complexity by using an object variable to repre-
sent the current database. When you set the variable to the current database, you can
call the CurrentDb function rather than use the database’s full qualifi er. For example,
you can declare a Database object variable, set it to the current database by using the
 CurrentDb function, and then use the Database object variable name as a starting point
to reference the TableDefs, QueryDefs, and Recordsets collections that it contains.
(See “Assigning an Object Variable—Set Statement” on page 991 for the syntax of the
Set statement.) Likewise, if you are going to work extensively with fi elds in a TableDef
object or columns in a Table object, you are better off establishing an object variable
that points directly to the TableDef or Table object. For example, you can simplify the
complex expression to reference the name of the fi rst fi eld in the tblContacts table in
Contacts.accdb like this:

Dim db As DAO.Database, tdf As DAO.TableDef
Set db = CurrentDb
Set tdf = db.Tabledefs![tblContacts]
Debug.Print tdf.Fields(0).Name

When you use DBEngine.Workspaces(0).Databases(0) (or DBEngine(0)(0)) to set a data-

base object, Visual Basic establishes a pointer to the current database. You can have only

one object variable set to the actual copy of the current database, and you must never

close this copy. A safer technique is to set your database variable using the CurrentDb

function. Using this technique opens a new database object that is based on the same

database as the current one. You can have as many copies of the current database as you

like, and you can close them when you fi nish using them. When you use CurrentDb to

establish a pointer to your database, Visual Basic refreshes all the collections and keeps

them current. If you want to ensure that the collections are current (for example, to be

aware of any added or deleted tables or queries), you must refresh the collections your-

self when you use DBEngine(0)(0). The one small advantage to DBEngine(0)(0) is that it is

more effi cient because it does not refresh all collections when you establish a pointer to it.

When to Use “!” and “.”
You’ve probably noticed that a complex, fully qualifi ed name of an object or a property
in Access 2007 or Visual Basic contains exclamation points (!) and periods (.) that sepa-
rate the parts of the name.

Use an exclamation point preceding a name when the name refers to an object that is in
the preceding object or collection of objects. A name following an exclamation point is
generally the name of an object you created (such as a form or a table). Names following
an exclamation point must be enclosed in brackets ([]) if they contain embedded blank
spaces or a special character, such as an underscore (_). You must also enclose the
name of an object you created in brackets if the name is also an Access or SQL reserved
word. For example, most objects have a Name property—if you name a control or fi eld
“Name,” you must use brackets when you reference your object.

SIDE OUT Should I Use CurrentDb or
DBEngine.Workspaces(0).Databases(0)?

When you use DBEngine.Workspaces(0).Databases(0) (or DBEngine(0)(0)) to set a data-

base object, Visual Basic establishes a pointer to the current database. You can have only

one object variable set to the actual copy of the current database, and you must never

close this copy. A safer technique is to set your database variable using the CurrentDb

function. Using this technique opens a new database object that is based on the same

database as the current one. You can have as many copies of the current database as you

like, and you can close them when you fi nish using them. When you use CurrentDb to

establish a pointer to your database, Visual Basic refreshes all the collections and keeps

them current. If you want to ensure that the collections are current (for example, to be

aware of any added or deleted tables or queries), you must refresh the collections your-

self when you use DBEngine(0)(0). The one small advantage to DBEngine(0)(0) is that it is

more effi cient because it does not refresh all collections when you establish a pointer to it.

Chapter 19

990 Chapter 19 Understanding Visual Basic Fundamentals
To make this distinction clear, you might want to get into the habit of always enclosing in
brackets names that follow an exclamation point, even though brackets are not required
for names that don’t use blank spaces or special characters. Access automatically inserts
brackets around names in property sheets, design grids, and action arguments.

Use a period preceding a name that refers to a collection name, a property name, or
the name of a method that you can perform against the preceding object. (Names
following a period should never contain blank spaces.) In other words, use a period
when the following name is of the preceding name (as in the TableDefs collection of the
Databases(0) object, the Count property of the TableDefs collection, or the MoveLast
method of the DAO Recordset object). This distinction is particularly important when
referencing something that has the same name as the name of a property. For example,
the reference

DBEngine.Workspaces(0).Databases(0).TableDefs(18).Name

refers to the name of the nineteenth TableDef object in the current database. In the
 Contacts.accdb database, if you use Debug.Print or the Immediate window to dis-
play this reference, Visual Basic returns the value tblCompanyContacts. However, the
 reference

DBEngine.Workspaces(0).Databases(0).TableDefs(18)![Name]

refers to the contents of a fi eld called Name (if one exists) in the nineteenth TableDef
object in the current database. In the Conrad Systems Contacts database, this reference
returns an error because there is no Name fi eld in the tblCompanyContacts table.

If you spend some time looking at any of the code behind forms and reports in the

sample databases, you’ll notice many references such as Me.Name or Me.ProductName.

Whenever you write code in a form or report module, you’ll likely need to reference

some of the controls on the form or report or some of the properties of the form or

report. You already know that you can reference an open form by using, for example

Forms![frmProducts]

And to reference a control on the open frmProducts form, you could use

Forms![frmProducts]![ProductName]

Rather than type the collection name (Forms) and the form name (frmProducts) each

time, you can use a shortcut—Me. This special keyword is a reference to the object where

your code is running. Also, when Access opens a form, it loads the names of all controls

you defi ned on the form as properties of the form—which are also properties of the Me

object. (It also does the same for controls on open reports.) So, you can reference the

ProductName control in code behind the frmProducts form by entering:

Me.ProductName

This can certainly make entering code faster. Also, because Me is an object, your code

executes more quickly.

SIDE OUT What About Me?

If you spend some time looking at any of the code behind forms and reports in the

sample databases, you’ll notice many references such as Me.Name or Me.ProductName.

Whenever you write code in a form or report module, you’ll likely need to reference

some of the controls on the form or report or some of the properties of the form or

report. You already know that you can reference an open form by using, for example

Forms![frmProducts]

And to reference a control on the open frmProducts form, you could use

Forms![frmProducts]![ProductName]

Rather than type the collection name (Forms) and the form name (frmProducts) each

time, you can use a shortcut—Me. This special keyword is a reference to the object where

your code is running. Also, when Access opens a form, it loads the names of all controls

you defi ned on the form as properties of the form—which are also properties of the Me

object. (It also does the same for controls on open reports.) So, you can reference the

ProductName control in code behind the frmProducts form by entering:

Me.ProductName

This can certainly make entering code faster. Also, because Me is an object, your code

executes more quickly.

 Collections, Objects, Properties, and Methods 991

Ch
ap

te
r 1

9

You bet! As you learned in Chapter 18, “Automating Your Application with Macros,” you

can use the new SetTempVar, RemoveTempVar, and RemoveAllTempVars actions to cre-

ate, modify, and inspect values that you can pass from one macro to another. If you

 create an application that uses both macros and Visual Basic, you can also create, modify,

and inspect these variables by using the TempVars collection. Unlike most collections

in Access where you must fi rst create an object before you can reference it, you can

both create and set a macro temporary variable by simply assigning a value to a name

in the TempVars collection. For example, to create and set a temporary variable called

MyTempVar, use the following:

TempVars!MyTempVar = "Value to pass to a macro"

Temporary variables are the Variant data type, so you can assign a string, a number, or a

date/time value to a member of the TempVars collection. To delete a temporary variable,

use the Remove method as follows:

TempVars.Remove MyTempVar

To remove all temporary variables, use the RemoveAll method as follows:

TempVars.RemoveAll

But be careful. If you reference a temporary variable that does not exist yet, you won’t

get any error. If you misspell a temporary variable name, Access temporarily creates the

variable and returns the value Null.

Assigning an Object Variable—Set Statement
Use the Set statement to assign an object or object reference to an object variable.

Syntax
Set objectvariablename = [New] objectreference

Notes
As noted earlier, you can use object variables to simplify name references. Also, using
an object variable is less time-consuming than using a fully qualifi ed name. At run
time, Visual Basic must always parse a qualifi ed name to fi rst determine the type of
object and then determine which object or property you want. If you use an object vari-
able, you have already defi ned the type of object and established a direct pointer to it,
so Visual Basic can quickly go to that object. This is especially important if you plan
to reference, for example, many controls on a form. If you create a form variable fi rst
and then assign the variable to point to the form, referencing controls on the form via
the form variable is much simpler and faster than using a fully qualifi ed name for each
 control.

SIDE OUT Is It Possible to Reference in Visual Basic Variables
Created by Macros?

You bet! As you learned in Chapter 18, “Automating Your Application with Macros,” you

can use the new SetTempVar, RemoveTempVar, and RemoveAllTempVars actions to cre-

ate, modify, and inspect values that you can pass from one macro to another. If you

create an application that uses both macros and Visual Basic, you can also create, modify,

and inspect these variables by using the TempVars collection. Unlike most collections

in Access where you must fi rst create an object before you can reference it, you can

both create and set a macro temporary variable by simply assigning a value to a name

in the TempVars collection. For example, to create and set a temporary variable called

MyTempVar, use the following:

TempVars!MyTempVar = "Value to pass to a macro"

Temporary variables are the Variant data type, so you can assign a string, a number, or a

date/time value to a member of the TempVars collection. To delete a temporary variable,

use the Remove method as follows:

TempVars.Remove MyTempVar

To remove all temporary variables, use the RemoveAll method as follows:

TempVars.RemoveAll

But be careful. If you reference a temporary variable that does not exist yet, you won’t

get any error. If you misspell a temporary variable name, Access temporarily creates the

variable and returns the value Null.

Chapter 19

992 Chapter 19 Understanding Visual Basic Fundamentals
You must fi rst declare objectvariablename using a Dim, Private, Public, or Static
 statement. The object types you can declare include AccessObject, Application,
 ADOX.Catalog, ADOX.Column, ADODB.Command, ADOX.Command, ADODB.Con-
nection, DAO.Container, Control, DAO.Database, DAO.Document, ADODB.Error,
DAO.Error, ADODB.Field, DAO.Field, DAO.Field2, Form, ADOX.Group, DAO.Group,
ADOX.Index, DAO.Index, ADOX.Key, ADODB.Parameter, DAO.Parameter,
ADOX.Procedure, ADODB.Property, ADOX.Property, DAO.Property, DAO.QueryDef,
ADODB.Recordset, DAO.Recordset, DAO.Recordset2, DAO.Relation, Report,
ADOX.Table, DAO.TableDef, ADOX.User, DAO.User, ADOX.View, and DAO.Workspace
object. You can also declare a variable as the generic Object data type and set it to any
object (similar to the Variant data type). In addition, you can declare a variable as an
instance of the class defi ned by a class module. The object type must be compatible
with the object type of objectreference. You can use another object variable in an object-
reference statement to qualify an object at a lower level. (See the examples that follow.)
You can also use an object method to create a new object in a collection and assign that
object to an object variable. For example, it’s common to use the OpenRecordset
method of a QueryDef or TableDef object to create a new Recordset object. See the
example in the next section, “Object Methods.”

An object variable is a reference to an object, not a copy of the object. You can assign
more than one object variable to point to the same object and change a property of the
object. When you do that, all variables referencing the object will refl ect the change as
well. The one exception is that several Recordset variables can refer to the same record-
set, but each can have its own Bookmark property pointing to different rows in the
recordset. If you want to create a new instance of an object, include the New keyword.

Examples
To create a variable reference to the current database, enter the following:

Dim dbMyDB As DAO.Database
Set dbMyDB = CurrentDb

To create a variable reference to the tblContacts table in the current database using the
dbMyDB variable defi ned above, enter the following:

Dim tblMyTable As DAO.TableDef
Set tblMyTable = dbMyDB![tblContacts]

Notice that you do not need to explicitly reference the TableDefs collection of the
database, as in dbMyDB.TableDefs![tblContacts] or dbMyDB.TableDefs("tblContacts"),
because TableDefs is the default collection of the database. Visual Basic assumes that
[tblContacts] refers to the name of an object in the default collection of the database.

To create a variable reference to the Notes fi eld in the tblContacts table using the
 tblMyTable variable defi ned above, enter the following:

Dim fl dMyField As DAO.Field
Set fl dMyField = tblMyTable![Notes]

Again, you do not need to include a specifi c reference to the Fields collection of the
TableDef object, as in tblMyTable.Fields![Notes], because Fields is the default collection.

 Collections, Objects, Properties, and Methods 993

Ch
ap

te
r 1

9

To create a variable reference to the catalog for the current database, enter the
 following:

Dim catThisDB As New ADOX.Catalog
catThisDB.ActiveConnection = CurrentProject.Connection

Note that you must use the New keyword because there’s no way to open an existing
catalog without fi rst establishing a connection to it. You open a catalog by declaring it
as a new object and assigning a Connection object to its ActiveConnection property.
The preceding example takes advantage of the existence of the Application.Current-
Project.Connection property rather than fi rst setting a Connection object. If you already
have another Catalog object open, you can create a copy of it by using

Dim catCopy As ADOX.Catalog
Set catCopy = catThisDB

To create a variable reference to the tblContacts table in the current database using the
catThisDB variable defi ned above, enter the following:

Dim tblMyTable As ADOX.Table
Set tblMyTable = catThisDB![tblContacts]

Notice that you do not need to explicitly reference the Tables collection of the database,
as in catThisDB.Tables![tblContacts] or catThisDB.Tables("tblContacts"), because Tables
is the default collection of the catalog. Visual Basic assumes that [tblContacts] refers to
the name of an object in the default collection of the catalog.

To create a variable reference to the Notes column in the tblContacts table using the
tblMyTable variable defi ned above, enter the following:

Dim colMyColumn As ADOX.Column
Set colMyColumn = tblMyTable![Notes]

Again, you do not need to explicitly reference the Columns collection of the Table
object, as in tblMyTable.Columns![Notes] because the Columns collection is the default
collection of a Table object.

Object Methods
When you want to apply an action to an object in your database (such as open a query
as a recordset or go to the next row in a recordset), you apply a method of either the
object or an object variable that you have assigned to point to the object. In some cases,
you’ll use a method to create a new object. Many methods accept parameters that you
can use to further refi ne how the method acts on the object. For example, you can tell
the DAO OpenRecordset method whether you’re opening a recordset on a local table, a
dynaset (a query-based recordset), or a read-only snapshot.

Visual Basic supports many different object methods—far more than there’s room to
properly document in this book. Perhaps one of the most useful groups of methods is
the group you can use to create a recordset and then read, update, insert, and delete
rows in the recordset.

Chapter 19

994 Chapter 19 Understanding Visual Basic Fundamentals
Working with DAO Recordsets
To create a recordset, you must fi rst declare a Recordset object variable. Then open
the recordset using the DAO OpenRecordset method of the current database (specify-
ing a table name, a query name, or an SQL statement to create the recordset) or the
 OpenRecordset method of a DAO.QueryDef, DAO.TableDef, or other DAO.Recordset
object. (As you’ll learn in “Working with ADO Recordsets,” if you’re working in ADO,
you use the Open method of a New ADODB.Recordset object.)

In DAO, you can specify options to indicate whether you’re opening the recordset as a
local table (which means you can use the Seek method to quickly locate rows based on
a match with an available index), as a dynaset, or as a read-only snapshot. For updat-
able recordsets, you can also specify that you want to deny other updates, deny other
reads, open a read-only recordset, open the recordset for append only, or open a read-
only forward scroll recordset (which allows you to move only forward through the
records and only once).

The syntax to use the OpenRecordset method of a Database object is as follows:

Set RecordSetObject = DatabaseObject.OpenRecordset(source,
 [type], [options], [lockoptions])

RecordSetObject is a variable you have declared as DAO.Recordset, and DatabaseObject is
a variable you have declared as DAO.Database. Source is a string variable or literal con-
taining the name of a table, the name of a query, or a valid SQL statement. Table 19-2
describes the settings you can supply for type, options, and lockoptions.

Table 19-2 OpenRecordset Parameter Settings

Setting Description
Type (Select one)

dbOpenTable Returns a table recordset. You can use this option only when source
is a table local to the database described by the Database object.
Source cannot be a linked table. You can establish a current index in
a table recordset and use the Seek method to fi nd rows using the
index. If you do not specify a type, OpenRecordset returns a table if
source is a local table name.

dbOpenDynaset Returns a dynaset recordset. Source can be a local table, a linked
table, a query, or an SQL statement. You can use the Find methods
to search for rows in a dynaset recordset. If you do not specify a
type, OpenRecordset returns a dynaset if source is a linked table, a
query, or an SQL statement.

dbOpenSnapshot Returns a read-only snapshot recordset. You won’t see any changes
made by other users after you open the recordset. You can use the
Find methods to search for rows in a snapshot recordset.

dbOpen-
ForwardOnly

Returns a read-only snapshot recordset that you can move forward
through only once. You can use the MoveNext method to access
successive rows.

 Collections, Objects, Properties, and Methods 995

Ch
ap

te
r 1

9

Setting Description

Options (You can select multiple options, placing a plus sign between option names
to add them together)

dbAppendOnly Returns a table or dynaset recordset that allows inserting new
rows only. You can use this option only with the dbOpenTable and
dbOpenDynaset types.

dbSeeChanges Asks Access to generate a run-time error in your code if another
user changes data while you are editing it in the recordset.

dbDenyWrite Prevents other users from modifying or inserting records while your
recordset is open.

dbDenyRead Prevents other users from reading records in your open recordset.

dbInconsistent Allows you to make changes to all fi elds in a multiple table
recordset (based on a query or an SQL statement), including
changes that would be inconsistent with any join defi ned in the
query. For example, you could change the customer identifi er
fi eld (foreign key) of an orders table so that it no longer matches
the primary key in an included customers table–unless referential
integrity constraints otherwise prevent you from doing so. You
cannot include both dbInconsistent and dbConsistent.

dbConsistent Allows you to only make changes in a multiple table recordset
(based on a query or an SQL statement) that are consistent with the
join defi nitions in the query. For example, you cannot change the
customer identifi er fi eld (foreign key) of an orders table so that its
value does not match the value of any customer row in the query.
You cannot include both dbInconsistent and dbConsistent.

Lockoptions (Select one)

dbPessimistic Asks Access to lock a row as soon as you place the row in an
editable state by executing an Edit method. This is the default if you
do not specify a lock option.

dbOptimistic Asks Access to not attempt to lock a row until you try to write it to
the database with an Update method. This generates a run-time
error if another user has changed the row after you executed the
Edit method.

For example, to declare a recordset for the tblFacilities table in the Housing Reserva-
tions (Housing.accdb) database and open the recordset as a table so that you can use its
indexes, enter the following:

Dim dbHousing As DAO.Database
Dim rcdFacilities As DAO.RecordSet
Set dbHousing = CurrentDb
Set rcdFacilities = dbHousing.OpenRecordSet("tblFacilities", _
 dbOpenTable)

Chapter 19

996 Chapter 19 Understanding Visual Basic Fundamentals
To open the qryContactProducts query in the Conrad Systems Contacts database
 (Contacts.accdb) as a dynaset, enter the following:

Dim dbContacts As DAO.Database
Dim rcdContactProducts As DAO.RecordSet
Set dbContacts = CurrentDb
Set rcdContactProducts = _
 dbContacts.OpenRecordSet("qryContactProducts")

(Note that opening a recordset as a dynaset is the default when the source is a query.)

Note
Any table recordset or dynaset recordset based on a table is updatable. When you ask

Access to open a dynaset on a table, Access internally builds a query that selects all

columns from the table. A dynaset recordset based on a query will be updatable if the

query is updatable. See “Limitations on Using Select Queries to Update Data” on page

468 for details.

After you open a recordset, you can use one of the Move methods to move to a specifi c
record. Use recordset.MoveFirst to move to the fi rst row in the recordset. Other Move
methods include MoveLast, MoveNext, and MovePrevious. If you want to move to a spe-
cifi c row in a dynaset recordset, use one of the Find methods. You must supply a string
variable containing the criteria for fi nding the records you want. The criteria string
looks exactly like an SQL WHERE clause but without the WHERE keyword. (See
 Article 2, “Understanding SQL,” on the companion CD.) For example, to fi nd the fi rst
row in the qryContactProducts query’s recordset whose SoldPrice fi eld is greater than
$200, enter the following:

rcdContactProducts.FindFirst "SoldPrice > 200"

To delete a row in an updatable recordset, move to the row you want to delete and then
use the Delete method. For example, to delete the fi rst row in the qryContactProducts
query’s recordset that hasn’t been invoiced yet (the Invoiced fi eld is false), enter the
 following:

Dim dbContacts As DAO.Database
Dim rcdContactProducts As DAO.RecordSet
Set dbContacts = CurrentDb
Set rcdContactProducts = _
 dbContacts.OpenRecordSet("qryContactProducts")
rcdContactProducts.FindFirst "Invoiced = 0"
' Test the recordset NoMatch property for "not found"
If Not rcdContactProducts.NoMatch Then
 rcdContactProducts.Delete
End If

Note
Any table recordset or dynaset recordset based on a table is updatable. When you ask

Access to open a dynaset on a table, Access internally builds a query that selects all

columns from the table. A dynaset recordset based on a query will be updatable if the

query is updatable. See “Limitations on Using Select Queries to Update Data” on page

468 for details.

 Collections, Objects, Properties, and Methods 997

Ch
ap

te
r 1

9

If you want to update rows in a recordset, move to the fi rst row you want to update and
then use the Edit method to lock the row and make it updatable. You can then refer to
any of the fi elds in the row by name to change their values. Use the Update method on
the recordset to save your changes before moving to another row. If you do not use the
Update method before you move to a new row or close the recordset, the database dis-
cards your changes.

For example, to increase by 10 percent the SoldPrice entry of the fi rst row in the
 rcdContactProducts query’s recordset whose SoldPrice value is greater than $200, enter
the following:

Dim dbContacts As DAO.Database
Dim rcdContactProducts As DAO.RecordSet
Set dbContacts = CurrentDb
Set rcdContactProducts = _
 dbContacts.OpenRecordSet("qryContactProducts")
rcdContactProducts.FindFirst "SoldPrice > 200"
 ' Test the recordset NoMatch property for "not found"
If Not rcdContactProducts.NoMatch Then
 rcdContactProducts.Edit
 rcdContactProducts![SoldPrice] = _
 rcdContactProducts![SoldPrice] * 1.1
 rcdContactProducts.Update
End If

To insert a new row in a recordset, use the AddNew method to start a new row. Set
the values of all required fi elds in the row, and then use the Update method to save
the new row. For example, to insert a new company in the Conrad Systems Contacts
 tblCompanies table, enter the following:

Dim dbContacts As DAO.Database
Dim rcdCompanies As DAO.RecordSet
Set dbContacts = CurrentDb
Set rcdCompanies = _
 dbContacts.OpenRecordSet("tblCompanies")
rcdCompanies.AddNew
rcdCompanies![CompanyName] = "Winthrop Brewing Co."
rcdCompanies![Address] = "155 Riverside Ave."
rcdCompanies![City] = "Winthrop"
rcdCompanies![StateOrProvince] = "WA"
rcdCompanies![PostalCode] = "98862"
rcdCompanies![PhoneNumber] = "(509) 555-8100"
rcdCompanies.Update

Note that because all the main data tables in Contacts.accdb are linked tables,
 rcdCompanies is a dynaset recordset, not a table recordset.

Manipulating Complex Data Types Using DAO
New in Access 2007 are complex data types—the Attachment data type or any fi eld
defi ned as multi-value. A complex data type lets you store multiple values or objects in

Chapter 19

998 Chapter 19 Understanding Visual Basic Fundamentals
a fi eld within a single record. Access 2007 accomplishes this by building hidden tables
that contain one row per multiple value stored. You can manipulate these rows in a
recordset in code, but only using DAO.

To work with data in a complex data type fi eld, you must fi rst open a recordset on the
table containing the fi eld. You can either open the table directly or open a query that
includes the table and its complex fi eld(s). The secret to dealing with complex fi elds is
the Value property of the fi eld in the recordset returns a DAO.Recordset2 object. So, you
can set a declared DAO.Recordset2 variable to the Value property to open a recordset
on the hidden table. You can manipulate this recordset exactly as you can any other
DAO recordset, including using the Find and Move methods, and the Edit, AddNew,
Update, and Delete methods.

When the complex fi eld is a multi-value fi eld, the recordset returned from the Value
property of the parent fi eld contains a single fi eld called Value. You’ll fi nd one row per
multiple value stored in the complex fi eld. When the complex fi eld is an Attachment
data type, the recordset returned from the Value property of the parent fi eld contains
three fi elds—FileData, FileName, and FileType. The FileData fi eld in an attachment com-
plex recordset supports one method, LoadFromFile, that lets you insert the complex
OLE data into the record by supplying a fi le location and name.

The tblContacts table in the Contacts sample database contains both a multi-value fi eld
(ContactType) and an attachment fi eld (Photo). In the modExamples module in the
Contacts.accdb database, you can fi nd the following code that displays in the Immedi-
ate window the values from both fi elds for all contact records.

Public Sub ListContactComplex()
' An example of listing all the complex values in the Contacts table
Dim db As DAO.Database, rst As DAO.Recordset, rstComplex As DAO.Recordset2
Dim fl d As DAO.Field2
 ' Point to this database
 Set db = CurrentDb
 ' Open a recordset on tblContacts
 Set rst = db.OpenRecordset("SELECT * FROM tblContacts")
 ' Loop through all the records
 Do Until rst.EOF
 ' Dump out the ID and name
 Debug.Print rst!ContactID, rst!LastName, rst!FirstName
 ' Get the contact type complex fi eld
 Set rstComplex = rst!ContactType.Value
 ' Loop through them all
 Do Until rstComplex.EOF
 ' Dump out each value
 Debug.Print " ", "Contact Type: ", rstComplex!Value
 ' Get the next
 rstComplex.MoveNext
 Loop
 ' Get the Photo Attachment recordset
 Set rstComplex = rst!Photo.Value
 ' Loop though them all
 Do Until rstComplex.EOF

 Collections, Objects, Properties, and Methods 999

Ch
ap

te
r 1

9

 ' Dump out the data
 Debug.Print " ", "Photo FileName: ", rstComplex!FileName, _
 " File Type: ", rstComplex!FileType
 ' Get the next
 rstComplex.MoveNext
 Loop
 ' Get the next contact
 rst.MoveNext
 Loop
 ' Close out
 rst.Close
 Set rst = Nothing
 Set rstComplex = Nothing
 Set db = Nothing
End Sub

If you want to fi nd the record for John Viescas and add the value Trainer to the Contact-
Type fi eld, do the following:

Dim db As DAO.Recordset, rst As DAO.Recordset, rstComplex As DAO.Recordset2
 ' Set a pointer to the current database
 Set db = CurrentDb
 ' Open the contacts table
 Set rst = db.OpenRecordset("tblContacts", dbOpenDynaset)
 ' Find the record for Viescas
 rst.FindFirst "LastName = 'Viescas'"
 ' Make sure we found it
 If Not rst.NoMatch Then
 ' Get the ContactType recordset
 Set rstComplex = rst!ContactType.Value
 ' Add a new row
 rstComplex.AddNew
 ' Insert the new value
 rstComplex.Value = "Trainer"
 ' Save the new value
 rstComplex.Update
 End If
 ' Close out
 rst.Close
 Set rst = Nothing
 Set rstComplex = Nothing
 Set db = Nothing

To fi nd the contact record for John Viescas, check for the value Trainer in the Contact-
Type fi eld, and delete it if it exists, do the following:

Dim db As DAO.Recordset, rst As DAO.Recordset, rstComplex As DAO.Recordset2
 ' Set a pointer to the current database
 Set db = CurrentDb
 ' Open the contacts table
 Set rst = db.OpenRecordset("tblContacts", dbOpenDynaset)
 ' Find the record for Viescas
 rst.FindFirst "LastName = 'Viescas'"

Chapter 19

1000 Chapter 19 Understanding Visual Basic Fundamentals
 ' Make sure we found it
 If Not rst.NoMatch Then
 ' Get the ContactType recordset
 Set rstComplex = rst!ContactType.Value
 ' See if Trainer exists
 rstComplex.FindFirst "Value = 'Trainer '"
 ' If it exists,
 If Not rstComplex.NoMatch Then
 ' Delete it
 rstComplex.Delete
 End If
 End If
 ' Close out
 rst.Close
 Set rst = Nothing
 Set rstComplex = Nothing
 Set db = Nothing

To check to see if the Photo fi eld for contact Jeff Conrad contains a fi le named
 JeffConrad.docx and add it if it does not, the code is as follows:

Dim db As DAO.Recordset, rst As DAO.Recordset, rstComplex As DAO.Recordset2
 ' Set a pointer to the current database
 Set db = CurrentDb
 ' Open the contacts table
 Set rst = db.OpenRecordset("tblContacts", dbOpenDynaset)
 ' Find the record for Conrad
 rst.FindFirst "LastName = 'Conrad'"
 ' Make sure we found it
 If Not rst.NoMatch Then
 ' Get the Photo recordset
 Set rstComplex = rst!Photo.Value
 ' See if the JeffConrad.docx fi le exists
 rstComplex.FindFirst "FileName = 'JeffConrad.docx'"
 ' If it does not exist,
 If rstComplex.NoMatch Then
 ' Start a new attachment record
 rstComplex.Addnew
 ' Load the fi le
 rstComplex!FileData.LoadFromFile _
 "C:\Microsoft Press\Access 2007 Inside Out\Documents\JeffConrad.docx"
 ' Save the new row
 rstComplex.Update
 End If
 End If
 ' Close out
 rst.Close
 Set rst = Nothing
 Set rstComplex = Nothing
 Set db = Nothing

 Collections, Objects, Properties, and Methods 1001

Ch
ap

te
r 1

9

Working with ADO Recordsets
Recordsets in ADO offer many of the same capabilities and options as recordsets in
DAO, but the terminology is somewhat different. Because you will most often use
ADO with data stored in a server database such as SQL Server, the options for an ADO
recordset are geared toward server-based data. For example, ADO uses the term cursor
to refer to the set of rows returned by the server. Fundamentally, a cursor is a pointer to
each row you need to work with in code. Depending on the options you choose (and the
options supported by the particular database server), a cursor might also be read-only,
updatable, or forward-only. A cursor might also be able to refl ect changes made by other
users of the database (a keyset or dynamic cursor), or it might present only a snapshot
of the data (a static cursor).

To open an ADO recordset, you must use the Open method of a new ADO Recordset
object. The syntax to use the Open method of a Recordset object is as follows:

RecordSetObject.Open [source], [connection],
 [cursortype], [locktype], [options]

RecordSetObject is a variable you have declared as a New ADO.Recordset. Source is a
Command object, a string variable, or string literal containing the name of a table, the
name of a view (the SQL Server term for a query), the name of a stored procedure, the
name of a function that returns a table, or a valid SQL statement. A stored procedure
might be a parameter query or a query that specifi es sorting of rows from a table or
view. A function might also accept parameters. If you supply a Command object as the
source, you do not need to supply a connection (you defi ne the connection in the Com-
mand object). Otherwise, connection must be the name of a Connection object that
points to the target database.

Table 19-3 describes the settings you can supply for cursortype, lockoptions, and options.

For example, to declare a recordset for the tblFacilities table in the Housing Reserva-
tions database (Housing.accdb) and open the recordset as a table so you can use its
indexes, enter the following:

Dim cnThisConnect As ADODB.Connection
Dim rcdFacilities As New ADODB.RecordSet
Set cnThisConnect = CurrentProject.Connection
rcdFacilities.Index = "PrimaryKey"
rcdBooks.Open "tblFacilities", cnThisConnect, adOpenKeyset, _
 adLockOptimistic, adCmdTableDirect

Note that you must establish the index you want to use before you open the recordset.

Chapter 19

1002 Chapter 19 Understanding Visual Basic Fundamentals
 Table 19-3 RecordSetObject.Open Parameter Settings

Setting Description
CursorType (Select one)

adOpenForwardOnly Returns a read-only snapshot cursor (recordset) that you
can move forward through only once. You can use the
MoveNext method to access successive rows. If you do
not supply a CursorType setting, adOpenForwardOnly is
the default.

adOpenKeyset Returns a Keyset cursor. This is roughly analogous to a
DAO dynaset. If you are using ADO to open a recordset
against a source in an Access .accdb fi le, you should
use this option to obtain a recordset that behaves most
like a DAO recordset. In this type of cursor, you will
see changes to rows made by other users, but you will
not see new rows added by other users after you have
opened the cursor.

adOpenDynamic Returns a dynamic cursor. This type of cursor lets you
see not only changes made by other users but also
added rows. Note, however, that certain key properties
you might depend on in a DAO recordset such as
RecordCount might not exist or might always be zero.

adOpenStatic Returns a read-only snapshot cursor. You won’t be able
to see changes made by other users after you’ve opened
the cursor.

LockType (Select one)

adLockReadOnly Provides no locks. The cursor is read-only. If you do not
provide a lock setting, this is the default.

adLockPessimistic Asks the target database to lock a row as soon as you
place the row in an editable state by executing an Edit
method.

adLockOptimistic Asks the target database to not attempt to lock a row
until you try to write it to the database with an Update
method. This generates a run-time error in your code if
another user has changed the row after you executed
the Edit method. You should use this option when
accessing rows in an Access .accdb fi le.

Options (You can combine one Cmd setting with one Async setting with a plus sign)

adCmdText Indicates that source is an SQL statement.

adCmdTable Indicates that source is a table name (or a query name
in a desktop database). In DAO, this is analogous to
opening a dynaset recordset on a table.

adCmdTableDirect Indicates that source is a table name. This is analogous
to a DAO dbOpenTable.

 Collections, Objects, Properties, and Methods 1003

Ch
ap

te
r 1

9

Setting Description

adCmdStoredProc Indicates that source is a stored procedure. In DAO, this
is analogous to opening a dynaset on a sorted query.

adAsyncFetch After fetching the initial rows to populate the cursor,
additional fetching occurs in the background. If you try
to access a row that has not been fetched yet, your code
will wait until the row is fetched.

adAsyncFetchNonBlocking After fetching the initial rows to populate the cursor,
additional fetching occurs in the background. If you try
to access a row that has not been fetched yet, your code
will receive an end of fi le indication.

To open the qryContactProducts query in the Conrad Systems Contacts database as a
keyset, enter the following:

Dim cnThisConnect As ADODB.Connection
Dim rcdContactProducts As New ADODB.RecordSet
Set cnThisConnect = CurrentProject.Connection
rcdContactProducts.Open "qryContactProducts", _
 cnThisConnect, adOpenKeyset, adLockOptimistic, _
 adCmdTable

After you open a recordset, you can use one of the Move methods to move to a spe-
cifi c record. Use recordset.MoveFirst to move to the fi rst row in the recordset. Other
Move methods include MoveLast, MoveNext, and MovePrevious. If you want to search
for a specifi c row in the recordset, use the Find method or set the recordset’s Filter
property. Unlike the Find methods in DAO, the Find method in ADO is limited to a
single simple test on a column in the form "<column-name> <comparison> <comparison-
value>". Note that to search for a Null value, you must say: "[SomeColumn] = Null", not
 "[SomeColumn] Is Null" as you would in DAO. Also, <comparison> can be only <, >, <=,
>=, <>, =, or LIKE. Note that if you want to use the LIKE keyword, you can use either the
ANSI wildcards "%" and "_" or the Access ACE/JET wildcards "*" and "?", but the wild-
card can appear only at the end of the <comparison-value> string.

If you want to search for rows using a more complex fi lter, you must assign a string
variable or an expression containing the criteria for fi nding the records you want to the
Filter property of the recordset. This limits the rows in the recordset to only those that
meet the fi lter criteria. The criteria string must be made up of the simple comparisons
that you can use with Find, but you can include multiple comparisons with the AND or
OR Boolean operators.

For example, to fi nd the fi rst row in the qryContactProducts query’s recordset whose
SoldPrice fi eld is greater than $200, enter the following:

rcdContactProducts.MoveFirst
rcdContactProducts.Find "SoldPrice > 200"
' EOF property will be true if nothing found
If Not rcdContactProducts.EOF Then
' Found a record!

Chapter 19

1004 Chapter 19 Understanding Visual Basic Fundamentals
To fi nd all rows in qryContactProducts where the product was sold after February 1,
2007, and SoldPrice is greater than $200, enter the following:

rcdContactProducts.Filter = &
 "DateSold > #2/1/2007# AND SoldPrice > 200"
' EOF property will be true if fi lter produces no rows
If Not rcdODetails.EOF Then
' Found some rows!

To delete a row in a keyset, simply move to the row you want to delete and then use the
Delete method. For example, to delete the fi rst row in the qryContactProducts query’s
recordset that hasn’t been invoiced yet (the Invoiced fi eld is false), enter the following:

Dim cnThisConnect As ADODB.Connection
Dim rcdContactProducts As New ADODB.RecordSet
Set cnThisConnect = CurrentProject.Connection
rcdContactProducts.Open "qryContactProducts", _
 cnThisConnect, adOpenKeyset, adLockOptimistic, _
 adCmdTable
rcdContactProducts.MoveFirst
rcdContactProducts.Find "Invoiced = 0"
' Test the recordset EOF property for "not found"
If Not rcdContactProducts.EOF Then
 rcdContactProducts.Delete
End If

If you want to update rows in a recordset, move to the fi rst row you want to update.
Although ADO does not require you to use the Edit method to lock the row and make
it updatable, you can optionally use the Edit method to signal your intention to the
database engine. You can refer to any of the updatable fi elds in the row by name to
change their values. You can use the Update method on the recordset to explicitly save
your changes before moving to another row. ADO automatically saves your changed
row when you move to a new row. If you need to discard an update, you must use the
 CancelUpdate method of the recordset object.

For example, to increase by 10 percent the SoldPrice entry of the fi rst row in the
 rcdContactProducts query’s recordset whose SoldPrice value is greater than $200, enter
the following:

Dim cnThisConnect As ADODB.Connection
Dim rcdContactProducts As New ADODB.RecordSet
Set cnThisConnect = CurrentProject.Connection
rcdContactProducts.Open "qryContactProducts", _
 cnThisConnect, adOpenKeyset, adLockOptimistic, _
 adCmdTable
rcdContactProducts.Filter "SoldPrice > 200"
' Test the recordset EOF property for "not found"
If Not rcdContactProducts.EOF Then
 rcdContactProducts![SoldPrice] = _
 rcdContactProducts![SoldPrice] * 1.1
 rcdContactProducts.MoveNext
End If

 Functions and Subroutines 1005

Ch
ap

te
r 1

9

To insert a new row in a recordset, use the AddNew method to start a new row. Set
the values of all required fi elds in the row, and then use the Update method to save
the new row. For example, to insert a new company in the Conrad Systems Contacts
 tblCompanies table, enter the following:

Dim cnThisConnect As ADODB.Connection
Dim rcdCompanies As New ADODB.RecordSet
Set cnThisConnect = CurrentProject.Connection
rcdCompanies.Open "tblCompanies", cnThisConnect, _
 adOpenKeyset, adLockOptimistic, adCmdTable
rcdCompanies.AddNew
rcdCompanies![CompanyName] = "Winthrop Brewing Co."
rcdCompanies![Address] = "155 Riverside Ave."
rcdCompanies![City] = "Winthrop"
rcdCompanies![StateOrProvince] = "WA"
rcdCompanies![PostalCode] = "98862"
rcdCompanies![PhoneNumber] = "(509) 555-8100"
rcdCompanies.Update

Other Uses for Object Methods
As you’ll learn later in this chapter in more detail, you must use a method of the DoCmd
object to execute the equivalent of most macro actions within Visual Basic. You must
use the RunCommand method of either the Application or DoCmd object to execute
commands you can fi nd on any of the Access menus.

You can also defi ne a public function or subroutine (see the next section) within the
module associated with a Form or Report object and execute that procedure as a
method of the form or report. If your public procedure is a function, you must assign
the result of the execution of the method to a variable of the appropriate type. If the
public procedure is a subroutine, you can execute the form or report object method as
a Visual Basic statement. For more information about object methods, fi nd the topic
about the object of interest in Help, and then click the Methods hyperlink.

 Functions and Subroutines
You can create two types of procedures in Visual Basic—functions and subroutines—also
known as Function procedures and Sub procedures. (As you’ll learn later in “Under-
standing Class Modules” on page 1009, class modules also support a special type of
function, Property Get, and special subroutines, Property Let and Property Set, that let
you manage properties of the class.) Each type of procedure can accept parameters—data
variables that you pass to the procedure that can determine how the procedure oper-
ates. Functions can return a single data value, but subroutines cannot. In addition, you
can execute a public function from anywhere in Access, including from expressions
in queries and from macros. You can execute a subroutine only from a function, from
another subroutine, or as an event procedure in a form or a report.

Chapter 19

1006 Chapter 19 Understanding Visual Basic Fundamentals
Function Statement
Use a Function statement to declare a new function, the parameters it accepts, the vari-
able type it returns, and the code that performs the function procedure.

Syntax
[Public | Private | Friend] [Static] Function functionname
 ([<arguments>]) [As datatype]
 [<function statements>]
 [functionname = <expression>]
 [Exit Function]
 [<function statements>]
 [functionname = <expression>]
End Function

where <arguments> is

{[Optional][ByVal | ByRef][ParamArray] argumentname[()]
 [As datatype][= default]},...

Notes
Use the Public keyword to make this function available to all other procedures in all
modules. Use the Private keyword to make this function available only to other pro-
cedures in the same module. When you declare a function as private in a module, you
cannot call that function from a query or a macro or from a function in another mod-
ule. Use the Friend keyword in a class module to declare a function that is public to
all other code in your application but is not visible to outside code that activates your
project via automation.

Include the Static keyword to preserve the value of all variables declared within the pro-
cedure, whether explicitly or implicitly, as long as the module containing the procedure
is open. This is the same as using the Static statement (discussed earlier in this chapter)
to explicitly declare all variables created in this function.

You can use a type declaration character at the end of the functionname entry or use the
As datatype clause to declare the data type returned by this function. Valid datatype
entries are Byte, Boolean, Integer, Long, Currency, Single, Double, Date, String (for
variable-length strings), String * length (for fi xed-length strings), Object, Variant, or one
of the object types described earlier in this chapter. If you do not declare a data type,
Visual Basic assumes that the function returns a variant result. You can set the return
value in code by assigning an expression of a compatible data type to the function
name.

You should declare the data type of any arguments in the function’s parameter list.
Note that the names of the variables passed by the calling procedure can be different
from the names of the variables known by this procedure. If you use the ByVal keyword
to declare an argument, Visual Basic passes a copy of the argument to your function.
Any change you make to a ByVal argument does not change the original variable in

 Functions and Subroutines 1007

Ch
ap

te
r 1

9

the calling procedure. If you use the ByRef keyword, Visual Basic passes the actual
memory address of the variable, allowing the procedure to change the variable’s value
in the calling procedure. (If the argument passed by the calling procedure is an expres-
sion, Visual Basic treats it as if you had declared it by using ByVal.) Visual Basic always
passes arrays by reference (ByRef).

Use the Optional keyword to declare an argument that isn’t required. All optional
arguments must be the Variant data type. If you declare an optional argument, all
arguments that follow in the argument list must also be declared as optional. You can
specify a default value only for optional parameters. Use the IsMissing built-in function
to test for the absence of optional parameters. You can also use the ParamArray argu-
ment to declare an array of optional elements of the Variant data type. When you call
the function, you can then pass it an arbitrary number of arguments. The ParamArray
argument must be the last argument in the argument list.

Use the Exit Function statement anywhere in your function to clear any error condi-
tions and exit your function normally, returning to the calling procedure. If Visual
Basic runs your code until it encounters the End Function statement, control is passed
to the calling procedure but any errors are not cleared. If this function causes an error
and terminates with the End Function statement, Visual Basic passes the error to the
calling procedure. See “Trapping Errors” on page 1028 for details.

Example
To create a function named MyFunction that accepts an integer argument and a string
argument and returns a double value, enter the following:

Function MyFunction (intArg1 As Integer, strArg2 As _
 String) As Double
 If strArg2 = "Square" Then
 MyFunction = intArg1 * intArg1
 Else
 MyFunction = Sqr(intArg1)
 End If
End Function

Sub Statement
Use a Sub statement to declare a new subroutine, the parameters it accepts, and the
code in the subroutine.

Syntax
[Public | Private | Friend] [Static] Sub subroutinename
 ([<arguments>])
 [<subroutine statements>]
 [Exit Sub]
 [<subroutine statements>]
End Sub

Chapter 19

1008 Chapter 19 Understanding Visual Basic Fundamentals
 where <arguments> is

{[Optional][ByVal | ByRef][ParamArray]
 argumentname[()] [As datatype][= default]},...

Notes
Use the Public keyword to make this subroutine available to all other procedures in all
modules. Use the Private keyword to make this procedure available only to other proce-
dures in the same module. When you declare a sub as private in a module, you cannot
call that sub from a function or sub in another module. Use the Friend keyword in a
class module to declare a sub that is public to all other code in your application but is
not visible to outside code that activates your project via automation.

Include the Static keyword to preserve the value of all variables declared within the pro-
cedure, whether explicitly or implicitly, as long as the module containing the procedure
is open. This is the same as using the Static statement (discussed earlier in this chapter)
to explicitly declare all variables created in this subroutine.

You should declare the data type of all arguments that the subroutine accepts in its
argument list. Valid datatype entries are Byte, Boolean, Integer, Long, Currency, Single,
Double, Date, String (for variable-length strings), String * length (for fi xed-length
strings), Object, Variant, or one of the object types described earlier in this chapter.
Note that the names of the variables passed by the calling procedure can be differ-
ent from the names of the variables as known by this procedure. If you use the ByVal
keyword to declare an argument, Visual Basic passes a copy of the argument to your
subroutine. Any change you make to a ByVal argument does not change the original
variable in the calling procedure. If you use the ByRef keyword, Visual Basic passes the
actual memory address of the variable, allowing the procedure to change the variable’s
value in the calling procedure. (If the argument passed by the calling procedure is an
expression, Visual Basic treats it as if you had declared it by using ByVal.) Visual Basic
always passes arrays by reference (ByRef).

Use the Optional keyword to declare an argument that isn’t required. All optional
arguments must be the Variant data type. If you declare an optional argument, all
arguments that follow in the argument list must also be declared as optional. You can
specify a default value only for optional parameters. Use the IsMissing built-in function
to test for the absence of optional parameters. You can also use the ParamArray argu-
ment to declare an array of optional elements of the Variant data type. When you call
the subroutine, you can then pass it an arbitrary number of arguments. The Param Array
argument must be the last argument in the argument list.

Use the Exit Sub statement anywhere in your subroutine to clear any error conditions
and exit your subroutine normally, returning to the calling procedure. If Visual Basic
runs your code until it encounters the End Sub statement, control is passed to the call-
ing procedure but any errors are not cleared. If this subroutine causes an error and
terminates with the End Sub statement, Visual Basic passes the error to the calling pro-
cedure. See “Trapping Errors” on page 1028 for details.

 Understanding Class Modules 1009

Ch
ap

te
r 1

9

Example
To create a subroutine named MySub that accepts two string arguments but can modify
only the second argument, enter the following:

Sub MySub (ByVal strArg1 As String, ByRef strArg2 _
 As String)
 <subroutine statements>
End Sub

 Understanding Class Modules
Whenever you create event procedures behind a form or report, you’re creating a class
module. A class module is the specifi cation for a user-defi ned object in your database,
and the code you write in the module defi nes the methods and properties of the object.
Of course, forms and reports already have dozens of methods and properties already
defi ned by Access, but you can create extended properties and methods when you write
code in the class module attached to a form or report.

You can also create a class module as an independent object by clicking the arrow on
the New Object button in the Other group on the Create tab and then clicking Class
Module or by clicking Class Module on the Insert menu in the Visual Basic Editor. In
the Conrad Systems Contacts sample database (Contacts.accdb), you can fi nd a class
module called ComDlg that provides a simple way to call the Windows open fi le dialog
box from your Visual Basic code.

As previously discussed, you defi ne a method in a class module by declaring a proce-
dure (either a function or a sub) public. When you create an active instance of the object
defi ned by the class module, either by opening it or by setting it to an object variable,
you can execute the public functions or subs you have defi ned by referencing the func-
tion or sub name as a method of the object. For example, when the frmCustomers form
is open, you can execute the cmdCancel_Click sub by referencing it as a method of the
form’s class. (The cmdCancel_Click sub is public in all forms in the sample database so
that the Exit button on the main switchboard can use it to command the form to clear
edits and close itself.) The name of any form’s class is in the form Form_formname, so
you execute this method in your code like this:

Form_frmCustomers.cmdCancel_Click

When you create a class module that you see in the Modules list in the Navigation Pane,
you can create a special sub that Visual Basic runs whenever code in your application
creates a new instance of the object defi ned by your class. For example, you can create a
private Class_Initialize sub to run code that sets up your object whenever other code in
your application creates a new instance of your class object. You might use this event to
open recordsets or initialize variables required by the object. You can also create a pri-
vate Class_Terminate sub to run code that cleans up any variables or objects (perhaps
closing open recordsets) when your object goes out of scope or the code that created an
instance of your object sets it to Nothing. (Your object goes out of scope if a procedure

Chapter 19

1010 Chapter 19 Understanding Visual Basic Fundamentals
activates your class by setting it to a non-static local object variable and then the proce-
dure exits.)

Although you can defi ne properties of a class by declaring public variables in the
 Declarations section of the class module, you can also defi ne specifi c procedures to
handle fetching and setting properties. When you do this, you can write special pro-
cessing code that runs whenever a caller fetches or sets one of the properties defi ned by
these procedures. To create special property processing procedures in a class module,
you need to write Property Get, Property Let, and Property Set procedures as described
in the following sections.

Property Get
Use a Property Get procedure to return a property value for the object defi ned by your
class module. When other code in your application attempts to fetch the value of this
property of your object, Visual Basic executes your Property Get procedure to return
the value. Your code can return a data value or an object.

Syntax
[Public | Private | Friend] [Static] Property Get propertyname
 ([<arguments>]) [As datatype]
 [<property statements>]
 [propertyname = <expression>]
 [Exit Property]
 [<property statements>]
 [propertyname = <expression>]
End Property

where <arguments> is

{[Optional][ByVal | ByRef][ParamArray] argumentname[()]
 [As datatype][= default]},...

Notes
Use the Public keyword to make this property available to all other procedures in all
modules. Use the Private keyword to make this property available only to other proce-
dures in the same module. When you declare a property as private in a class module,
you cannot reference that property from another module. Use the Friend keyword to
declare a property that is public to all other code in your application but is not visible to
outside code that activates your project via automation.

Include the Static keyword to preserve the value of all variables declared within the
property procedure, whether explicitly or implicitly, as long as the module containing
the procedure is open. This is the same as using the Static statement (discussed earlier
in this chapter) to explicitly declare all variables created in this property procedure.

You can use a type declaration character at the end of the propertyname entry or use
the As datatype clause to declare the data type returned by this property. Valid datatype

 Understanding Class Modules 1011

Ch
ap

te
r 1

9

entries are Byte, Boolean, Integer, Long, Currency, Single, Double, Date, String (for
variable-length strings), String * length (for fi xed-length strings), Object, Variant, or one
of the object types described earlier in this chapter. If you do not declare a data type,
Visual Basic assumes that the property returns a variant result. The data type of the
returned value must match the data type of the propvalue variable you declare in any
companion Property Let or Property Set procedure. You can set the return value in code
by assigning an expression of a compatible data type to the property name.

You should declare the data type of all arguments in the property procedure’s param-
eter list. Note that the names of the variables passed by the calling procedure can be
different from the names of the variables known by this procedure. If you use the ByVal
keyword to declare an argument, Visual Basic passes a copy of the argument to your
procedure. Any change you make to a ByVal argument does not change the original
variable in the calling procedure. If you use the ByRef keyword, Visual Basic passes the
actual memory address of the variable, allowing the procedure to change the variable’s
value in the calling procedure. (If the argument passed by the calling procedure is an
expression, Visual Basic treats it as if you had declared it by using ByVal.) Visual Basic
always passes arrays by reference (ByRef).

Use the Optional keyword to declare an argument that isn’t required. All optional
arguments must be the Variant data type. If you declare an optional argument, all argu-
ments that follow in the argument list must also be declared as optional. You can spec-
ify a default value only for optional parameters. Use the IsMissing built-in function to
test for the absence of optional parameters. You can also use the ParamArray argument
to declare an array of optional elements of the Variant data type. When you attempt to
access this property in an object set to the class, you can then pass it an arbitrary num-
ber of arguments. The ParamArray argument must be the last argument in the argu-
ment list.

Use the Exit Property statement anywhere in your property procedure to clear any error
conditions and exit your procedure normally, returning to the calling procedure. If
Visual Basic runs your code until it encounters the End Property statement, control is
passed to the calling procedure but any errors are not cleared. If this procedure causes
an error and terminates with the End Property statement, Visual Basic passes the error
to the calling procedure. See “Trapping Errors” on page 1028 for details.

Examples
To declare a Filename property as a string and return it from a variable defi ned in the
Declarations section of your class module, enter the following:

Option Explicit
Dim strFileName As String
Property Get Filename() As String
 ' Return the saved fi le name as a property
 Filename = strFilename
End Property

Chapter 19

1012 Chapter 19 Understanding Visual Basic Fundamentals
To establish a new instance of the object defi ned by the ComDlg class module and then
fetch its Filename property, enter the following in a function or sub:

Dim clsDialog As New ComDlg, strFile As String
 With clsDialog
 ' Set the title of the dialog box
 .DialogTitle = "Locate Conrad Systems Contacts Data File"
 ' Set the default fi le name
 .FileName = "ContactsData.accdb"
 ' .. and start directory
 .Directory = CurrentProject.Path
 ' .. and fi le extension
 .Extension = "accdb"
 ' .. but show all accdb fi les just in case
 .Filter = "Conrad Systems File (*.accdb)|*.accdb"
 ' Default directory is where this fi le is located
 .Directory = CurrentProject.Path
 ' Tell the common dialog that the fi le and path must exist
 .ExistFlags = FileMustExist + PathMustExist
 ' If the ShowOpen method returns True
 If .ShowOpen Then
 ' Then fetch the Filename property
 strFile = .FileName
 Else
 Err.Raise 3999
 End If
 End With

Property Let
Use a Property Let procedure to defi ne code that executes when the calling code
attempts to assign a value to a data property of the object defi ned by your class mod-
ule. You cannot defi ne both a Property Let and a Property Set procedure for the same
 property.

Syntax
[Public | Private | Friend] [Static] Property Let propertyname
 ([<arguments>,] propvalue [As datatype])
 [<property statements>]
 [Exit Property]
 [<property statements>]
End Property

 where <arguments> is

{[Optional][ByVal | ByRef][ParamArray]
 argumentname[()] [As datatype][= default]},...

 Understanding Class Modules 1013

Ch
ap

te
r 1

9

Notes
Use the Public keyword to make this property available to all other procedures in all
modules. Use the Private keyword to make this property available only to other proce-
dures in the same module. When you declare a property as private in a class module,
you cannot reference the property from another module. Use the Friend keyword to
declare a property that is public to all other code in your application but is not visible to
outside code that activates your project via automation.

Include the Static keyword to preserve the value of all variables declared within the
property procedure, whether explicitly or implicitly, as long as the module containing
the procedure is open. This is the same as using the Static statement (discussed earlier
in this chapter) to explicitly declare all variables created in this property procedure.

You should declare the data type of all arguments in the property procedure’s param-
eter list. Valid datatype entries are Byte, Boolean, Integer, Long, Currency, Single, Dou-
ble, Date, String (for variable-length strings), String * length (for fi xed-length strings),
Object, Variant, or one of the object types described earlier in this chapter. Note that
the names of the variables passed by the calling procedure can be different from the
names of the variables as known by this procedure. Also, the names and data types of
the arguments must exactly match the arguments declared for the companion Prop-
erty Get procedure. If you use the ByVal keyword to declare an argument, Visual Basic
passes a copy of the argument to your property procedure. Any change you make to a
ByVal argument does not change the original variable in the calling procedure. If you
use the ByRef keyword, Visual Basic passes the actual memory address of the variable,
allowing the procedure to change the variable’s value in the calling procedure. (If the
argument passed by the calling procedure is an expression, Visual Basic treats it as
if you had declared it by using ByVal.) Visual Basic always passes arrays by reference
(ByRef).

Use the Optional keyword to declare an argument that isn’t required. All optional
arguments must be the Variant data type. If you declare an optional argument, all argu-
ments that follow in the argument list must also be declared as optional. You can spec-
ify a default value only for optional parameters. Use the IsMissing built-in function to
test for the absence of optional parameters. You can also use the ParamArray argument
to declare an array of optional elements of the Variant data type. When you attempt to
assign a value to this property in an object set to the class, you can then pass it an arbi-
trary number of arguments. The ParamArray argument must be the last argument in
the argument list.

You must always declare at least one parameter, propvalue, that is the variable to con-
tain the value that the calling code wants to assign to your property. This is the value
or expression that appears on the right side of the assignment statement executed in
the calling code. If you declare a data type, it must match the data type declared by
the companion Property Get procedure. Also, when you declare a data type, the caller
receives a data type mismatch error if the assignment statement attempts to pass an
incorrect data type. You cannot modify this value, but you can evaluate it and save it as
a value to be returned later by your Property Get procedure.

Chapter 19

1014 Chapter 19 Understanding Visual Basic Fundamentals
Use the Exit Property statement anywhere in your property procedure to clear any error
conditions and exit your procedure normally, returning to the calling procedure. If
Visual Basic runs your code until it encounters the End Property statement, control is
passed to the calling procedure but any errors are not cleared. If this procedure causes
an error and terminates with the End Property statement, Visual Basic passes the error
to the calling procedure. See “Trapping Errors” on page 1028 for details.

Examples
To declare a Filename property, accept a value from a caller, and save the value in a vari-
able defi ned in the Declarations section of your class module, enter the following:

Option Explicit
Dim strFileName As String
Property Let FileName(strFile)
 If Len(strFile) <= 64 Then _
 strFileName = strFile
End Property

To establish a new instance of the object defi ned by the ComDlg class module and then
set its Filename property, enter the following:

Dim clsDialog As New ComDlg, strFile As String
 With clsDialog
 ' Set the title of the dialog
 .DialogTitle = "Locate Conrad Systems Contacts Data File"
 ' Set the default fi le name
 .FileName = "ContactsData.accdb"
 End With

Property Set
Use a Property Set procedure to defi ne code that executes when the calling code
attempts to assign an object to an object property of the object defi ned by your class
module. You cannot defi ne both a Property Let and a Property Set procedure for the
same property.

Syntax
[Public | Private | Friend] [Static] Property Set propertyname
 ([<arguments>,] object [As objecttype])
 [<property statements>]
 [Exit Property]
 [<property statements>]
End Property

 where <arguments> is

{[Optional][ByVal | ByRef][ParamArray]
 argumentname[()] [As datatype][= default]},...

 Understanding Class Modules 1015

Ch
ap

te
r 1

9

Notes
Use the Public keyword to make this property available to all other procedures in
all modules. Use the Private keyword to make this property available only to other
 procedures in the same module. When you declare a property as private in a class mod-
ule, you cannot reference the property from another module. Use the Friend keyword to
declare a property that is public to all other code in your application but is not visible to
outside code that activates your project via automation.

Include the Static keyword to preserve the value of all variables declared within the
property procedure, whether explicitly or implicitly, as long as the module containing
the procedure is open. This is the same as using the Static statement (discussed earlier
in this chapter) to explicitly declare all variables created in this property procedure.

You should declare the data type of all arguments in the property procedure’s param-
eter list. Valid datatype entries are Byte, Boolean, Integer, Long, Currency, Single, Dou-
ble, Date, String (for variable-length strings), String * length (for fi xed-length strings),
Object, Variant, or one of the object types described earlier in this chapter. Note that
the names of the variables passed by the calling procedure can be different from the
names of the variables as known by this procedure. Also, the names and data types of
the arguments must exactly match the arguments declared for the companion Prop-
erty Get procedure. If you use the ByVal keyword to declare an argument, Visual Basic
passes a copy of the argument to your property procedure. Any change you make to a
ByVal argument does not change the original variable in the calling procedure. If you
use the ByRef keyword, Visual Basic passes the actual memory address of the variable,
allowing the procedure to change the variable’s value in the calling procedure. (If the
argument passed by the calling procedure is an expression, Visual Basic treats it as
if you had declared it by using ByVal.) Visual Basic always passes arrays by reference
(ByRef).

Use the Optional keyword to declare an argument that isn’t required. All optional
arguments must be the Variant data type. If you declare an optional argument, all argu-
ments that follow in the argument list must also be declared as optional. You can spec-
ify a default value only for optional parameters. Use the IsMissing built-in function to
test for the absence of optional parameters. You can also use the ParamArray argument
to declare an array of optional elements of the Variant data type. When you attempt to
assign a value to this property in an object set to the class, you can then pass it an arbi-
trary number of arguments. The ParamArray argument must be the last argument in
the argument list.

You must always declare at least one parameter, object, that is the variable to contain the
object that the calling code wants to assign to your property. This is the object reference
that appears on the right side of the assignment statement executed in the calling code.
If you include an objecttype entry, it must match the object type declared by the compan-
ion Property Get procedure. Also, when you declare an object type, the caller receives
a data type mismatch error if the assignment statement attempts to pass an incorrect
object type. You can evaluate the properties of this object, set its properties, execute its
methods, and save the object pointer in another variable that your Property Get proce-
dure can later return.

Chapter 19

1016 Chapter 19 Understanding Visual Basic Fundamentals
Use the Exit Property statement anywhere in your property procedure to clear any error
conditions and exit your procedure normally, returning to the calling procedure. If
Visual Basic runs your code until it encounters the End Property statement, control is
passed to the calling procedure but any errors are not cleared. If this procedure causes
an error and terminates with the End Property statement, Visual Basic passes the error
to the calling procedure. See “Trapping Errors” on page 1028 for details.

Examples
To declare a ControlToUpdate property, accept a value from a caller, and save the value
in an object variable defi ned in the Declarations section of your class module, enter the
following:

Option Explicit
Dim ctlToUpdate As Control
Property Set ControlToUpdate(ctl As Control)
 ' Verify we have the right type of control
 Select Case ctl.ControlType
 ' Text box, combo box, and list box are OK
 Case acTextBox, acListBox, acComboBox
 ' Save the control object
 Set ctlToUpdate = ctl
 Case Else
 Err.Raise 3999
 End Select
End Property

To establish a new instance of the object defi ned by the ComDlg class module and then
set its Filename property, enter the following in a function or sub:

Dim clsDialog As New ComDlg, strFile As String
 With clsDialog
 ' Set the title of the dialog
 .DialogTitle = "Locate Conrad Systems Contacts Data File"
 ' Set the default fi le name
 .FileName = "ContactsData.accdb"
 End With

Controlling the Flow of Statements
Visual Basic provides many ways for you to control the fl ow of statements in proce-
dures. You can call other procedures, loop through a set of statements either a calcu-
lated number of times or based on a condition, or test values and conditionally execute
sets of statements based on the result of the condition test. You can also go directly to
a set of statements or exit a procedure at any time. The following sections demonstrate
some (but not all) of the ways you can control fl ow in your procedures.

 Controlling the Flow of Statements 1017

Ch
ap

te
r 1

9

Call Statement
Use a Call statement to transfer control to a subroutine.

Syntax
Call subroutinename [(<arguments>)]

or

subroutinename [<arguments>]

where <arguments> is

{[ByVal | ByRef] <expression> },...

Notes
The Call keyword is optional, but if you omit it, you must also omit the parentheses
surrounding the parameter list. If the subroutine accepts arguments, the names of the
variables passed by the calling procedure can be different from the names of the vari-
ables as known by the subroutine. You can use the ByVal and ByRef keywords in a Call
statement only when you’re making a call to a dynamic link library (DLL) procedure.
Use ByVal for string arguments to indicate that you need to pass a pointer to the string
rather than pass the string directly. Use ByRef for nonstring arguments to pass the
value directly. If you use the ByVal keyword to declare an argument, Visual Basic passes
a copy of the argument to the subroutine. The subroutine cannot change the original
variable in the calling procedure. If you use the ByRef keyword, Visual Basic passes the
actual memory address of the variable, allowing the procedure to change the variable’s
value in the calling procedure. (If the argument passed by the calling procedure is an
expression, Visual Basic treats it as if you had declared it by using ByVal.)

Examples
To call a subroutine named MySub and pass it an integer variable and an expression,
enter the following:

Call MySub (intMyInteger, curPrice * intQty)

An alternative syntax is

MySub intMyInteger, curPrice * intQty

Do…Loop Statement
Use a Do…Loop statement to defi ne a block of statements that you want executed mul-
tiple times. You can also defi ne a condition that terminates the loop when the condition
is false.

Chapter 19

1018 Chapter 19 Understanding Visual Basic Fundamentals
Syntax
Do [{While | Until} <condition>]
 [<procedure statements>]
 [Exit Do]
 [<procedure statements>]
Loop

or

Do
 [<procedure statements>]
 [Exit Do]
 [<procedure statements>]
Loop [{While | Until} <condition>]

Notes
The <condition> is a comparison predicate or expression that Visual Basic can evaluate
to True (nonzero) or False (zero or Null). The While clause is the opposite of the Until
clause. If you specify a While clause, execution continues as long as the <condition>
is true. If you specify an Until clause, execution of the loop stops when <condition>
becomes true. If you place a While or an Until clause in the Do clause, the condition
must be met for the statements in the loop to execute at all. If you place a While or an
Until clause in the Loop clause, Visual Basic executes the statements within the loop
before testing the condition.

You can place one or more Exit Do statements anywhere within the loop to exit the
loop before reaching the Loop statement. Generally you’ll use the Exit Do statement as
part of some other evaluation statement structure, such as an If…Then…Else statement.

Example
To read all the rows in the tblCompanies table until you reach the end of the recordset
(the EOF property is true), enter the following:

Dim dbContacts As DAO.Database
Dim rcdCompanies As DAO.RecordSet
Set dbContacts = CurrentDb
Set rcdCompanies = dbContacts.OpenRecordSet("tblCompanies")
Do Until rcdCompanies.EOF
 <procedure statements>
 rcdClubs.MoveNext
Loop

For…Next Statement
Use a For…Next statement to execute a series of statements a specifi c number of times.

 Controlling the Flow of Statements 1019

Ch
ap

te
r 1

9

Syntax
For counter = fi rst To last [Step stepamount]
 [<procedure statements>]
 [Exit For]
 [<procedure statements>]
Next [counter]

Notes
The counter must be a numeric variable that is not an array or a record element. Visual
Basic initially sets the value of counter to fi rst. If you do not specify a stepamount, the
default stepamount value is +1. If the stepamount value is positive or 0, Visual Basic
executes the loop as long as counter is less than or equal to last. If the stepamount value
is negative, Visual Basic executes the loop as long as counter is greater than or equal
to last. Visual Basic adds stepamount to counter when it encounters the corresponding
Next statement. You can change the value of counter within the For loop, but this might
make your procedure more diffi cult to test and debug. Changing the value of last within
the loop does not affect execution of the loop. You can place one or more Exit For state-
ments anywhere within the loop to exit the loop before reaching the Next statement.
Generally you’ll use the Exit For statement as part of some other evaluation statement
structure, such as an If…Then…Else statement.

You can nest one For loop inside another. When you do, you must choose a different
counter name for each loop.

Example
To list in the Immediate window the names of the fi rst fi ve queries in the Conrad
 Systems Contacts database, enter the following in a function or sub:

Dim dbContacts As DAO.Database
Dim intI As Integer
Set dbContacts = CurrentDb
For intI = 0 To 4
 Debug.Print dbContacts.QueryDefs(intI).Name
Next intI

For Each…Next Statement
Use a For Each…Next statement to execute a series of statements for each item in a col-
lection or an array.

Syntax
For Each item In group
 [<procedure statements>]
 [Exit For]
 [<procedure statements>]
Next [item]

Chapter 19

1020 Chapter 19 Understanding Visual Basic Fundamentals
Notes
The item must be a variable that represents an object in a collection or an element of
an array. The group must be the name of a collection or an array. Visual Basic executes
the loop as long as at least one item remains in the collection or the array. All the state-
ments in the loop are executed for each item in the collection or the array. You can
place one or more Exit For statements anywhere within the loop to exit the loop before
reaching the Next statement. Generally you’ll use the Exit For statement as part of some
other evaluation statement structure, such as an If…Then…Else statement.

You can nest one For Each loop inside another. When you do, you must choose a differ-
ent item name for each loop.

Example
To list in the Immediate window the names of all the queries in the Conrad Systems
Contacts database, enter the following in a function or sub:

Dim dbContacts As DAO.Database
Dim qdf As DAO.QueryDef
Set dbContacts = CurrentDb
For Each qdf In dbContacts.QueryDefs
 Debug.Print qdf.Name
Next qdf

CAUTION!
If you execute code within the For Each loop that modifi es the members of the group,

then you might not process all the members. For example, if you attempt to close all

open forms using the following code, you will skip some open forms because you are

eliminating members from the group (the Forms collection) inside the loop.

Dim frm As Form
For Each frm In Forms
 DoCmd.Close acForm, frm.Name
Next frm

The correct way to close all open forms is as follows:

Dim intI As Integer
For intI = Forms.Count – 1 To 0 Step – 1
 DoCmd.Close acForm, Forms(intI).Name
Next intI

GoTo Statement
Use a GoTo statement to jump unconditionally to another statement in your procedure.

C U O !

 Controlling the Flow of Statements 1021

Ch
ap

te
r 1

9

Syntax
GoTo {label | linenumber}

Notes
You can label a statement line by starting the line with a string of no more than 40
characters that starts with an alphabetic character and ends with a colon (:). A line label
cannot be a Visual Basic or Access reserved word. You can also optionally number the
statement lines in your procedure. Each line number must contain only numbers, must
be different from all other line numbers in the procedure, must be the fi rst nonblank
characters in a line, and must contain 40 characters or less. To jump to a line number or
a labeled line, use the GoTo statement and the appropriate label or linenumber.

Example
To jump to the statement line labeled SkipOver, enter the following:

GoTo SkipOver

If…Then…Else Statement
Use an If…Then…Else statement to conditionally execute statements based on the evalu-
ation of a condition.

Syntax
If <condition1> Then
 [<procedure statements 1>]
[ElseIf <condition2> Then
 [<procedure statements 2>]]...
[Else
 [<procedure statements n>]]
End If

or

If <condition> Then <thenstmt> [Else <elsestmt>]

Notes
Each condition is a numeric or string expression that Visual Basic can evaluate to True
(nonzero) or False (0 or Null). A condition can also consisit of multiple comparison
expressions and Boolean operators. In addition, a condition can also be the special
TypeOf…Is test to evaluate a control variable. The syntax for this test is

TypeOf <Object> Is <ObjectType>

where <Object> is the name of an object variable and <ObjectType> is the name of any
valid object type recognized in Access. A common use of this syntax is to loop through

Chapter 19

1022 Chapter 19 Understanding Visual Basic Fundamentals
all the controls in a form or report Controls collection and take some action if the con-
trol is of a specifi c type (for example, change the FontWeight property of all labels to
bold). Valid control types are Attachment, BoundObjectFrame, CheckBox, ComboBox,
CommandButton, CustomControl, Image, Label, Line, ListBox, ObjectFrame,
 OptionButton, OptionGroup, PageBreak, Rectangle, Subform, TabControl, TextBox, or
ToggleButton.

If the condition is true, Visual Basic executes the statement or statements immediately
following the Then keyword. If the condition is false, Visual Basic evaluates the next
ElseIf condition or executes the statements following the Else keyword, whichever
occurs next.

The alternative syntax does not need an End If statement, but you must enter the entire
If…Then statement on a single line. Both <thenstmt> and <elsestmt> can be either a single
Visual Basic statement or multiple statements separated by colons (:).

Example
To set an integer value depending on whether a string begins with a letter from A
through F, from G through N, or from O through Z, enter the following:

Dim strMyString As String, strFirst As String, _
 intVal As Integer
' Grab the fi rst letter and make it upper case
strFirst = UCase(Left(strMyString, 1))
If strFirst >= "A" And strFirst <= "F" Then
 intVal = 1
ElseIf strFirst >= "G" And strFirst <= "N" Then
 intVal = 2
ElseIf strFirst >= "O" And strFirst <= "Z" Then
 intVal = 3
Else
 intVal = 0
End If

RaiseEvent Statement
Use the RaiseEvent statement to signal a declared event in a class module.

Syntax
RaiseEvent eventname [(<arguments>)]

where <arguments> is

{ <expression> },...

 Controlling the Flow of Statements 1023

Ch
ap

te
r 1

9

Notes
You must always declare an event in the class module that raises the event. You cannot
use RaiseEvent to signal a built-in event (such as Current) of a form or report class mod-
ule. If an event passes no arguments, you must not include an empty pair of parenthe-
ses when you code the RaiseEvent statement. An event can only be received by another
module that has declared an object variable using WithEvents that has been set to the
class module or object containing this class.

See the WeddingList.accdb sample database—described in Chapter 20, “Automating Your
 Application with Visual Basic”—for an example using RaiseEvent to synchronize two forms.

Example
To defi ne an event named Signal that returns a text string and then to signal that event
in a class module, enter the following:

Option Explicit
Public Event Signal(ByVal strMsg As String)

Public Sub RaiseSignal(ByVal strText As String)
 RaiseEvent Signal(strText)
End Sub

Select Case Statement
Use a Select Case statement to execute statements conditionally based on the evalua-
tion of an expression that is compared to a list or range of values.

Syntax
Select Case <test expression>
 [Case <comparison list 1>
 [<procedure statements 1>]]
 ...
 [Case Else
 [<procedure statements n>]]
End Select

where <test expression> is any numeric or string expression; where <comparison list> is

{<comparison element>,...}

where <comparison element> is

{expression | expression To expression |
 Is <comparison operator> expression}

and where <comparison operator> is

{= | <> | < | > | <= | >=}

Chapter 19

1024 Chapter 19 Understanding Visual Basic Fundamentals
Notes
If the <test expression> matches a <comparison element> in a Case clause, Visual Basic
executes the statements that follow that clause. If the <comparison element> is a single
expression, the <test expression> must equal the <comparison element> for the statements
following that clause to execute. If the <comparison element> contains a To keyword, the
fi rst expression must be less than the second expression (either in numeric value if the
expressions are numbers or in collating sequence if the expressions are strings) and the
<test expression> must be between the fi rst expression and the second expression. If the
<comparison element> contains the Is keyword, the evaluation of <comparison operator>
expression must be true.

If more than one Case clause matches the <test expression>, Visual Basic executes only
the set of statements following the fi rst Case clause that matches. You can include a
block of statements following a Case Else clause that Visual Basic executes if none of
the previous Case clauses matches the <test expression>. You can nest another Select
Case statement within the statements following a Case clause.

Example
To assign an integer value to a variable, depending on whether a string begins with a
letter from A through F, from G through N, or from O through Z, enter the following:

Dim strMyString As String, intVal As Integer
Select Case UCase$(Mid$(strMyString, 1, 1))
 Case "A" To "F"
 intVal = 1
 Case "G" To "N"
 intVal = 2
 Case "O" To "Z"
 intVal = 3
 Case Else
 intVal = 0
End Select

Stop Statement
Use a Stop statement to suspend execution of your procedure.

Syntax
Stop

Notes
A Stop statement has the same effect as setting a breakpoint on a statement. You can use
the Visual Basic debugging tools, such as the Step Into and the Step Over buttons and
the Debug window, to evaluate the status of your procedure after Visual Basic halts on a
Stop statement. You should not use the Stop statement in a production application.

 Controlling the Flow of Statements 1025

Ch
ap

te
r 1

9

While…Wend Statement
Use a While…Wend statement to continuously execute a block of statements as long as a
condition is true.

Syntax
While <condition>
 [<procedure statements>]
Wend

Notes
A While…Wend statement is similar to a Do…Loop statement with a While clause,
except that you can use an Exit Do statement to exit from a Do loop. Visual Basic pro-
vides no similar Exit clause for a While loop. The <condition> is an expression that
Visual Basic can evaluate to True (nonzero) or False (0 or Null). Execution continues as
long as the <condition> is true.

Example
To read all the rows in the tblCompanies table until you reach the end of the recordset,
enter the following in a function or sub:

Dim dbContacts As DAO.Database
Dim rcdCompanies As DAO.RecordSet
Set dbContacts = CurrentDb
Set rcdCompanies = dbContacts.OpenRecordSet("tblCompanies")
While Not rcdCompanies.EOF
 <procedure statements>
 rcdCompanies.MoveNext
Wend

With…End Statement
Use a With statement to simplify references to complex objects in code. You can estab-
lish a base object using a With statement and then use a shorthand notation to refer to
objects, collections, properties, or methods on that object until you terminate the With
statement. When you plan to reference an object many times within a block of code,
using With also improves execution speed.

Syntax
With <object reference>
 [<procedure statements>]
End With

Chapter 19

1026 Chapter 19 Understanding Visual Basic Fundamentals
Example
To use shorthand notation on a recordset object to add a new row to a table, enter the
following:

Dim rcd As DAO.Recordset, db As DAO.Database
Set db = CurrentDb
Set rcd = db.OpenRecordset("MyTable", _
 dbOpenDynaset, dbAppendOnly)
With rcd
 ' Start a new record
 .Addnew
 ' Set the fi eld values
 ![FieldOne] = "1"
 ![FieldTwo] = "John"
 ![FieldThree] = "Viescas"
 .Update
 .Close
End With

To write the same code without the With, you would have to say:

Dim rcd As DAO.Recordset, db As DAO.Database
Set db = CurrentDb
Set rcd = db.OpenRecordset("MyTable", _
 dbOpenDynaset, dbAppendOnly)
 ' Start a new record
 rcd.Addnew
 ' Set the fi eld values
 rcd![FieldOne] = "1"
 rcd![FieldTwo] = "John"
 rcd![FieldThree] = "Viescas"
 rcd.Update
 rcd.Close

 Running Macro Actions and Menu Commands
From within Visual Basic, you can execute most of the macro actions that Access pro-
vides and any of the built-in menu commands. Only a few of the macro actions have
direct Visual Basic equivalents. To execute a macro action or menu command, use the
methods of the DoCmd object, described below.

DoCmd Object
Use the methods of the DoCmd object to execute a macro action or menu command
from within a Visual Basic procedure.

Syntax
DoCmd.actionmethod [actionargument],...

 Running Macro Actions and Menu Commands 1027

Ch
ap

te
r 1

9

Notes
Some of the macro actions you’ll commonly execute from Visual Basic include Apply-
Filter, Close, FindNext and FindRecord (for searching the recordset of the current form
and immediately displaying the result), Hourglass, Maximize, Minimize, MoveSize,
OpenForm, OpenQuery (to run a query that you don’t need to modify), OpenReport,
and RunCommand. Although you can run the Echo, GoToControl, GoToPage, Repaint-
Object, and Requery actions from Visual Basic using a method of the DoCmd object, it’s
more effi cient to use the Echo, SetFocus, GoToPage, Repaint, and Requery methods of
the object to which the method applies.

Examples
To open a form named frmCompanies in Form view for data entry, enter the following:

DoCmd.OpenForm "frmCompanies", acNormal, , , acAdd

To close a form named frmContacts, enter the following:

DoCmd.Close acForm, "frmContacts"

Executing an Access Command
To execute an Access command (one of the commands you can fi nd on the Ribbon),
use the RunCommand method of either the DoCmd or Application object and supply a
single action argument that is the numeric code for the command.

Syntax
[DoCmd.]RunCommand [actionargument],...

Notes
You can also use one of many built-in constants for actionargument to reference the com-
mand you want. When you use RunCommand, you can optionally leave out the DoCmd
or Application object.

Examples
To execute the Save command in the Records group on the Home tab, enter the
 following:

RunCommand acCmdSaveRecord

To switch an open form to PivotChart view (execute the PivotChart View command in
the Views group on the Home tab), enter the following:

RunCommand acCmdPivotChartView

Chapter 19

1028 Chapter 19 Understanding Visual Basic Fundamentals
To open the Find window while the focus is on a form (execute the Find command in
the Find group on the Home tab), enter the following:

RunCommand acCmdFind

Note
Visual Basic provides built-in constants for many of the macro action and RunCommand

parameters. For more information, search on “Microsoft Access Constants” and “Run-

Command Method” in Help.

Actions with Visual Basic Equivalents
A few macro actions cannot be executed from a Visual Basic procedure. All but one
of these actions, however, have equivalent statements in Visual Basic, as shown in
Table 19-4.

Table 19-4 Visual Basic Equivalents for Macro Actions

Macro Action Visual Basic Equivalent

AddMenu No equivalent

MsgBox MsgBox statement or function

RemoveAllTempVars TempVars.RemoveAll

RemoveTempVar TempVars.Remove variablename

RunApp1 Shell function

RunCode Call subroutine

SendKeys SendKeys statement

SetTempVar TempVars!variablename = value

SetValue Variable assignment (=)

StopAllMacros Stop or End statement

StopMacro Exit Sub or Exit Function statement

1 Database must be trusted to execute this action.

 Trapping Errors
One of the most powerful features of Visual Basic is its ability to trap all errors, analyze
them, and take corrective action. In a well-designed production application, the user
should never see any of the default error messages or encounter a code halt when an
error occurs. Also, setting an error trap is often the best way to test certain conditions.
For example, to fi nd out if a query exists, your code can set an error trap and then
attempt to reference the query object. In an application with hundreds of queries, using

Note
Visual Basic provides built-in constants for many of the macro action and RunCommand

parameters. For more information, search on “Microsoft Access Constants” and “Run-

Command Method” in Help.

 Trapping Errors 1029

Ch
ap

te
r 1

9

an error trap can also be faster than looping through all QueryDef objects. To enable
error trapping, you use an On Error statement.

On Error Statement
Use an On Error statement to enable error trapping, establish the procedure to handle
error trapping (the error handler), skip past any errors, or turn off error trapping.

Syntax
On Error {GoTo lineID | Resume Next | GoTo 0}

Notes
Use a GoTo lineID clause to establish a code block in your procedure that handles any
error. The lineID can be a line number or a label.

Use a Resume Next clause to trap errors but skip over any statement that causes an
error. You can call the Err function in a statement immediately following the statement
that you suspect might have caused an error to see whether an error occurred. Err
returns 0 if no error has occurred.

Use a GoTo 0 statement to turn off error trapping for the current procedure. If an error
occurs, Visual Basic passes the error to the error routine in the calling procedure or
opens an error dialog box if there is no previous error routine.

In your error handling statements, you can examine the built-in Err variable (the error
number associated with the error) to determine the exact nature of the error. You can
use the Error function to examine the text of the error message associated with the
error. If you use line numbers with your statements, you can use the built-in Erl func-
tion to determine the line number of the statement that caused the error. After taking
corrective action, use a Resume statement to retry execution of the statement that
caused the error. Use a Resume Next statement to continue execution at the statement
immediately following the statement that caused the error. Use a Resume statement
with a statement label to restart execution at the indicated label name or number. You
can also use an Exit Function or Exit Sub statement to reset the error condition and
return to the calling procedure.

Examples
To trap errors but continue execution with the next statement, enter the following:

On Error Resume Next

To trap errors and execute the statements that follow the MyError: label when an error
occurs, enter the following:

On Error GoTo MyError

To turn off error trapping in the current procedure, enter the following:

On Error GoTo 0

Chapter 19

1030 Chapter 19 Understanding Visual Basic Fundamentals
If you create and run the following function with zero as the second argument, such as
MyErrExample(3,0), the function will trigger an error by attempting to divide by zero,
trap the error, display the error in an error handling section, and then exit gracefully.

Public Function MyErrExample(intA As Integer, intB As Integer) As Integer
' Set an error trap
On Error GoTo Trap_Error
 ' The following causes an error if intB is zero
 MyErrExample = intA / intB
ExitNice:
 Exit Function
Trap_Error:
 MsgBox "Something bad happened: " & Err & ", " & Error
 Resume ExitNice
End Function

Some Complex Visual Basic Examples
A good way to learn Visual Basic techniques is to study complex code that has been
developed and tested by someone else. In the Conrad Systems Contacts and Housing
Reservations sample databases, you can fi nd dozens of examples of complex Visual
Basic code that perform various tasks. The following sections describe two of the more
interesting ones in detail.

A Procedure to Randomly Load Data
You’ve probably noticed a lot of sample data in both the Conrad Systems Contacts and
the Housing Reservations databases. No, we didn’t sit at our keyboards for hours enter-
ing sample data! Instead, we built a Visual Basic procedure that accepts some param-
eters entered on a form. In both databases, the form to load sample data is saved as
zfrmLoadData. If you open this form in Contacts.accdb from the Navigation Pane, you’ll
see that you use it to enter a beginning date, a number of days (max 365), a number of
companies to load (max 25), a maximum number of contacts per company (max 10),
and a maximum number of events per contact (max 25). You can also select the check
box to delete all existing data before randomly loading new data. (The zfrmLoadData
form in the Housing Reservations database offers some slightly different options.) Fig-
ure 19-15 shows this form with the values we used to load the Conrad Systems Contacts
database.

 Some Complex Visual Basic Examples 1031

Ch
ap

te
r 1

9

Figure 19-15 The zfrmLoadData form in the Conrad Systems Contacts sample database makes it
easy to load sample data.

As you might expect, when you click the Load button, our procedure examines the val-
ues entered and loads some sample data into tblCompanies, tblContacts, tblCompany-
Contacts, tblContactEvents and tblContactProducts. The code picks random company
names from ztblCompanies (a table containing a list of fi ctitious company names) and
random person names from ztblPeople (a table containing names of Microsoft employ-
ees who have agreed to allow their names to be used in sample data). It also chooses
random ZIP Codes (and cities, counties, and states) from tlkpZips (a table containing
U.S. postal ZIP Code, city name, state name, county name, and telephone area codes as
of December 2002 that we licensed from CD Light, LLC—www.zipinfo.com). Figure 19-16
shows you the design of the query used in the code to pick random person names.

Figure 19-16 This query returns person names in a random sequence.

The query creates a numeric value to pass to the Rnd (random) function by grabbing
the fi rst character of the LastName fi eld and then calculating the ASCII code value. The
Rnd function returns some fl oating-point random value less than 1 but greater than or
equal to zero. Asking the query to sort on this random number results in a random list
of values each time you run the query.

Chapter 19

1032 Chapter 19 Understanding Visual Basic Fundamentals
Note
If you open zqryRandomNames in Datasheet view, the RandNum column won’t appear

to be sorted correctly. In fact, the values change as you scroll through the data or resize

the datasheet window. The database engine actually calls the Rnd function on a fi rst

pass through the data to perform the sort. Because the function depends on a value of

one of the columns (LastName), Access assumes that other users might be changing this

column— and therefore, the calculated result—as you view the data. Access calls the Rnd

function again each time it refreshes the data display, so the actual values you see aren’t

the ones that the query originally used to sort the data.

If you want to run this code, you should either pick a date starting after July 9, 2007, or
select the option to delete all existing records fi rst.

You can fi nd the code in the cmdLoad_Click event procedure that runs when you click
the Load button on the zfrmLoadData form. We’ve added line numbers to some of the
lines in this code listing in the book so that you can follow along with the line-by-line
explanations in Table 19-5, which follows the listing. Because the code loads data into
both a multi-value fi eld and an attachment fi eld in the tblContacts table, it uses the
DAO object model exclusively. (You cannot manipulate multi-value or attachment fi elds
using the ADO object model.)

 1 Private Sub cmdLoad_Click()
 2 ' Code to load a random set of companies,
 ' contacts, events, and products
 ' Database variable
 3 Dim db As DAO.Database
 ' Table delete list (if starting over)
 Dim rstDel As DAO.Recordset
 ' Company recordset; Contact recordset (insert only)
 Dim rstCo As DAO.Recordset, rstCn As DAO.Recordset
 ' Photo (attachment) and ContactType (multi-value) recordset
 Dim rstComplex As DAO.Recordset2
 ' CompanyContact recordset, ContactEvent recordset (insert only)
 Dim rstCoCn As DAO.Recordset, rstCnEv As DAO.Recordset
 ' A random selection of zips
 Dim rstZipRandom As DAO.Recordset
 ' ..and company names
 Dim rstCoRandom As DAO.Recordset
 ' .. and people names
 Dim rstPRandom As DAO.Recordset
 ' A recordset to pick "close" zip codes for contacts
 Dim rstZipClose As DAO.Recordset
 ' A recordset to pick contact events
 Dim rstEvents As DAO.Recordset
 ' Place to generate Picture Path
 4 Dim strPicPath As String
 ' Places for path to backend database and folder
 Dim strBackEndPath As String, strBackEndFolder As String

Note
If you open zqryRandomNames in Datasheet view, the RandNum column won’t appear

to be sorted correctly. In fact, the values change as you scroll through the data or resize

the datasheet window. The database engine actually calls the Rnd function on a fi rst

pass through the data to perform the sort. Because the function depends on a value of

one of the columns (LastName), Access assumes that other users might be changing this

column— and therefore, the calculated result—as you view the data. Access calls the Rnd

function again each time it refreshes the data display, so the actual values you see aren’t

the ones that the query originally used to sort the data.

 Some Complex Visual Basic Examples 1033

Ch
ap

te
r 1

9

 ' Place to generate a safe "compact to" name
 Dim strNewDb As String
 ' Places to save values from the form controls
 Dim datBeginDate As Date, intNumDays As Integer
 Dim intNumCompanies As Integer, intNumContacts As Integer
 Dim intNumEvents As Integer
 ' Lists of street names and types
 5 Dim strStreetNames(1 To 9) As String, strStreetTypes(1 To 5) As String
 ' As string of digits for street addresses and area codes
 Const strDigits As String = "1234567890"
 ' List of Person Titles by gender
 Dim strMTitles(1 To 6) As String, strFTitles(1 To 7) As String
 ' Place to put male and female picture fi le names
 Dim strMPicture() As String, intMPicCount As Integer
 Dim strFPicture() As String, intFPicCount As Integer
 ' Some working variables
 Dim intI As Integer, intJ As Integer, intK As Integer
 Dim intL As Integer, intM As Integer, intR As Integer
 Dim varRtn As Variant, intDefault As Integer
 Dim datCurrentDate As Date, datCurrentTime As Date
 ' Variables to assemble Company and Contact records
 Dim strCompanyName As String, strCoAddress As String
 Dim strAreaCode As String, strPAddress As String
 Dim strThisPhone As String, strThisFax As String
 Dim strWebsite As String
 Dim lngThisCompany As Long
 Dim lngThisContact As Long, strProducts As String
 ' Set up to bail if something funny happens (it shouldn't)
 6 On Error GoTo BailOut
 ' Initialize Streets
 7 strStreetNames(1) = "Main"
 strStreetNames(2) = "Central"
 strStreetNames(3) = "Willow"
 strStreetNames(4) = "Church"
 strStreetNames(5) = "Lincoln"
 strStreetNames(6) = "1st"
 strStreetNames(7) = "2nd"
 strStreetNames(8) = "3rd"
 strStreetNames(9) = "4th"
 strStreetTypes(1) = "Street"
 strStreetTypes(2) = "Avenue"
 strStreetTypes(3) = "Drive"
 strStreetTypes(4) = "Parkway"
 strStreetTypes(5) = "Boulevard"
 ' Initialize person titles
 strMTitles(1) = "Mr."
 strMTitles(2) = "Dr."
 strMTitles(3) = "Mr."
 strMTitles(4) = "Mr."
 strMTitles(5) = "Mr."
 strMTitles(6) = "Mr."

Chapter 19

1034 Chapter 19 Understanding Visual Basic Fundamentals
 strFTitles(1) = "Mrs."
 strFTitles(2) = "Dr."
 strFTitles(3) = "Ms."
 strFTitles(4) = "Mrs."
 strFTitles(5) = "Ms."
 strFTitles(6) = "Mrs."
 strFTitles(7) = "Ms."
 ' Search for male picture names (should be in Current Path\Pictures)
 8 strPicPath = Dir(CurrentProject.Path & "\Pictures\PersonM*.bmp")
 ' Loop until Dir returns nothing (end of list or not found)
 9 Do Until (strPicPath = "")
 ' Add 1 to the count
 intMPicCount = intMPicCount + 1
 ' Extend the fi le name array
 10 ReDim Preserve strMPicture(1 To intMPicCount)
 ' Add the fi le name to the array
 strMPicture(intMPicCount) = strPicPath
 ' Get next one
 strPicPath = Dir
 11 Loop
 ' Search for female picture names (should be in Current Path\Pictures)
 strPicPath = Dir(CurrentProject.Path & "\Pictures\PersonF*.bmp")
 ' Loop until Dir returns nothing (end of list or not found)
 12 Do Until (strPicPath = "")
 ' Add 1 to the count
 intFPicCount = intFPicCount + 1
 ' Extend the fi le name array
 ReDim Preserve strFPicture(1 To intFPicCount)
 ' Add the fi le name to the array
 strFPicture(intFPicCount) = strPicPath
 ' Get next one
 strPicPath = Dir
 13 Loop
 ' Capture values from the form
 14 datBeginDate = CDate(Me.BeginDate)
 intNumDays = Me.NumDays
 intNumCompanies = Me.NumCompanies
 intNumContacts = Me.NumContacts
 intNumEvents = Me.NumEvents
 ' Open the current database
 15 Set db = CurrentDb
 ' Do they want to delete old rows?
 16 If (Me.chkDelete = -1) Then
 ' Verify it
 17 If vbYes = MsgBox("Are you SURE you want to delete " & _
 "all existing rows? " & vbCrLf & vbCrLf & _
 "(This will also compact the data fi le.)", _
 vbQuestion + vbYesNo + vbDefaultButton2, gstrAppTitle) Then
 ' Open the table that tells us the safe delete sequence
 18 Set rstDel = db.OpenRecordset("SELECT * FROM " & _
 "ztblDeleteSeq ORDER BY Sequence", _
 dbOpenSnapshot, dbForwardOnly)
 ' Loop through them all

 Some Complex Visual Basic Examples 1035

Ch
ap

te
r 1

9

 19 Do Until rstDel.EOF
 ' Execute a delete
 20 db.Execute "DELETE * FROM " & rstDel!TableName, _
 dbFailOnError
 ' Go to the next row
 rstDel.MoveNext
 Loop
 ' Figure out the path to the backend data
 21 strBackEndPath = Mid(db.TableDefs("tblContacts").Connect, 11)
 ' Figure out the backend folder
 22 strBackEndFolder = Left(strBackEndPath, _
 InStrRev(strBackEndPath, "\"))
 ' Calculate a "compact to" database name
 strNewDb = "TempContact" & Format(Now, "hhnnss") & ".accdb"
 ' Compact the database into a new name
 23 DBEngine.CompactDatabase strBackEndPath, _
 strBackEndFolder & strNewDb
 ' Delete the old one
 24 Kill strBackEndPath
 ' Rename the new
 Name strBackEndFolder & strNewDb As strBackEndPath
 Else
 ' Turn off the delete fl ag – changed mind
 Me.chkDelete = 0
 25 End If
 26 End If
 ' Initialize the randomizer on system clock
 27 Randomize
 ' Open all output recordsets
 28 Set rstCo = db.OpenRecordset("tblCompanies", dbOpenDynaset)
 Set rstCn = db.OpenRecordset("tblContacts", dbOpenDynaset)
 Set rstCoCn = db.OpenRecordset("tblCompanyContacts", dbOpenDynaset)
 Set rstCnEv = db.OpenRecordset("tblContactEvents", dbOpenDynaset)
 ' Open the random recordsets
 Set rstZipRandom = db.OpenRecordset("zqryRandomZips", dbOpenDynaset)
 Set rstCoRandom = db.OpenRecordset("zqryRandomCompanies", dbOpenDynaset)
 Set rstPRandom = db.OpenRecordset("zqryRandomNames", dbOpenDynaset)
 ' Open the Events/products list
 Set rstEvents = db.OpenRecordset("zqryEventsProducts", dbOpenDynaset)
 ' Move to the end to get full recordcount
 rstEvents.MoveLast
 ' Turn on the hourglass
 29 DoCmd.Hourglass True
 ' Initialize the status bar
 30 varRtn = SysCmd(acSysCmdInitMeter, "Creating Companies...", _
 intNumCompanies)
 ' Outer loop to add Companies
 31 For intI = 1 To intNumCompanies
 ' Start a new company record
 rstCo.AddNew
 ' Clear the saved website
 strWebsite = ""

Chapter 19

1036 Chapter 19 Understanding Visual Basic Fundamentals
 ' Grab the next random "company" name
 32 strCompanyName = rstCoRandom!CompanyName
 ' .. and the website
 33 rstCo!Website = rstCoRandom!CompanyName & "#" & _
 rstCoRandom!Web & "##" & rstCoRandom!CompanyName & " Website"
 strWebsite = rstCo!Website
 34 rstCo!CompanyName = strCompanyName
 ' Generate a random street number
 35 intR = Int((7 * Rnd) + 1)
 strCoAddress = Mid(strDigits, intR, 4)
 ' Now pick a random street name
 intR = Int((9 * Rnd) + 1)
 strCoAddress = strCoAddress & " " & strStreetNames(intR)
 ' and street type
 intR = Int((5 * Rnd) + 1)
 strCoAddress = strCoAddress & " " & strStreetTypes(intR)
 rstCo!Address = strCoAddress
 ' Fill in random values from the zip code table
 36 rstCo!City = rstZipRandom!City
 rstCo!County = rstZipRandom!County
 rstCo!StateOrProvince = rstZipRandom!State
 rstCo!PostalCode = rstZipRandom!ZipCode
 ' Generate a random Area Code
 37 intR = Int((8 * Rnd) + 1)
 strAreaCode = Mid(strDigits, intR, 3)
 ' Generate a random phone number (0100 - 0148)
 intR = Int((48 * Rnd) + 1) + 100
 strThisPhone = strAreaCode & "555" & Format(intR, "0000")
 rstCo!PhoneNumber = strThisPhone
 ' Add 1 for the fax number
 strThisFax = strAreaCode & "555" & Format(intR + 1, "0000")
 rstCo!FaxNumber = strThisFax
 ' Save the new Company ID
 38 lngThisCompany = rstCo!CompanyID
 ' .. and save the new Company
 rstCo.Update
 ' Now, do some contacts for this company
 ' - calc a random number of contacts
 39 intJ = Int((intNumContacts * Rnd) + 1)
 ' Set up the recordset of Zips "close" to the Work Zip
 40 Set rstZipClose = db.OpenRecordset("SELECT * FROM tlkpZips " & _
 "WHERE ZipCode BETWEEN '" & _
 Format(CLng(rstZipRandom!ZipCode) - 5, "00000") & _
 "' AND '" & Format(CLng(rstZipRandom!ZipCode) + 5, "00000") & _
 "'", dbOpenDyanaset)
 ' Move to last row to get accurate count
 rstZipClose.MoveLast
 ' Make the fi rst contact the company default
 intDefault = True
 ' Loop to add contacts
 41 For intK = 1 To intJ
 ' Start a new record

 Some Complex Visual Basic Examples 1037

Ch
ap

te
r 1

9

 rstCn.AddNew
 ' Put in the name info from the random people record
 42 rstCn!LastName = rstPRandom!LastName
 rstCn!FirstName = rstPRandom!FirstName
 rstCn!MiddleInit = rstPRandom!MiddleInit
 rstCn!Suffi x = rstPRandom!Suffi x
 ' Select title and picture based on gender of person
 43 If rstPRandom!Sex = "f" Then
 ' Pick a random female title and picture
 intR = Int((7 * Rnd) + 1)
 rstCn!Title = strFTitles(intR)
 ' Make sure we have some picture fi le names
 If intFPicCount <> 0 Then
 ' Pick a random fi le name
 intR = Int((intFPicCount * Rnd) + 1)
 strPicPath = strFPicture(intR)
 Else
 ' Set empty picture name
 strPicPath = ""
 End If
 44 Else
 ' Pick a random male title and picture
 intR = Int((6 * Rnd) + 1)
 rstCn!Title = strMTitles(intR)
 ' Make sure we have some picture fi le names
 If intMPicCount <> 0 Then
 ' Pick a random fi le name
 intR = Int((intMPicCount * Rnd) + 1)
 strPicPath = strMPicture(intR)
 Else
 ' Set empty picture name
 strPicPath = ""
 End If
 45 End If
 ' Set contact type to "Customer" – complex data type
 46 Set rstComplex = rstCn!ContactType.Value
 rstComplex.AddNew
 rstComplex!Value = "Customer"
 rstComplex.Update
 47 ' Copy the company website
 rstCn!Website = strWebsite
 ' Set up a dummy email
 rstCn!EmailName = rstPRandom!FirstName & " " & _
 rstPRandom!LastName & mailto: & Left(rstPRandom!FirstName, 1) & _
 rstPRandom!LastName & "@" _
 Mid(rstCoRandom!Web, Instr(rstCoRandom!Web, http://www.) + 11)
 ' Strip off the trailing "/"
 rstCn!EmailName = Left(rstCn!EmailName, Len(rstCn!EmailName) – 1)
 ' Pick a random birth date between Jan 1, 1940 and Dec 31, 1979
 ' There are 14,610 days between these dates
 intR = Int((14610 * Rnd) + 1)
 rstCn!BirthDate = #12/31/1939# + Int((14610 * Rnd) + 1)

Chapter 19

1038 Chapter 19 Understanding Visual Basic Fundamentals
 ' Set Default Address to 'work'
 rstCn!DefaultAddress = 1
 ' Copy work address from Company
 rstCn!WorkAddress = strCoAddress
 rstCn!WorkCity = rstZipRandom!City
 rstCn!WorkStateOrProvince = rstZipRandom!State
 rstCn!WorkPostalCode = rstZipRandom!ZipCode
 rstCn!WorkPhone = strThisPhone
 rstCn!WorkFaxNumber = strThisFax
 ' Generate a random street number for home address
 intR = Int((7 * Rnd) + 1)
 strPAddress = Mid(strDigits, intR, 4)
 ' Now pick a random street name
 intR = Int((9 * Rnd) + 1)
 strPAddress = strPAddress & " " & strStreetNames(intR)
 ' and street type
 intR = Int((5 * Rnd) + 1)
 strPAddress = strPAddress & " " & strStreetTypes(intR)
 rstCn!HomeAddress = strPAddress
 ' Position to a "close" random zip
 48 intR = rstZipClose.RecordCount
 intR = Int(intR * Rnd)
 rstZipClose.MoveFirst
 If intR > 0 Then rstZipClose.Move intR
 rstCn!HomeCity = rstZipClose!City
 rstCn!HomeStateOrProvince = rstZipClose!State
 rstCn!HomePostalCode = rstZipClose!ZipCode
 ' Generate a random phone number (0150 - 0198)
 intR = Int((48 * Rnd) + 1) + 149
 rstCn!HomePhone = strAreaCode & "555" & Format(intR, "0000")
 ' Add 1 for the fax number
 rstCn!MobilePhone = strAreaCode & "555" & Format(intR + 1, "0000")
 ' Save the new contact ID
 49 lngThisContact = rstCn!ContactID
 ' If got a random photo name, load it
 50 If strPicPath <> "" Then
 ' Open the special photo editing recordset
 51 Set rstComplex = rstCn!Photo.Value
 rstComplex.Addnew
 rstComplex!FileData.LoadFromFile _
 (CurrentProject.Path & "\Pictures\" & strPicPath)
 rstComplex.Update
 End If
 ' Finally, save the row
 rstCn.Update
 ' Insert linking CompanyContact record
 52 rstCoCn.AddNew
 ' Set the Company ID
 rstCoCn!CompanyID = lngThisCompany
 ' Set the Contact ID
 rstCoCn!ContactID = lngThisContact
 ' Make this the default company for the contact

 Some Complex Visual Basic Examples 1039

Ch
ap

te
r 1

9

 rstCoCn!DefaultForContact = True
 ' Set default for company - 1st contact will be the default
 rstCoCn!DefaultForCompany = intDefault
 ' Reset intDefault after fi rst time through
 intDefault = False
 ' Save the linking row
 rstCoCn.Update
 ' Now, do some contacts events for this contact
 ' - calc a random number of events
 53 intM = Int((intNumEvents * Rnd) + 1)
 ' Clear the Products sold string
 strProducts = ""
 ' Loop to add some events
 54 For intL = 1 To intM
 ' Start a new row
 rstCnEv.AddNew
 ' Set the Contact ID
 rstCnEv!ContactID = lngThisContact
 ' Calculate a random number of days
 intR = Int(intNumDays * Rnd)
 datCurrentDate = datBeginDate + intR
 ' Calculate a random time between 8am and 8pm (no seconds)
 datCurrentTime = CDate(Format(((0.5 * Rnd) + 0.3333), "hh:nn"))
 ' Set the contact date/time
 rstCnEv!ContactDateTime = datCurrentDate + datCurrentTime
 55 TryAgain:
 ' Position to a random event
 56 intR = rstEvents.RecordCount
 intR = Int(intR * Rnd)
 rstEvents.MoveFirst
 If intR > 0 Then rstEvents.Move intR
 ' If a product sale event,
 57 If (rstEvents!ContactEventProductSold = True) Then
 ' Can't sell the same product twice to the same contact
 If InStr(strProducts, _
 Format(rstEvents!ContactEventProductID, "00")) <> 0 Then
 ' ooops. Loop back to pick a different event
 58 GoTo TryAgain
 End If
 End If
 ' Set the Event Type
 59 rstCnEv!ContactEventTypeID = rstEvents!ContactEventTypeID
 ' Set the follow-up
 rstCnEv!ContactFollowUp = rstEvents!ContactEventRequiresFollowUp
 ' Set the follow-up date
 If (rstEvents!ContactEventRequiresFollowUp = True) Then
 rstCnEv!ContactFollowUpDate = datCurrentDate + _
 rstEvents!ContactEventFollowUpDays
 End If
 ' Save the record
 60 rstCnEv.Update
 ' If this event is a product sale,

Chapter 19

1040 Chapter 19 Understanding Visual Basic Fundamentals
 61 If (rstEvents!ContactEventProductSold = True) Then
 ' Call the routine to also add a product record!
 varRtn = Add_Product(lngThisCompany, lngThisContact, _
 rstEvents!ContactEventProductID, datCurrentDate)
 ' Add the product to the products sold string
 strProducts = strProducts & " " & _
 Format(rstEvents!ContactEventProductID, "00")
 End If
 ' Loop to do more events
 62 Next intL
 ' Move to the next random person record
 63 rstPRandom.MoveNext
 ' and loop to do more contacts
 64 Next intK
 65 rstZipClose.Close
 Set rstZipClose = Nothing
 ' Move to the next random zip record
 66 rstZipRandom.MoveNext
 ' Update the status bar
 67 varRtn = SysCmd(acSysCmdUpdateMeter, intI)
 ' Loop until done
 68 Next intI
 ' Clear the status bar
 69 varRtn = SysCmd(acSysCmdClearStatus)
 ' Done with error trapping, too
 On Error GoTo 0
 ' Be nice and close everything up
 rstCo.Close
 Set rstCo = Nothing
 rstCn.Close
 Set rstCn = Nothing
 rstCoCn.Close
 Set rstCoCn = Nothing
 rstCnEv.Close
 Set rstCnEv = Nothing
 rstZipRandom.Close
 Set rstZipRandom = Nothing
 rstCoRandom.Close
 Set rstCoRandom = Nothing
 ' Turn off the hourglass
 70 DoCmd.Hourglass False
 MsgBox "Done!", vbExclamation, gstrAppTitle
 DoCmd.Close acForm, Me.Name
 Exit Sub
 71 BailOut:
 MsgBox "Unexpected error: " & Err & ", " & Error
 ' Turn off the hourglass
 DoCmd.Hourglass False
 varRtn = SysCmd(acSysCmdClearStatus)
 Resume Done
 72 End Sub

 Some Complex Visual Basic Examples 1041

Ch
ap

te
r 1

9

Table 19-5 lists the statement line numbers and explains the code on key lines in the
preceding Visual Basic code example.

Table 19-5 Explanation of Code in Example to Load Random Data

Line Explanation

1 Declare the beginning of the subroutine. The subroutine has no arguments.

2 You can begin a comment anywhere on a statement line by preceding the
comment with a single quotation mark. You can also create a comment
statement using the Rem statement.

3 Declare local variables for a DAO Database object and all the DAO Recordset
objects used in this code.

4 Beginning of the declarations of all local variables. You should always explicitly
defi ne variables in your code.

5 This procedure uses several arrays in which it stores street names, street types,
male person titles, female person titles, and the paths to male and female
pictures. Code later in the procedure randomly chooses values from these
arrays.

6 Set an error trap; the BailOut label is at line 71.

7 Code to initialize the arrays begins here. Note that separate arrays handle male
and female titles.

8 Use the Dir function to fi nd available male picture names in the Pictures
subfolder under the location of the current database. Note that if you move
the sample database, this code won’t fi nd any pictures to load. When Dir fi nds
a matching fi le, it returns the fi le name as a string. The code subsequently calls
Dir with no arguments inside the following loop to ask for the next picture.

9 Begin a loop to load male pictures, and keep looping until the picture fi le name
is an empty string (Dir found no more fi les).

10 Note the use of ReDim Preserve to dynamically expand the existing fi le name
array for male pictures without losing any entries already stored.

11 End of the loop started at statement number 9.

12 This loop fi nds all the female pictures available and loads them into the array
that holds picture fi le names for females.

13 End of the loop started at statement number 12.

14 The next several lines of code capture the values from the form. Validation rules
in the form controls make sure that the data is valid.

15 Initialize the Database object.

16 Check to see if you selected the option to delete all existing rows.

17 Use the MsgBox function to verify that you really want to delete existing data.

18 The ztblDeleteSeq table contains the table names in a correct sequence for
deletes from the bottom up so that this code doesn’t violate any referential
integrity rules. Note that the recordset is opened as a forward-only snapshot for
effi ciency.

Chapter 19

1042 Chapter 19 Understanding Visual Basic Fundamentals
Line Explanation

19 Start a loop to process all the table names in ztblDeleteSeq.

20 Use the Execute method of the Database object to run the DELETE SQL
commands.

21 Figure out the path to the linked data fi le by examining the Connect property
of one of the linked tables.

22 Extract the folder name of the data fi le using the Left and InStrRev functions.

23 Use the CompactDatabase method of the DBEngine object to compact the data
fi le into a new one—TempContacthhmmss.accdb—where hhmmss is the current
time to avoid confl icts.

24 Use the Kill command to delete the old fi le and the Name command to rename
the compacted temp copy.

25 Terminate the If statement on line 17.

26 Terminate the If statement on line 16.

27 Initialize the randomizer so that all random recordsets are always different.

28 Open all the recordsets needed in this code.

29 Turn the mouse pointer into an hourglass to let you know the transaction is
under way and might take a while. You could also set the Screen.MousePointer
property to 11 (busy).

30 The SysCmd utility function provides various useful options such as fi nding
out the current directory for msaccess.exe (the Access main program), and the
current version of Access. It also has options to display messages and a progress
meter on the status bar. This code calls SysCmd to initialize the progress meter
you see as the code loads the data.

31 Start the main loop to load company data.

32 Save the company name from the random recordset in a local variable.

33 Generate the Web site hyperlink from the company name and the Web fi eld.

34 Set the company name in the new company record.

35 The next several lines of code use the Rnd function to randomly generate a
four-digit street address and randomly choose a street name and street type
from the arrays loaded earlier.

36 Grab the city, county, state, and ZIP Code from the current row in the random
ZIP Code query.

37 Use Rnd again to generate a fake phone area code and phone and fax numbers.

38 The primary key of tblCompanies is an AutoNumber fi eld. Access automatically
generates the next number as soon as you update any fi eld in a new record.
This code saves the new company ID to use in related records and writes the
company record with the Update method.

39 Calculate a random number of contacts to load for the new company based on
the maximum you specifi ed in the form.

 Some Complex Visual Basic Examples 1043

Ch
ap

te
r 1

9

Line Explanation

40 Open a recordset that chooses the ZIP Codes that are 5 higher or lower than
the random ZIP Code for the company. (It makes sense that the employees of
the company live nearby.)

41 Start the loop to add contacts for this company.

42 Update the new contacts record with a random name plucked from the random
person names query.

43 The records in the ztblPeople table have a gender fi eld to help choose an
appropriate title and picture for the contact. The statements following this If
statement load female data, and the statements following the Else statement on
line 44 load male data.

44 This Else statement matches the If on line 43. Statements following this choose
male data.

45 This End If closes the If on line 43.

46 The ContactType fi eld is a multi-value fi eld, so must open a recordset on the
fi eld’s Value property even though we’re specifying only one value.

47 Finish generating fi elds for the contacts record, including the Web site copied
from the company, a fake e-mail name, and a random birth date and addresses.

48 Choose a random ZIP Code for the contact near the company ZIP Code from
the recordset opened on line 40. Also generate phone and fax numbers.

49 The primary key for tblContacts is also an AutoNumber fi eld, so save the new
value to use to generate related records and save the new contact.

50 If the code found a good picture fi le name earlier (male or female), then the
following code adds that picture to the record.

51 Photo is an attachment fi eld that works similarly to multi-value fi elds in code.
The code opens a recordset and uses the LoadFromFile method to insert the
picture using its fi le path.

52 Create the linking record in tblCompanyContacts from the saved CompanyID
and ContactID. The fi rst contact created is always the default contact for the
company.

53 Calculate a random number of events to load for this contact.

54 Start the loop to add contact events. The following several lines calculate a
random contact date and time within the range you specifi ed on the form.

55 Code at line 58 goes here if the random product picked was already sold to this
contact.

56 Choose a random event.

57 If the random event is a product sale, verify that this product isn’t already sold
to this contact. A product can be sold to a contact only once.

58 The code loops back up to line 55 to choose another event if this is a duplicate
product.

59 Finish updating the fi elds in the new contact event record.

Chapter 19

1044 Chapter 19 Understanding Visual Basic Fundamentals
Line Explanation

60 Save the new contact event.

61 If the event was a product sale, call the Add_Product function that’s also in
this form module to add a row to tblContactProducts. This code passes the
company ID, contact ID, product ID, and the date of the event to the function. It
also saves the product ID to be sure it isn’t sold again to this contact.

62 This Next statement closes the loop started on line 54.

63 Move to the next random person record.

64 Loop back up to line 41.

65 Close the recordset of ZIP Codes close to the company ZIP Code.

66 Get the next random ZIP Code for the next company.

67 Update the status bar to indicate your’re done with another company.

68 Loop back up to line 31.

69 Clear the status bar and close up shop.

70 Clear the hourglass set on line 29. Also issue the fi nal MsgBox confi rming that
all data is now loaded. Finally, close this form and exit.

71 Any trapped error comes here. This code simply displays the error, clears the
mouse pointer and the status bar, and exits. If you don’t reset the mouse pointer
and clear the status bar, Access won’t do it for you!

72 End of the subroutine.

A Procedure to Examine All Error Codes
In the Housing Reservations database (Housing.accdb), we created a function that
dynamically creates a new table and then inserts into the table (using DAO) a complete
list of all the error codes used by Access and the text of the error message associated
with each error code. You can fi nd a partial list of the error codes in Help, but the table
in the Housing Reservations sample database provides the best way to see a list of all
the error codes. You might fi nd this table useful as you begin to create your own Visual
Basic procedures and set error trapping in them.

Note
You can fi nd the ADO equivalent of this example in the modExamples module in the

Conrad Systems Contacts sample database.

The name of the function is CreateErrTable, and you can fi nd it in the modExamples
module. The function statements are listed next. You can execute this function by enter-
ing the following in the Immediate window:

?CreateErrTable

Note
You can fi nd the ADO equivalent of this example in the modExamples module in the

Conrad Systems Contacts sample database.

 Some Complex Visual Basic Examples 1045

Ch
ap

te
r 1

9

The sample database contains the ErrTable table, so the code will ask you if you want to
delete and rebuild the table. You should click Yes to run the code. Again, we’ve added
line numbers to some of the lines in this code listing so that you can follow along with
the line-by-line explanations in Table 19-6, which follows the listing.

 1 Function CreateErrTable ()
 ' This function creates a table containing a list of
 ' all the valid Access application error codes
 ' You can fi nd the ADO version of this procedure in Contacts.accdb
 2 ' Declare variables used in this function
 3 Dim dbMyDatabase As DAO.Database, tblErrTable As DAO.TableDef, _
 fl dMyField As DAO.Field, idxPKey As DAO.Index
 4 Dim rcdErrRecSet As DAO.Recordset, lngErrCode As Long, _
 intMsgRtn As Integer
 5 Dim varReturnVal As Variant, varErrString As Variant, _
 ws As DAO.Workspace
 ' Create Errors table with Error Code and Error String fi elds
 ' Initialize the MyDatabase database variable
 ' to the current database
 6 Set dbMyDatabase = CurrentDb
 7 Set ws = DBEngine.Workspaces(0)
 ' Trap error if table doesn't exist
 ' Skip to next statement if an error occurs
 8 On Error Resume Next
 9 Set rcdErrRecSet = dbMyDatabase.OpenRecordset("ErrTable")
10 Select Case Err ' See whether error was raised
11 Case 0 ' No error—table must exist
12 On Error GoTo 0 ' Turn off error trapping
13 intMsgRtn = MsgBox("ErrTable already " & _
 "exists. Do you want to delete and " & _
 "rebuild all rows?", vbQuestion + vbYesNo)
14 If intMsgRtn = vbYes Then
 ' Reply was YES—delete rows and rebuild
 ' Run quick SQL to delete rows
15 dbMyDatabase.Execute_
 "DELETE * FROM ErrTable;", dbFailOnError
16 Else ' Reply was NO—done
17 rcdErrRecSet.Close ' Close the table
18 Exit Function ' And exit
19 End If
20 Case 3011, 3078 ' Couldn't fi nd table,
 ' so build it
21 On Error GoTo 0 ' Turn off error trapping
 ' Create a new table to contain error rows
22 Set tblErrTable = _
 dbMyDatabase.CreateTableDef("ErrTable")
 ' Create a fi eld in ErrTable to contain the
 ' error code
23 Set fl dMyField = tblErrTable.CreateField(_
 "ErrorCode", DB_LONG)
 ' Append "ErrorCode" fi eld to the fi elds
 ' collection in the new table defi nition

Chapter 19

1046 Chapter 19 Understanding Visual Basic Fundamentals
24 tblErrTable.Fields.Append fl dMyField
 ' Create a fi eld in ErrTable for the error
 ' description
25 Set fl dMyField = _
 tblErrTable.CreateField("ErrorString", _
 DB_MEMO)
 ' Append "ErrorString" fi eld to the fi elds
 ' collection in the new table defi nition
26 tblErrTable.Fields.Append fl dMyField
 ' Append the new table to the TableDefs
 ' collection in the current database
27 dbMyDatabase.TableDefs.Append tblErrTable
 ' Set text fi eld width to 5" (7200 twips)
 ' (calls sub procedure)
28 SetFieldProperty _
 tblErrTable![ErrorString], _
 "ColumnWidth", DB_INTEGER, 7200
 ' Create a Primary Key
29 Set idxPKey = tblErrTable.CreateIndex("PrimaryKey")
 ' Create and append the fi eld to the index fi elds collection
30 idxPKey.Fields.Append idxPKey.CreateField("ErrorCode")
 ' Make it the Primary Key
 idxPKey.Primary = True
 ' Create the index
31 tblErrTable.Indexes.Append idxPKey
 ' Set recordset to Errors Table recordset
32 Set rcdErrRecSet = _
 dbMyDatabase.OpenRecordset("ErrTable")
33 Case Else
 ' Can't identify the error—write message
 ' and bail out
34 MsgBox "Unknown error in CreateErrTable " & _
 Err & ", " & Error$(Err), 16
35 Exit Function
36 End Select
 ' Initialize progress meter on the status bar
37 varReturnVal = SysCmd(acSysCmdInitMeter, _
 "Building Error Table", 32767)
 ' Turn on hourglass to show this might take
 ' a while
38 DoCmd.Hourglass True
 ' Start a transaction to make it go fast
39 ws.BeginTrans
 ' Loop through Microsoft Access error codes,
 ' skipping codes that generate
 ' "Application-defi ned or object-defi ne error"
 ' message
40 For lngErrCode = 1 To 32767
41 varErrString = AccessError(lngErrCode)
 If IsNothing(varErrString) Or _
 ' If AccessError returned nothing, then try Error
 varErrString = "Application-defi ned or object-defi ned error" Then
 varErrString = Error(lngErrCode)
 End If

 Some Complex Visual Basic Examples 1047

Ch
ap

te
r 1

9

42 If Not IsNothing(varErrString) Then
43 If varErrString <> "Application-" & _
 "defi ned or object-defi ned error" Then
 ' Add each error code and string to
 ' Errors table
44 rcdErrRecSet.AddNew
45 rcdErrRecSet("ErrorCode") = lngErrCode
46 rcdErrRecSet("ErrorString") = varErrString
47 rcdErrRecSet.Update
48 End If
49 End If
 ' Update the status meter
50 varReturnVal = SysCmd(acSysCmdUpdateMeter, _
 lngErrCode)
 ' Process next error code
51 Next lngErrCode
52 ws.CommitTrans
 ' Close recordset
53 rcdErrRecSet.Close
 ' Turn off the hourglass—you're done
54 DoCmd.Hourglass False
 ' And reset the status bar
55 varReturnVal = SysCmd(acSysCmdClearStatus)
 ' Select new table in the Navigation Pane
 ' to refresh the list
56 DoCmd.SelectObject acTable, "ErrTable", True
 ' Open a confi rmation dialog box
57 MsgBox "Errors table created."
58 End Function

Table 19-6 lists the statement line numbers and explains the code on each line in the
preceding Visual Basic code example.

Table 19-6 Explanation of Code in Example to Examine Error Codes

Line Explanation

1 Declare the beginning of the function. The function has no arguments.

2 You can begin a comment anywhere on a statement line by preceding the
comment with a single quotation mark. You can also create a comment
statement using the Rem statement.

3 Declare local variables for a Database object, a TableDef object, a Field object,
and an Index object.

4 Declare local variables for a Recordset object, a Long Integer, and an Integer.

5 Declare local variables for a Variant that is used to accept the return value from
the SysCmd function, a Variant that is used to accept the error string returned
by the AccessError function, and a Workspace object.

6 Initialize the Database object variable by setting it to the current database.

7 Initialize the Workspace object by setting it to the current workspace.

8 Enable error trapping but execute the next statement if an error occurs.

Chapter 19

1048 Chapter 19 Understanding Visual Basic Fundamentals
Line Explanation

9 Initialize the Recordset object variable by attempting to open the ErrTable
table. If the table does not exist, this generates an error.

10 Call the Err function to see whether an error occurred. The following Case
statements check the particular error values that interest you.

11 The fi rst Case statement tests for an Err value of 0, indicating no error
occurred. If no error occurred, the table already existed and opened
successfully.

12 Turn off error trapping because you don’t expect any more errors.

13 Use the MsgBox function to ask whether you want to clear and rebuild all rows
in the existing table. The vbQuestion intrinsic constant asks MsgBox to display
the question icon, and the vbYesNo intrinsic constant requests Yes and No
buttons (instead of the default OK button). The statement assigns the value
returned by MsgBox so that you can test it on the next line.

14 If you click Yes, MsgBox returns the value of the intrinsic constant vbYes.
(vbYes happens to be the integer value 6, but the constant name is easier to
remember than the number.)

15 Run a simple SQL statement to delete all the rows in the error table.

16 Else clause that goes with the If statement on line 14.

17 Close the table if the table exists and you clicked the No button on line 13.

18 Exit the function.

19 End If statement that goes with the If statement on line 14.

20 Second Case statement. Error codes 3011 and 3078 are both “object not
found.”

21 Turn off error trapping because you don’t expect any more errors.

22 Use the CreateTableDef method on the database to start a new table
defi nition. This is the same as clicking the Table Design button in the Tables
group on the Create tab of the Ribbon.

23 Use the CreateField method on the new table to create the fi rst fi eld object—a
long integer (the intrinsic constant DB_LONG) named ErrorCode.

24 Append the fi rst new fi eld to the Fields collection of the new Table object.

25 Use the CreateField method to create the second fi eld—a memo fi eld named
ErrorString.

26 Append the second new fi eld to the Fields collection of the new Table object.

27 Save the new table defi nition by appending it to the TableDefs collection of
the Database object. If you were to halt the code at this point and repaint the
Navigation Pane, you would fi nd the new ErrTable listed.

28 Call the SetFieldProperty subroutine in this module to set the column width
of the ErrorString fi eld to 7200 twips (5 inches). This ensures that you can see
more of the error text when you open the table in Datasheet view.

29 Use the CreateIndex method of the TableDef to begin building an index.

 Some Complex Visual Basic Examples 1049

Ch
ap

te
r 1

9

Line Explanation

30 Create a single fi eld and append it to the Fields collection of the index. The
following statement sets the Primary property of the index to True to indicate
that this will be the primary key.

31 Save the new primary key index by appending it to the Indexes collection of
the TableDef.

32 Open a recordset by using the OpenRecordset method on the table.

33 This Case statement traps all other errors.

34 Show a message box with the error number and the error message.

35 Exit the function after an unknown error.

36 End Select statement that completes the Select Case statement on line 10.

37 Call the SysCmd function to place a “building table” message on the status bar,
and initialize a progress meter. The CreateErrTable function will look at 32,767
different error codes.

38 Turn the mouse pointer into an hourglass to indicate that this procedure will
take a few seconds.

39 Use the BeginTrans method of the Workspace object to start a transaction.
Statements within a transaction are treated as a single unit. Changes to data
are saved only if the transaction completes successfully with a CommitTrans
method. Using transactions when you’re updating records can speed
performance by reducing disk access.

40 Start a For loop to check each error code from 1 through 32,767.

41 Assign the error text returned by the AccessError function to the variable
varErrString. If the string is empty or returned “Application-defi ned or object-
defi ned error,” try calling the Error function to get the text of the message.

42 Call the IsNothing function in the modUtility module of the sample database
to test whether the text returned is blank. You don’t want blank rows, so don’t
add a row if the AccessError function for the current error code returns a blank
string.

43 Lots of error codes are defi ned as “Application-defi ned or object-defi ned
error.” You don’t want any of these, so this statement adds a row only if the
AccessError function for the current error code doesn’t return this string.

44 Use the AddNew method to start a new row in the table.

45 Set the ErrorCode fi eld equal to the current error code.

46 Save the text of the message in the ErrorString fi eld. Because we defi ned the
fi eld as a memo, we don’t need to worry about the length of the text.

47 Use the Update method to save the new row.

48 End If statement that completes the If statement on line 43.

49 End If statement that completes the If statement on line 42.

50 After handling each error code, update the progress meter on the status bar to
show how far you’ve gotten.

Chapter 19

1050 Chapter 19 Understanding Visual Basic Fundamentals
Line Explanation

51 Next statement that completes the For loop begun on line 40. Visual Basic
increments lngErrCode by 1 and executes the For loop again until lngErrCode
is greater than 32,767.

52 CommitTrans method that completes the transaction begun on line 39.

53 After looping through all possible error codes, close the recordset.

54 Change the mouse pointer back to normal.

55 Clear the status bar.

56 Put the focus on the ErrTable table in the Navigation Pane.

57 Display a message box confi rming that the function has completed.

58 End of the function.

You should now have a basic understanding of how to create functions and subroutines
using Visual Basic. In the next chapter, you’ll enhance what you’ve learned as you study
major parts of the Conrad Systems Contacts, Housing Reservations, and Wedding List
applications.

CHAPTER 20

Automating Your Application with
Visual Basic

Now that you’ve learned the fundamentals of using Microsoft Visual Basic, it’s time
to put this knowledge into practice. In this chapter, you’ll learn how to create the

Visual Basic code you need to automate many common tasks.

You can fi nd dozens of examples of automation in the Conrad Systems Contacts,
 Housing Reservations, and Wedding List sample databases. As you explore the data-
bases, whenever you see something interesting, open the form or report in Design view
and take a look at the Visual Basic code behind the form or report. This chapter walks
you through a few of the more interesting examples in these databases.

Note
You can fi nd the code explained in this chapter in the Conrad Systems Contacts

(Contacts.accdb), Housing Reservations (Housing.accdb), and Wedding List

(WeddingList.accdb) sample applications on the companion CD.

Why Aren’t We Using Macros?
Although you can certainly use macros to automate simple applications, macros have
certain limitations. For example, as you might have noticed when examining the list of
available events in Chapter 17, “Understanding Event Processing,” many events require
or return parameters that can be passed to or read from a Visual Basic procedure but
not a macro. Also, even though you can write a macro to handle general errors in forms
and reports, you can’t really analyze errors effectively within a macro nor do much to
recover from an error. And as you saw in Chapter 18, “Automating Your Application
with Macros,” the debugging facilities for macros are very simplistic.

Note
You can fi nd the code explained in this chapter in the Conrad Systems Contacts

(Contacts.accdb), Housing Reservations (Housing.accdb), and Wedding List

(WeddingList.accdb) sample applications on the companion CD.

Why Aren’t We Using Macros? 1051

Assisting Data Entry . 1053

Validating Complex Data . 1071

Controlling Tabbing on a Multiple-Page Form 1080

Automating Data Selection . 1082

Linking to Related Data in Another Form or Report . 1098

Automating Complex Tasks . 1105

Automating Reports . 1114
 1051

Chapter 20

1052 Chapter 20 Automating Your Application with Visual Basic
When to Use Macros
Use macros in your application in any of the following circumstances:

O Your application consists of only a few forms and reports.

O You need to build a simple application that is automated using only trusted macro
actions so that the application can run even when the database is not trusted.

O Your application might be used by users unfamiliar with Visual Basic who will
want to understand how your application is constructed and possibly modify or
enhance it.

O You’re developing an application prototype, and you want to rapidly automate
a few features to demonstrate your design. However, once you understand
Visual Basic, automating a demonstration application is just as easy using event
 procedures.

O You don’t need complex error evaluation and handling.

O You don’t need to evaluate or set parameters passed by certain events, such as
AfterDelConfi rm, ApplyFilter, BeforeDelConfi rm, Error, Filter, KeyDown, Key-
Press, KeyUp, MouseDown, MouseMove, MouseUp, NotInList, and Updated.

O You don’t need to open and work with recordsets or other objects.

In fact, we can think of only two reasons you’ll ever need to use a macro:

O You must write an AutoKeys macro to defi ne any keystrokes that you want to
intercept globally in your application. However, you can also easily defi ne custom
handling of keystrokes using the KeyPress events in forms and reports. The one
advantage of an AutoKeys macro is it allows you to trap keystrokes in one place.
The disadvantage is it is more diffi cult to customize keystroke handling for indi-
vidual forms and reports. You’ll learn how to create an AutoKeys macro in Chap-
ter 24, “The Finishing Touches.”

O Because Microsoft Access won’t run any Visual Basic code in a database that is not
trusted, in an application that runs using Visual Basic you need to either write a
safe AutoExec macro or embed a safe macro in your startup form’s Load event. In
that macro, test the IsTrusted property of the CurrentProject object and exit grace-
fully if the user has not trusted your application.

When to Use Visual Basic
Although macros can be useful, a number of tasks cannot be carried out with macros,
and there are others that are better implemented using a Visual Basic procedure. Use a
Visual Basic procedure instead of a macro in any of the following circumstances:

O You need complex error handling in your application.

O You want to defi ne a new function.

 Assisting Data Entry 1053

Ch
ap

te
r 2

0

O You need to handle events that pass parameters or accept return values (other
than Cancel).

O You need to create new objects (tables, queries, forms, or reports) in your data-
base from application code.

O Your application needs to interact with another Windows-based program via
ActiveX automation.

O You want to be able to directly call Windows API functions.

O You want to defi ne application code that is common across several applications in
a library.

O You want to be able to open and work with data in a recordset on a record-by-
record basis.

O You need to use some of the native facilities of the relational database manage-
ment system that handles your attached tables (such as Microsoft SQL Server pro-
cedures or data defi nition facilities).

O You want maximum performance in your application. Because modules are com-
piled, they execute slightly faster than macros. You’ll probably notice a difference
only on slower processors.

O You are writing a complicated application that will be diffi cult to debug.

Although you can now trap errors in macros in an application written using Offi ce
Access 2007, you don’t have complex evaluation structures such as Select Case to help
you decipher and handle the error. Quite frankly, the only reason we might recommend
using macros instead of Visual Basic is when you need to write an application that can
run in a database that is not trusted. But the instant that you need to use a macro action
that is not trusted (our favorites are SetValue and Quit), then you might as well auto-
mate your application with Visual Basic.

Assisting Data Entry
You can do a lot to help make sure the user of your application enters correct data by
defi ning default values, input masks, and validation rules. But what can you do if the
default values come from a related table? How can you assist a user who needs to enter
a value that’s not in the row source of a combo box? How do you make the display text
in a hyperlink more readable? Is there a way you can make it easier for your user to pick
dates and times? And how do you help the user edit linked picture fi les? You can fi nd
the answers to these questions in the following sections.

Filling In Related Data
The tblContactProducts table in the Conrad Systems Contacts database has a SoldPrice
fi eld that refl ects the actual sales price at the time of a sale. The tblProducts table has a

Chapter 20

1054 Chapter 20 Automating Your Application with Visual Basic
UnitPrice fi eld that contains the normal selling price of the product. When the user is
working in the Contacts form (frmContacts) and wants to sell a new product, you don’t
want the user to have to go look up the current product price before entering it into the
record.

You learned in Chapter 13, “Advanced Form Design,” how to build a form with sub-
forms nested two levels to edit contacts, the default company for each contact, and the
products sold to that company and registered to the current contact. However, if you
open frmContacts and click the Products tab, as shown in Figure 20-1, you’ll notice that
there doesn’t appear to be any linking company data between contacts and the prod-
ucts sold. (The subform to display contact products isn’t nested inside another subform
to show the companies for the current contact.) Again, the user shouldn’t have to look
up the default company ID for the current contact before selling a product.

Figure 20-1 Selling a product to a contact involves fi lling in the price and the default company.

As you can see, a combo box on the subform (fsubContactProducts) helps the user
choose the product to sell. Part of the secret to setting the price (the SoldPrice fi eld
in tblContactProducts) automatically is in the row source query for the combo box,
 qlkpProductsForContacts, as shown in Figure 20-2.

You certainly need the ProductID fi eld for the new record in tblContactProducts. Dis-
playing the ProductName fi eld in the combo box is more meaningful than showing the
ProductID number, and, as you can see in Figure 20-1, the list in the combo box also
shows you the CategoryDescription and whether the product is a trial version. But why
did we include the UnitPrice, TrialExpire, and PreRequisite columns in the query’s
design grid?

 Assisting Data Entry 1055

Ch
ap

te
r 2

0

Figure 20-2 The qlkpProductsForContacts query is the row source for the Product combo box on
fsubContactProducts.

As it turns out, you can retrieve any of these fi elds from the current row in the combo
box by referencing the combo box Column property. (You’ll see later in this chapter,
in “Validating Complex Data” on page 1071, how other code behind the form uses the
additional fi elds to make sure the contact already owns any prerequisite product.) You
can see the simple line of code that copies the UnitPrice fi eld by opening the Visual
Basic module behind the fsubContactProducts form. Go to the Navigation Pane, select
the fsubContactProducts form, right-click the form and click Design View on the menu,
and then click the View Code button in the Tools group on the Design tab. In the Visual
Basic Editor (VBE) Code window, scroll down until you fi nd the cmbProductID_After-
Update procedure. The code is as follows:

Private Sub cmbProductID_AfterUpdate()
 ' Grab the default price from the hidden 5th column
 Me.SoldPrice = Me.cmbProductID.Column(4)
End Sub

Notice that you use an index number to fetch the column you want and that the index
starts at zero. You can reference the fi fth column in the query (UnitPrice) by asking for
the Column(4) property of the combo box. Notice also that the code uses the Me short-
cut object to reference the form object where this code is running. So, every time you
pick a different product, the AfterUpdate event occurs for the ProductID combo box,
and this code fi lls in the related price automatically.

If you open the frmContacts form in Design view, select the fsubContactProducts form
on the Products tab, and examine the Link Child Fields and Link Master Fields proper-
ties, you’ll fi nd that the two forms are linked on ContactID. However, the tblContact-
Products table also needs a CompanyID fi eld in its primary key. Code in the module for
the fsubContactProducts form handles fetching the default CompanyID for the current
contact, so you don’t need an intermediary subform that would clutter the form design.

Chapter 20

1056 Chapter 20 Automating Your Application with Visual Basic
If you still have the module for the fsubContactProducts form open in the VBE window,
you can fi nd the code in the Form_BeforeInsert procedure. The code is as follows:

Private Sub Form_BeforeInsert(Cancel As Integer)
Dim varCompanyID As Variant
 ' First, disallow insert if nothing in outer form
 If IsNothing(Me.Parent.ContactID) Then
 MsgBox "You must defi ne the contact information on a new row before " & _
 "attempting to sell a product", vbCritical, gstrAppTitle
 Cancel = True
 Exit Sub
 End If
 ' Try to lookup this contact's Company ID
 varCompanyID = DLookup("CompanyID", "qryContactDefaultCompany", _
 "(ContactID = " & Me.Parent.ContactID.Value & ")")
 If IsNothing(varCompanyID) Then
 ' If not found, then disallow product sale
 MsgBox "You cannot sell a product to a Contact that does not have a " & _
 "related Company that is marked as the default for this Contact." & _
 " Press Esc to clear your edits and click on the Companies tab " & _
 "to defi ne the default Company for this Contact.", vbCritical, _
 gstrAppTitle
 Cancel = True
 Else
 ' Assign the company ID behind the scenes
 Me.CompanyID = varCompanyID
 End If
End Sub

This procedure executes whenever the user sets any value on a new row in the subform.
First, it makes sure that the outer form has a valid ContactID. Next, the code uses the
DLookup domain function to attempt to fetch the default company ID for the current
contact. The query includes a fi lter to return only the rows from tblCompanyContacts
where the DefaultForContact fi eld is True. If the function returns a valid value, the code
sets the required CompanyID fi eld automatically. If it can’t fi nd a CompanyID, the code
uses the MsgBox statement to tell the user about the error.

Note
The IsNothing function that you see used in code throughout all the sample applica-

tions is not a built-in Visual Basic function. This function tests the value you pass to it for

“nothing”—Null, zero, or a zero length string. You can fi nd this function in the modUtility

standard module in all the sample databases.

Note
The IsNothing function that you see used in code throughout all the sample applica-

tions is not a built-in Visual Basic function. This function tests the value you pass to it for

“nothing”—Null, zero, or a zero length string. You can fi nd this function in the modUtility

standard module in all the sample databases.

 Assisting Data Entry 1057

Ch
ap

te
r 2

0

Quite frequently in code, in a query, or in the control source of a control on a form or

report, you might need to look up a single value from one of the tables or queries in

your database. Although you can certainly go to the trouble of defi ning and opening a

recordset in code, Access provides a set of functions, called domain functions, that can

provide the value you need with a single function call. The available functions are as

 follows:

Function Name Description

DFirst, DLast Return a random value from the specifi ed domain (the table or

query that’s the record source)

DLookup Looks up a value in the specifi ed domain

DMax Returns the highest (Max) value in the specifi ed domain

DMin Returns the lowest (Min) value in the specifi ed domain

DStDev, DStDevP Return the standard deviation of a population sample or a popula-

tion of the specifi ed domain

DSum Returns the sum of an expression from a domain

DVar, DVarP Return the variance of a population sample or a population of the

specifi ed domain

The syntax to call a domain function is as follows:

<function name>(<fi eld expression>, <domain name> [, <criteria>])

where

<function name> is the name of one of the functions in the preceding list

<fi eld expression> is a string literal or name of a string variable containing the name of a

fi eld or an expression using fi elds from the specifi ed domain

<domain name> is a string literal or name of a string variable containing the name of a

table or query in your database

<criteria> is a string literal or name of a string variable containing a Boolean comparison

expression to fi lter the records in the domain

Note that when a domain function fi nds no records, the returned value is a Null, so you

should always assign the result to a Variant data type variable. When you construct a

criteria expression, you must enclose string literals in quotes and date/time literals in the

character. (If you use double quotes to delimit the criteria string literal, then use single

quotes around literals inside the string, and vice versa.) For example, to fi nd the lowest

work postal code value for all contacts where the contact type is customer and the birth

date is before January 1, 1970, enter:

DMin("WorkPostalCode", "tblContacts", "[ContactType] = 'customer'
And [BirthDate] < #01/01/1970#")

SIDE OUT Understanding the Useful Domain Functions

Quite frequently in code, in a query, or in the control source of a control on a form or

report, you might need to look up a single value from one of the tables or queries in

your database. Although you can certainly go to the trouble of defi ning and opening a

recordset in code, Access provides a set of functions, called domain functions, that can

provide the value you need with a single function call. The available functions are as

follows:

Function Name Description

DFirst, DLast Return a random value from the specifi ed domain (the table or

query that’s the record source)

DLookup Looks up a value in the specifi ed domain

DMax Returns the highest (Max) value in the specifi ed domain

DMin Returns the lowest (Min) value in the specifi ed domain

DStDev, DStDevP Return the standard deviation of a population sample or a popula-

tion of the specifi ed domain

DSum Returns the sum of an expression from a domain

DVar, DVarP Return the variance of a population sample or a population of the

specifi ed domain

The syntax to call a domain function is as follows:

<function name>(<fi eld expression>, <domain name> [, <criteria>])

where

<function name> is the name of one of the functions in the preceding list

<fi eld expression> is a string literal or name of a string variable containing the name of a

fi eld or an expression using fi elds from the specifi ed domain

<domain name> is a string literal or name of a string variable containing the name of a

table or query in your database

<criteria> is a string literal or name of a string variable containing a Boolean comparison

expression to fi lter the records in the domain

Note that when a domain function fi nds no records, the returned value is a Null, so you

should always assign the result to a Variant data type variable. When you construct a

criteria expression, you must enclose string literals in quotes and date/time literals in the

character. (If you use double quotes to delimit the criteria string literal, then use single

quotes around literals inside the string, and vice versa.) For example, to fi nd the lowest

work postal code value for all contacts where the contact type is customer and the birth

date is before January 1, 1970, enter:

DMin("WorkPostalCode", "tblContacts", "[ContactType] = 'customer'
And [BirthDate] < #01/01/1970#")

Chapter 20

1058 Chapter 20 Automating Your Application with Visual Basic
Handling the NotInList Event
In almost every data entry form you’ll ever build, you’ll need to provide a way for the
user to set the foreign key of the edited record on the many side of a relationship to
point back to the correct one side record—for example, to set the ProductID fi eld in the
tblContactProducts table when selling a product on the Products tab of the frmContacts
form. But what if the user needs to create a new product? Should the user have to open
the form to edit products fi rst to create the new product before selling it? The answer is
a resounding no, but you must write code in the NotInList event of the combo box to
handle new values and provide a way to create new rows in the tblProducts table.

Figure 20-3 shows you what happens when the user tries to type a product name that’s
not already in the tblProducts table. In this case, the customer wants to purchase a two-
year support contract instead of the already available one-year product. You can see that
something has intercepted the new product name to confi rm that the user wants to add
the new product.

Figure 20-3 When you enter a product that isn’t defi ned in the database, the application asks if
you want to add the new product.

First, the combo box has been defi ned with its Limit To List property set to Yes. Second,
there’s an event procedure defi ned to handle the NotInList event of the combo box, and
it is this code that’s asking whether the user wants to add a product. If the user clicks
Yes to confi rm adding this product, the event procedure opens the frmProductAdd
form in Dialog mode to let the user enter the new data, as shown in Figure 20-4. Open-
ing a form in Dialog mode forces the user to respond before the application resumes
execution. The code that opens this form passes the product name entered and the

 Assisting Data Entry 1059

Ch
ap

te
r 2

0

product type that the user selected before entering a new product name. The user can
fi ll in the price and other details. The user can also click Cancel to avoid saving the
record and close the form. If the user clicks Save, the form saves the new product record
and closes to allow the code in the NotInList event procedure to continue.

Figure 20-4 The frmProductAdd form lets you defi ne the details for the new product.

To see how this works, open the fsubContactProducts form in Design view, click the
cmbProductID combo box, fi nd the On Not In List event property in the Properties
window, and click the Build button to open the code. The code for the procedure is
shown here:

Private Sub cmbProductID_NotInList(NewData As String, Response As Integer)
Dim strType As String, strWhere As String
 ' User has typed in a product name that doesn't exist
 strType = NewData
 ' Set up the test predicate
 strWhere = "[ProductName] = """ & strType & """"
 ' Ask if they want to add this product
 If vbYes = MsgBox("Product " & NewData & " is not defi ned. " & _
 "Do you want to add this Product?", vbYesNo + vbQuestion + _
 vbDefaultButton2, gstrAppTitle) Then
 ' Yup. Open the product add form and pass it the new name
 ' - and the pre-selected Category
 DoCmd.OpenForm "frmProductAdd", DataMode:=acFormAdd, _
 WindowMode:=acDialog, _
 OpenArgs:=strType & ";" & Me.cmbCategoryDescription
 ' Verify that the product really got added
 If IsNull(DLookup("ProductID", "tblProducts", strWhere)) Then
 ' Nope.
 MsgBox "You failed to add a Product that matched what you entered." & _
 " Please try again.", vbInformation, gstrAppTitle
 ' Tell Access to continue - we trapped the error
 Response = acDataErrContinue
 Else
 ' Product added OK - tell Access so that combo gets requeried
 Response = acDataErrAdded
 End If

Chapter 20

1060 Chapter 20 Automating Your Application with Visual Basic
 Else
 ' Don't want to add - let Access display normal error
 Response = acDataErrDisplay
 End If
End Sub

As you can see, Access passes two parameters to the NotInList event. The fi rst param-
eter (NewData) contains the string you typed in the combo box. You can set the value of
the second parameter (Response) before you exit the sub procedure to tell Access what
you want to do. You wouldn’t have access to these parameters in a macro, so you can see
that this event requires a Visual Basic procedure to handle it properly.

The procedure fi rst creates the criteria string that it uses later to verify that the user
saved the product. Next the procedure uses the MsgBox function to ask whether the
user wants to add this product to the database (the result shown in Figure 20-3). If
you’ve ever looked at the MsgBox function Help topic, you know that the second param-
eter is a number that’s the sum of all the options you want. Fortunately, Visual Basic
provides named constants for these options, so you don’t have to remember the num-
ber codes. In this case, the procedure asks for a question mark icon (vbQuestion) and
for the Yes and No buttons (vbYesNo) to be displayed. It also specifi es that the default
button is the second button (vbDefaultButton2)—the No button—just in case the user
quickly presses Enter upon seeing the message.

If the user clicks Yes in the message box, the procedure uses DoCmd.OpenForm to
open the frmProductAdd form in Dialog mode and passes it the product name entered
and the product type selected by setting the form’s OpenArgs property. Note the use
of the named parameter syntax in the call to DoCmd.OpenForm to make it easy to set
the parameters you want. You must open the form in Dialog mode. If you don’t, your
code continues to run while the form opens. Whenever a dialog box form is open,
Visual Basic code execution stops until the dialog box closes, which is critical in this
case because you need the record to be saved or canceled before you can continue with
other tests.

After the frmProductAdd form closes, the next statement calls the DLookup func-
tion to verify that the product really was added to the database. If the code can’t fi nd
a new matching product name (the user either changed the product name in the add
form or clicked Cancel), it uses the MsgBox statement to inform the user of the prob-
lem and sets a return value in the Response parameter to tell Access that the value
hasn’t been added but that Access can continue without issuing its own error message
 (acDataErrContinue).

If the matching product name now exists (indicating the user clicked Save on the
 frmProductAdd form), the code tells Access that the new product now exists by set-
ting Response to acData ErrAdded. Access requeries the combo box and attempts a
new match. Finally, if the user clicks No in the message box shown in Figure 20-3, the
procedure sets Response to acDataErrDisplay to tell Access to display its normal error
message.

 Assisting Data Entry 1061

Ch
ap

te
r 2

0

The other critical piece of code is in the Load event for the frmProductAdd form. The
code is as follows:

Private Sub Form_Load()
Dim intI As Integer
 If Not IsNothing(Me.OpenArgs) Then
 ' If called from "not in list", Openargs should have
 ' Product Name; Category Description
 ' Look for the semi-colon separating the two
 intI = InStr(Me.OpenArgs, ";")
 ' If not found, then all we have is a product name
 If intI = 0 Then
 Me.ProductName = Me.OpenArgs
 Else
 Me.ProductName = Left(Me.OpenArgs, intI - 1)
 Me.CategoryDescription = Mid(Me.OpenArgs, intI + 1)
 ' lock the category
 Me.CategoryDescription.Locked = True
 Me.CategoryDescription.Enabled = False
 ' .. and clear the tool tip
 Me.CategoryDescription.ControlTipText = ""
 End If
 End If
End Sub

If you remember, the cmbProductID NotInList event procedure passes the original
string the user entered and selected the product type (the CategoryDescription fi eld) as
the OpenArgs parameter to the OpenForm method. This sets the OpenArgs property of
the form being opened. The OpenArgs property should contain the new product name,
a semicolon, and the selected product type, so the Form_Load procedure parses the
product name and product type by using the InStr function to look for the semicolon.
(The InStr function returns the offset into the string in the fi rst parameter where it fi nds
the string specifi ed in the second parameter, and it returns 0 if it doesn’t fi nd the search
string.) The code then uses the two values it fi nds to set the ProductName and Category-
Description fi elds. Also, when the code fi nds a category description, it locks that combo
box so that the user can’t change it to something other than what was selected on the
new product row in the original form.

Fixing an E-Mail Hyperlink
As you learned in Chapter 7, “Creating and Working with Simple Queries,” one of
the easiest ways to enter a hyperlink is to use the Insert Hyperlink feature. However,
you can also type the hyperlink address directly into the fi eld in a datasheet or form.
Remember that a hyperlink fi eld can contain up to four parts: display text, hyperlink
address, bookmark, and ScreenTip text. If a user simply enters an e-mail address into a
hyperlink fi eld, Access 2007 recognizes the format, adds the mailto: protocol, and uses
what the user typed as the display text. For example, if the user enters

jconrad@mvps.org

Chapter 20

1062 Chapter 20 Automating Your Application with Visual Basic
Access stores in the hyperlink fi eld

jconrad@mvps.org#mailto:jconrad@mvps.org#

Rather than repeat the e-mail address as the display text, the end result might look bet-
ter if the display text is the person’s name rather than a repeat of the e-mail address.
One of the forms that has an e-mail address is the frmContacts form in the Conrad
 Systems Contacts application. You can fi nd the code that examines and attempts to fi x
the address in the AfterUpdate event procedure for the EmailName text box. (If the user
enters some valid protocol other than http:// or mailto:, this code won’t fi x it.) The code
is as follows:

Private Sub EmailName_AfterUpdate()
' If you just type in an email name: Somebody@hotmail.com
' Access changes it to: Somebody@hotmail.com#mailto:somebody@hotmail.com#
' This code replaces the display fi eld with the user name
Dim intI As Integer
 ' Don't do anything if email is empty
 If IsNothing(Me.EmailName) Then Exit Sub
 ' Fix up http:// if it's there
 ' This was an old bug in 2003 and earlier, but fi xed in 2007
 Me.EmailName = Replace(Me.EmailName, "http://", "mailto:")
 ' Now look for the fi rst "#" that delimits the hyperlink display name
 intI = InStr(Me.EmailName, "#")
 ' And put the person name there instead if found
 If intI > 0 Then
 Me.EmailName = (Me.FirstName + " ") & Me.LastName & _
 Mid(Me.EmailName, intI)
 End If
End Sub

If the user clears the EmailName text box, the code doesn’t do anything. If there’s
something in the text box, the code uses the Replace function to search for an incorrect
http:// and replace it with the correct mailto: protocol identifi er. As you know, a hyper-
link fi eld can optionally contain text that is displayed instead of the hyperlink, a #
character delimiter, and the actual hyperlink address. The code uses the InStr function
to check for the presence of the delimiter. (The InStr function returns the offset into the
string in the fi rst parameter where it fi nds the string specifi ed in the second parameter.)
If the code fi nds the delimiter, it replaces the contents of the fi eld with the person’s fi rst
and last name as display text followed by the text starting with the # delimiter. (The
Mid function called with no length specifi cation—the optional third parameter—returns
all characters starting at the specifi ed offset.)

Note
In Access 2003 and earlier, when you typed an e-mail address without the mailto: proto-

col prefi x into a hyperlink fi eld, Access would store the hyperlink with the http:// protocol

prefi x in error. This bug has been fi xed in Access 2007, but the preceding code will fi x

that problem if you use it in the earlier versions.

Note
In Access 2003 and earlier, when you typed an e-mail address without the mailto: proto-

col prefi x into a hyperlink fi eld, Access would store the hyperlink with the http:// protocol/
prefi x in error. This bug has been fi xed in Access 2007, but the preceding code will fi x

that problem if you use it in the earlier versions.

 Assisting Data Entry 1063

Ch
ap

te
r 2

0

Providing a Graphical Calendar
You can always provide an input mask to help a user enter a date and time value cor-
rectly, but an input mask can be awkward—always requiring, for example, that the user
type a two-digit month. An input mask also can confl ict with any default value that you
might want to assign. It’s much more helpful if the user can choose the date using a
graphical calendar.

Access 2007 provides a new Show Date Picker property for text boxes. You can set this
property to For Dates to instruct Access to display a calendar icon next to the control
when it contains a date/time value and has the focus. The user can click the button to
pop open a graphical calendar to select a date value. But Show Date Picker isn’t avail-
able for controls other than the text box control, and the date picker lets the user enter
only a date, not a date and time.

Both the Conrad Systems Contacts and the Housing Reservations sample applica-
tions provide sample calendar forms and code you can use to set a date/time value in
any control. The two applications actually have two different versions of a calendar
form—one that employs the Calendar ActiveX control (frmCalendarOCX), and a second
 (frmCalendar) that uses Visual Basic code to “draw” the calendar on a form using an
option group and toggle button controls. Both forms provide an option to enter a time
as well as select a date.

TROUBLESHOOTING
Why isn’t Access setting my defi ned default value for a date/time fi eld?
Did you also defi ne an Input Mask property? If so, then that’s your problem. A date/time

fi eld is actually a fl oating-point number, but Access always converts and displays the

character value in table and query datasheets and forms and reports. When you defi ne

an Input Mask property, any Default Value setting must match the restrictions imposed

by the input mask. If the value violates the restrictions, Access won’t use the default

value. When you assign a default value to a date/time fi eld, you typically use the Date or

Now built-in functions. These functions return a valid date/time fl oating-point value—

which probably won’t match your input mask restrictions. To have Access use the default

value, you must format it to match your input mask. For example, if your input mask

is 90/00/0000\ 00:00, then you should set the Default Value property of the fi eld or

control to =Format(Now(), "mm/dd/yyyy hh:nn". This forces Access to return a string

value as the default that matches your input mask.

This graphical facility is available in the sample applications wherever you see a small
command button next to a control containing a date or date/time fi eld on a form.
Click the button to open the calendar and set the value. One control that uses the
ActiveX version of the calendar is the ContactDateTime control on the Events tab of the
 frmContacts form. You can see the calendar open in Figure 20-5.

TROUBLESHOOTING

Chapter 20

1064 Chapter 20 Automating Your Application with Visual Basic
Figure 20-5 Click the calendar command button next to the ContactDateTime control on the
Events tab of the frmContacts form to open a graphical form to select the date and enter the time.

The code in the Click event of this command button calls a public function to open the
form and pass it the related control that should receive the resulting date value. You can
fi nd this code, shown here, in the module for the fsubContactEvents form.

Private Sub cmdContactTimeCal_Click()
Dim varReturn As Variant
 ' Clicked the calendar icon asking for graphical help
 ' Put the focus on the control to be updated
 Me.ContactDateTime.SetFocus
 ' Call the get a date function
 varReturn = GetDate(Me.ContactDateTime, False)
End Sub

When the user clicks the command button, Access moves the focus to it. The code
moves the focus back to the date fi eld to be edited and calls the public function where
the real action happens. You can fi nd the code for the GetDateOCX function in the
modCalendar module; the code is also listed here:

Option Compare Database
Option Explicit
' Place holder for the form class
Dim frmCalOCX As Form_frmCalendarOCX
' End Declarations Section
Function GetDateOCX(ctlToUpdate As Control, _
 Optional intDateOnly As Integer = 0)

 Assisting Data Entry 1065

Ch
ap

te
r 2

0

'---
' Inputs: A Control object containing a date/time value
' Optional "date only" (no time value) fl ag
' Outputs: Sets the Control to the value returned by frmCalendar
' Created By: JLV 11/15/02
' Last Revised: JLV 11/15/02
'---
' Set an error trap
On Error GoTo ProcErr
 ' Open the OCX calendar form by setting a new object
 ' NOTE: Uses a module variable in the Declarations section
 ' so that the form doesn't go away when this code exits
 Set frmCalOCX = New Form_frmCalendarOCX
 ' Call the calendar form's public method to
 ' pass it the control to update and the "date only" fl ag
 Set frmCalOCX.ctlToUpdate(intDateOnly) = ctlToUpdate
 ' Put the focus on the OCX calendar form
 frmCalOCX.SetFocus
ProcExit:
 ' Done
 Exit Function
ProcErr:
 MsgBox "An error has occured in GetDateOCX. " _
 & "Error number " & Err.Number & ": " & Err.Description _
 & vbCrLf & vbCrLf & _
 "If this problem persists, note the error message and " _
 & "call your programmer.", , "Ooops . . . (unexpected error)"
 Resume ProcExit
End Function

The function begins by setting an error trap that executes the code at the ProcErr label
if anything goes wrong. You might remember from the previous chapter that you can
open a form that has code behind it by setting an object to a new instance of the form’s
class module. This is exactly what this function does to get the form open. In addition,
it calls the Property Set procedure for the form’s ctlToUpdate property to pass it the
control object that should be updated after the user picks a date value. The function
also passes along an optional variable to indicate whether the control needs a date and
time or a date only (intDateOnly). After the calendar form is open and has the control it
needs to update, this function is fi nished. Notice that the object variable used to open
the form is declared in this module’s Declarations section. It cannot be declared inside
the function because the variable would go out of scope (and the form would close)
when the GetDateOCX function exits.

The fi nal pieces of code that make all of this work are in the module behind the
 frmCalendarOCX form. The portion of the code that initializes the form is listed here:

Option Compare Database
Option Explicit
' This form demonstrates both using a custom control (MSCal.OCX)
' and manipulating a Class via Property Set
' See also the GetDateOCX function that activates this form/module.
' Place to save the "date only" indicator

Chapter 20

1066 Chapter 20 Automating Your Application with Visual Basic
Dim intDateOnly As Integer
' Variable for the Property Set
Dim ctlThisControl As Control
' Optional variable for the Property Set
Dim intSet As Integer
' Place to save the date value
Dim varDate As Variant
' End Declarations Section

Private Sub Form_Load()
 ' Hide myself until properties are set
 Me.Visible = False
End Sub

Public Property Set ctlToUpdate(Optional intD As Integer = 0, ctl As Control)
' This procedure is called as a property of the Class Module
' GetDateOCX opens this form by creating a new instance of the class
' and then sets the required properties via a SET statement.
' First, validate the kind of control passed
 Select Case ctl.ControlType
 ' Text box, combo box, and list box are OK
 Case acTextBox, acListBox, acComboBox
 Case Else
 MsgBox "Invalid control passed to the Calendar."
 DoCmd.Close acForm, Me.Name
 End Select
 ' Save the pointer to the control to update
 Set ctlThisControl = ctl
 ' Save the date only value
 intDateOnly = intD
 ' If "date only"
 If (intDateOnly = -1) Then
 ' Resize my window
 DoCmd.MoveSize , , , 3935
 ' Hide some stuff just to be sure
 Me.txtHour.Visible = False
 Me.txtMinute.Visible = False
 Me.lblColon.Visible = False
 Me.lblTimeInstruct.Visible = False
 Me.SetFocus
 End If
 ' Set the fl ag to indicate we got the pointer
 intSet = True
 ' Save the "current" value of the control
 varDate = ctlThisControl.Value
 ' Make sure we got a valid date value
 If Not IsDate(varDate) Then
 ' If not, set the default to today
 varDate = Now
 Me.Calendar1.Value = Date
 Me.txtHour = Format(Hour(varDate), "00")
 Me.txtMinute = Format(Minute(varDate), "00")

 Assisting Data Entry 1067

Ch
ap

te
r 2

0

 Else
 ' Otherwise, set the date/time to the one in the control
 ' Make sure we have a Date data type, not just text
 varDate = CDate(varDate)
 Me.Calendar1.Value = varDate
 Me.txtHour = Format(Hour(varDate), "00")
 Me.txtMinute = Format(Minute(varDate), "00")
 End If
End Property

We know it looks complicated, but it really isn’t. The fi rst event that happens is the
Load event for the form, and code in that event procedure hides the form until the
 GetDateOCX function uses the Property Set statement to pass the control to update to
the form. The ctlToUpdate Property Set procedure saves the Control object (the control
next to the button the user clicked on the form) in a variable in the Declarations sec-
tion. If the optional intDateOnly variable is True (the control needs only a date value,
not a date and time value), the form shrinks to hide those text boxes. Because the event
date/time fi eld needs a time value, this parameter is False, so you should be able to see
the hour and minute text boxes. Next, the code checks to see if the control already has a
value, and initializes the calendar value and two text boxes to display an optional hour
and minute using either the value already in the control or the system date and time.

After the initialization code fi nishes, the form waits until the user enters a value and
clicks Save or decides to not change the value by clicking Cancel. The code for the two
procedures that respond to the command buttons is as follows:

Public Sub cmdCancel_Click()
 ' Close without saving
 DoCmd.Close acForm, Me.Name
End Sub

Private Sub cmdSave_Click()
' Saves the changed value back in the calling control
' Do some error trapping here in case the calling control can't
' accept a date/time value.
 On Error GoTo Save_Error
 ' Make sure we got a valid control to point to
 If intSet Then
 ' OK - save the value
 If (intDateOnly = -1) Then
 ' Passing back date only
 ctlThisControl.Value = Me.Calendar1.Value
 Else
 ' Do date and time
 ctlThisControl.Value = Me.Calendar1.Value + _
 TimeValue(Me.txtHour & ":" & Me.txtMinute)
 End If
 End If
Save_Exit:
 DoCmd.Close acForm, Me.Name
 Exit Sub

Chapter 20

1068 Chapter 20 Automating Your Application with Visual Basic
Save_Error:
 MsgBox "An error occurred attempting to save the date value.", _
 vbCritical, gstrAppTitle
 ErrorLog "frmCalendarOCX_Save", Err, Error
 Resume Save_Exit
End Sub

Clicking the Cancel button (cmdCancel_Click) simply closes the form without chang-
ing any value in the control passed to the form. The code that saves the value the user
selects on the graphical calendar is in the Click event for the cmdSave command but-
ton. This code verifi es that the Property Set procedure executed correctly and then
saves the selected value back into the control object—which happens to point to the con-
trol on the form that should be updated.

If you look behind all the little calendar buttons that activate a graphical way to set a

date or date/time value, you’ll fi nd that only the button next to the Birth Date fi eld on

the frmContacts form and the button next to the Date/Time fi eld on the fsubContact-

Events form use the ActiveX version of the calendar discussed in this chapter. All the

others use the custom form we designed with some complex code to actually build and

manipulate a calendar created with an option group control. So why did we do that?

As you learned in Chapter 13, you can probably fi nd dozens of ActiveX controls regis-

tered on your computer, but only some of them work in Access. To complicate matters,

Microsoft has issued different versions of some of these controls with each new version

of Access. You can use these controls with confi dence if you’re installing your application

on a computer that has the exact same version and service pack level of Access that you

used to create the application. However, if you install your application in Runtime mode

on a computer that has a different version of Access installed, your ActiveX control might

not work at all. (See Chapter 25, “Distributing Your Application,” for details about creating

a distributable installation of your application.) The user sees a “Can’t create object” error

message when opening a form that uses the ActiveX control.

We discovered that even the simple Calendar ActiveX control was giving us problems

when we tried to distribute applications that used it in prior versions of Access. So,

we came up with a way to provide a very similar interface using standard Access con-

trols and Visual Basic. This is why several of the calendar buttons use our custom form

 (frmCalendar) instead of the form that depends on the ActiveX control. We recommend

that you try the ActiveX control fi rst. If you fi nd that your application has problems on

some computers on which you attempt to install your application, you might need to get

creative and build your own solution using native Access tools.

SIDE OUT ActiveX or Not ActiveX, That Is the Question!

If you look behind all the little calendar buttons that activate a graphical way to set a

date or date/time value, you’ll fi nd that only the button next to the Birth Date fi eld on

the frmContacts form and the button next to the Date/Time fi eld on the fsubContact-

Events form use the ActiveX version of the calendar discussed in this chapter. All the

others use the custom form we designed with some complex code to actually build and

manipulate a calendar created with an option group control. So why did we do that?

As you learned in Chapter 13, you can probably fi nd dozens of ActiveX controls regis-

tered on your computer, but only some of them work in Access. To complicate matters,

Microsoft has issued different versions of some of these controls with each new version

of Access. You can use these controls with confi dence if you’re installing your application

on a computer that has the exact same version and service pack level of Access that you

used to create the application. However, if you install your application in Runtime mode

on a computer that has a different version of Access installed, your ActiveX control might

not work at all. (See Chapter 25, “Distributing Your Application,” for details about creating

a distributable installation of your application.) The user sees a “Can’t create object” error

message when opening a form that uses the ActiveX control.

We discovered that even the simple Calendar ActiveX control was giving us problems

when we tried to distribute applications that used it in prior versions of Access. So,

we came up with a way to provide a very similar interface using standard Access con-

trols and Visual Basic. This is why several of the calendar buttons use our custom form

(frmCalendar) instead of the form that depends on the ActiveX control. We recommend

that you try the ActiveX control fi rst. If you fi nd that your application has problems on

some computers on which you attempt to install your application, you might need to get

creative and build your own solution using native Access tools.

 Assisting Data Entry 1069

Ch
ap

te
r 2

0

Working with Linked Photos
Although you can certainly store and display photos in an Access application using the
OLE Object data type, if your application might need to interact with a Web application,
you cannot use this feature. Web applications cannot handle the internal format of a
stored OLE object. Also, if your application needs to handle hundreds or thousands of
photos, you could easily exceed the 2 gigabyte fi le size limit for an .accdb fi le. If you’re
working with your data on the Web using Microsoft Windows SharePoint Services (ver-
sion 3), you can use the new Attachment data type for your photos that can store attach-
ments more effi ciently, but you still might run into fi le size limitations if you need to
store many photos. The alternative method is to store the pictures as fi les and save the
picture path as a text fi eld in your tables.

The good news is the image control in Access 2007 now lets you specify a Control
Source property. When this property points to a fi eld containing a folder and fi le loca-
tion as a text string, the image control will load the photo for you from that location.
However, you should still provide features in your forms to help users to easily edit the
fi le location information.

The Housing Reservations database (Housing.accdb) is designed to work on the Web.
Open the Housing.accdb sample database and then open the frmEmployeesPlain form,
as shown in Figure 20-6. The employee picture you see on the frmEmployees and
frmEmployeesPlain forms is fetched by the image control from the path stored in the
Photo fi eld of the table.

Figure 20-6 The image control loads the photo on the Employees form from a picture path.

Notice that the user cannot see the contents of the Photo fi eld that contains the picture
path information. However, we’ve provided two command buttons to make it easy for
the user to edit or delete the photo path information.

Chapter 20

1070 Chapter 20 Automating Your Application with Visual Basic
Deleting and Updating an Image Path
Clearing the fi le name saved in the record is the easy part, so let’s take a look at that
fi rst. Behind the Delete button that you can see on the frmEmployeesPlain form, you
can fi nd the following code:

Private Sub cmdDelete_Click()
' User asked to remove the picture
 ' Clear photo
 Me.txtPhoto = Null
 ' Set the message
 Me.lblMsg.Caption = "Click Add to create a photo for this employee."
 ' Make it visible
 ' Put focus in a safe place
 Me.FirstName.SetFocus
End Sub

When the user clicks the command button asking to delete the photo, the code sets the
photo path to Null and displays the informative label. Setting the Photo fi eld to Null
causes the image control to remove the image. Because the background of the image
control is transparent, the label control hidden behind it shows through, displaying an
informative message.

The tricky part is to provide the user with a way to enter the picture path to add or
update a picture in a record. Although you could certainly use the InputBox function
to ask the user for the path, it’s much more professional to call the Windows Open File
dialog box so that the user can navigate to the desired picture using familiar tools.
The bad news is calling any procedure in Windows is complex and usually involves
setting up parameter structures and a special declaration of the external function.
The good news is the 2007 Microsoft Offi ce system includes a special FileDialog
object that greatly simplifi es this process. You need to add a reference to the Microsoft
Offi ce library to make it easy to use this object—from the VBE window, choose Refer-
ences from the Tools menu and be sure the Microsoft Offi ce 12.0 Object Library is
selected. After you do this, you can include code using the FileDialog object to load a
picture path. You can fi nd the following code behind the Click event of the Add button
(cmdAdd) in the frmEmployeesPlain form:

Private Sub cmdAdd_Click()
' User asked to add a new photo
Dim strPath As String
 ' Grab a copy of the Offi ce fi le dialog
 With Application.FileDialog(msoFileDialogFilePicker)
 ' Select only one fi le
 .AllowMultiSelect = False
 ' Set the dialog title
 .Title = "Locate the Employee picture fi le"
 ' Set the button caption
 .ButtonName = "Choose"
 ' Make sure the fi lter list is clear
 .Filters.Clear

 Validating Complex Data 1071

Ch
ap

te
r 2

0

 ' Add two fi lters
 .Filters.Add "JPEGs", "*.jpg"
 .Filters.Add "Bitmaps", "*.bmp"
 ' Set the fi lter index to 2
 .FilterIndex = 2
 ' Set the initial path name
 .InitialFileName = CurrentProject.Path & "\Pictures"
 ' Show fi les as thumbnails
 .InitialView = msoFileDialogViewThumbnail
 ' Show the dialog and test the return
 If .Show = 0 Then
 ' Didn't pick a fi le - bail
 Exit Sub
 End If
 ' Should be only one fi lename - grab it
 strPath = Trim(.SelectedItems(1))
 ' Set an error trap
 On Error Resume Next
 ' Set the image
 Me.txtPhoto = strPath
 ' Set the message in case Image control couldn't fi nd it
 Me.lblMsg.Caption = "Failed to load the picture you selected." & _
 " Click Add to try again."
 End With
 ' Put focus in a safe place
 Me.FirstName.SetFocus
End Sub

The code establishes a pointer to the FileDialog object using a With statement, sets the
various properties of the object including the allowed fi le extensions and the initial
path, and then uses the Show method to display the Windows Open File dialog box.
Setting the Photo fi eld causes the image control to load the new picture, but the code
also sets the message hidden behind the image control just in case the image control
had a problem loading the fi le.

 Validating Complex Data
Although you can certainly take advantage of the Input Mask property and the fi eld and
table Validation Rule properties, your application often has additional business rules
that you can enforce only by adding code behind the forms you provide to edit the
data. The following examples show you how several of the business rules in the Conrad
 Systems Contacts and Housing Reservations applications are enforced with Visual
Basic code.

Checking for Possible Duplicate Names
When you design a table, you should attempt to identify some combination of fi elds that
will be unique across all records to use as your primary key. However, when you create
a table to store information about people, you usually create an artifi cial number as the

Chapter 20

1072 Chapter 20 Automating Your Application with Visual Basic
primary key of the table because you would need to combine many fi elds to ensure a
unique value. Even when you attempt to construct a primary key from fi rst name, last
name, address, postal code, and phone number, you still can’t guarantee a unique value
across all rows.

Using an artifi cial primary key doesn’t mean you should abandon all efforts to iden-
tify potentially duplicate rows. Code in the frmContacts form in the Conrad Systems
Contacts application checks the last name the user enters for a new record and issues
a warning message if it fi nds any close names. For example, if the user creates a new
record and enters a last name like “Viscas” (assuming John’s record is still in the table),
code behind the form detects the similar name and issues the warning shown in
Figure 20-7.

Figure 20-7 The application warns you about a potentially duplicate name in the contacts table.

The code searches for potential duplicates by comparing the Soundex codes of the last
names. The formula for generating a Soundex code for a name was created by the U.S.
National Archives and Records Administration (NARA). Soundex examines the letters
by sound and produces a four-character code. When the codes for two names match, it’s
likely that the names are very similar and sound alike. So, by using Soundex, the error-
checking code not only fi nds existing contacts with exactly the same last name but
also other contacts whose name might be the same but one or both might be slightly
 misspelled.

 Validating Complex Data 1073

Ch
ap

te
r 2

0

Access 2007 doesn’t provide a built-in Soundex function (SQL Server does), but it’s easy
to create a simple Visual Basic procedure to generate the code for a name. You can fi nd a
Soundex function in the modUtility module in both the Conrad Systems Contacts and
Housing Reservations sample databases. You can fi nd the code that checks for a poten-
tially duplicate name in the BeforeUpdate event procedure of the frmContacts form.
The code is as follows:

Private Sub Form_BeforeUpdate(Cancel As Integer)
Dim rst As DAO.Recordset, strNames As String
 ' If on a new row,
 If (Me.NewRecord = True) Then
 ' ... check for similar name
 If Not IsNothing(Me.LastName) Then
 ' Open a recordset to look for similar names
 Set rst = CurrentDb.OpenRecordset("SELECT LastName, FirstName FROM " & _
 "tblContacts WHERE Soundex([LastName]) = '" & _
 Soundex(Me.LastName) & "'")
 ' If got some similar names, collect them for the message
 Do Until rst.EOF
 strNames = strNames & rst!LastName & ", " & rst!FirstName & vbCrLf
 rst.MoveNext
 Loop
 ' Done with the recordset
 rst.Close
 Set rst = Nothing
 ' See if we got some similar names
 If Len(strNames) > 0 Then
 ' Yup, issue warning
 If vbNo = MsgBox("CSD Contacts found contacts with similar " & _
 "last names already saved in the database: " & vbCrLf & vbCrLf & _
 strNames & vbCrLf & _
 "Are you sure this contact is not a duplicate?", _
 vbQuestion + vbYesNo + vbDefaultButton2, gstrAppTitle) Then
 ' Cancel the save
 Cancel = True
 End If
 End If
 End If
 End If
End Sub

The code checks only when the user is about to save a new row. It opens a recordset to
fetch any other contact records where the Soundex code of the last name matches the
last name about to be saved. It includes all names it fi nds in the warning message so
that the user can verify that the new contact is not a duplicate. If the user decides not to
save the record, the code sets the Cancel parameter to True to tell Access not to save the
new contact.

Chapter 20

1074 Chapter 20 Automating Your Application with Visual Basic
Testing for Related Records When Deleting a Record
You certainly can and should defi ne relationships between your tables and ask Access
to enforce referential integrity to prevent saving unrelated records or deleting a record
that still has related records in other tables. In most cases, you do not want to activate
the cascade delete feature to automatically delete related records. However, Access
 displays a message “the record cannot be deleted or changed because ‘tblXYZ’ contains
related records” whenever the user tries to delete a record that has dependent records in
other tables.

You can do your own testing in code behind your forms in the Delete event and give the
user a message that more clearly identifi es the problem. For example, here’s the code
in the Delete event procedure of the frmContacts form in the Conrad Systems Contacts
application:

Private Sub Form_Delete(Cancel As Integer)
Dim db As DAO.Database, qd As DAO.QueryDef, rst As DAO.Recordset
Dim varRelate As Variant
 ' Check for related child rows
 ' Get a pointer to this database
 Set db = CurrentDb
 ' Open the test query
 Set qd = db.QueryDefs("qryCheckRelateContact")
 ' Set the contact parameter
 qd!ContactNo = Me.ContactID
 ' Open a recordset on the related rows
 Set rst = qd.OpenRecordset()
 ' If we got rows, then can't delete
 If Not rst.EOF Then
 varRelate = Null
 ' Loop to build the informative error message
 rst.MoveFirst
 Do Until rst.EOF
 ' Grab all the table names
 varRelate = (varRelate + ", ") & rst!TableName
 rst.MoveNext
 Loop
 MsgBox "You cannot delete this Contact because you have " & _
 "related rows in " & _
 varRelate & _
 ". Delete these records fi rst, and then delete the Contact.", _
 vbOKOnly + vbCritical, gstrAppTitle
 ' close all objects
 rst.Close
 qd.Close
 Set rst = Nothing
 Set qd = Nothing
 Set db = Nothing
 ' Cancel the delete
 Cancel = True
 Exit Sub
 End If

 Validating Complex Data 1075

Ch
ap

te
r 2

0

 ' No related rows - clean up objects
 rst.Close
 qd.Close
 Set rst = Nothing
 Set qd = Nothing
 Set db = Nothing
 ' No related rows, so OK to ask if they want to delete!
 If vbNo = MsgBox("Are you sure you want to delete Contact " & _
 Me.txtFullName & "?", _
 vbQuestion + vbYesNo + vbDefaultButton2, gstrAppTitle) Then
 Cancel = True
 End If
End Sub

The code uses a special UNION parameter query, qryCheckRelateContact, that
attempts to fetch related rows from tblCompanyContacts, tblCompanies (the
ReferredBy fi eld), tblContactEvents, and tblContactProducts, and returns the name(s)
of the table(s) that have any related rows. When the code fi nds rows returned by the
query, it formats a message containing names more meaningful to the user, and it
includes all the tables that the user must clear to be able to delete the contact. The stan-
dard Access error message lists only the fi rst related table that Access fi nds. Even when
the check for related records fi nds no problems, the code also gives the user a chance to
decide not to delete the contact after all.

Verifying a Prerequisite
In some applications, it makes sense to save a certain type of record only if prerequisite
records exist. For example, in a school or seminar registration application, the user
might need to verify that the person enrolling has successfully completed prerequisite
courses. In the Conrad Systems Contacts application, it doesn’t make sense to sell
support for a product that the contact doesn’t own. It’s not possible to ask Access to
perform this sort of test in a validation rule, so you must write code to enforce this busi-
ness rule.

Figure 20-8 shows you the message the user sees when trying to sell support for a prod-
uct that the contact doesn’t own. This message also appears if the user attempts to sell
the special upgrade to multi-user product, and the contact doesn’t already own the pre-
requisite single user product.

Chapter 20

1076 Chapter 20 Automating Your Application with Visual Basic
Figure 20-8 Special business rule code won’t let you sell a product with a missing prerequisite.

The code that enforces this business rule is in the BeforeUpdate event procedure of the
fsubContactProducts form. The code is as follows:

Private Sub Form_BeforeUpdate(Cancel As Integer)
Dim lngPreReq As Long, strPreReqName As String
 ' Check for prerequisite
 If Not IsNothing(Me.cmbProductID.Column(6)) Then
 ' Try to lookup the prerequisite for the contact
 lngPreReq = CLng(Me.cmbProductID.Column(6))
 If IsNull(DLookup("ProductID", "tblContactProducts", _
 "ProductID = " & lngPreReq & " And ContactID = " & _
 Me.Parent.ContactID)) Then
 ' Get the name of the prerequisite
 strPreReqName = DLookup("ProductName", "tblProducts", _
 "ProductID = " & lngPreReq)
 ' Display error
 MsgBox "This contact must own prerequisite product " & strPreReqName & _
 " before you can sell this product.", vbCritical, gstrAppTitle
 ' Cancel the edit
 Cancel = True
 End If
 End If
End Sub

 Validating Complex Data 1077

Ch
ap

te
r 2

0

Remember from Figure 20-2 that the query providing the row source for the
 cmbProductID combo box includes any prerequisite product ID in its seventh column.
When the code fi nds a prerequisite, it uses the DLookup function to verify that the
 current contact already owns the required product. If not, then the code looks up the
name of the product, includes it in an error message displayed to the user, and disal-
lows saving the product by setting the Cancel parameter to True. This enforces the busi-
ness rule and makes it crystal clear to the user what corrective action is necessary.

Maintaining a Special Unique Value
When two subjects have a many-to-many relationship in your database, you must defi ne
a linking table to create the relationship. (See Article 1, “Designing Your Database
Application,” on the companion CD for details about designing tables to support a
many-to-many relationship.) You will often add fi elds in the linking table to further
clarify the relationship between a row in one of the related tables and the matching row
in another. Figure 20-9 shows you the table in the Conrad Systems Contacts application
that defi nes the link between companies and contacts.

Figure 20-9 The tblCompanyContacts table defi nes the many-to-many relationship between
 companies and contacts.

Two special yes/no fi elds in this table identify which company is the default for a con-
tact and which contact is the default for a company. However, a contact can’t have two
or more default companies. Likewise, it doesn’t make sense for a company to have more
than one default contact. To verify this type of special unique value constraint you must
add business rules in code behind the forms you provide the user to edit this data.

Chapter 20

1078 Chapter 20 Automating Your Application with Visual Basic
You can fi nd the code that ensures that there is only one default company for each con-
tact in code behind the fsubContactCompanies form in the Conrad Systems Contacts
sample application (Contacts.accdb). The code is in the BeforeUpdate event procedure
for the DefaultForContact control on the form. The code is as follows:

Private Sub DefaultForContact_BeforeUpdate(Cancel As Integer)
 ' Disallow update if there's no Company ID yet
 If IsNothing(Me.CompanyID) Then
 MsgBox "You must select a Company / Organization before" & _
 " you can set Default.", _
 vbCritical, gstrAppTitle
 Cancel = True
 Exit Sub
 End If
 ' Make sure there's only one default
 ' Check only if setting Default = True
 If (Me.DefaultForContact = True) Then
 ' Try to lookup another contact set Default
 If Not IsNothing(DLookup("ContactID", "tblCompanyContacts", _
 "ContactID = " & Me.Parent.ContactID & _
 " AND CompanyID <> " & Me.CompanyID & _
 " AND DefaultForContact = True")) Then
 ' ooops...
 MsgBox "You have designated another Company as the" & _
 " Default for this Contact." & _
 " You must remove that designation before you" & _
 " can mark this Company as the Default.", _
 vbCritical, gstrAppTitle
 Cancel = True
 End If
 End If
End Sub

First, the code verifi es that the user has chosen a company for this record. (The Link
Child Fields and Link Master Fields properties of the subform control provide the
ContactID.) Next, if the user is attempting to mark this company as the default for the
contact, the code uses the DLookup function to see if any other record exists (in the
tblCompanyContacts table for the current contact) that is also marked as the default.
If it fi nds such a duplicate record, it warns the user and sets the Cancel parameter
to True to prevent saving the change to the control. You’ll fi nd similar code in the
fsubCompany Contacts form that makes sure only one contact is the primary for any
company.

Checking for Overlapping Data
When you build an application that tracks the scheduling of events or reservations that
can span a period of time, you most likely need to make sure that a new event or reser-
vation doesn’t overlap with an existing one. This can be a bit tricky, especially when the
records you’re checking have start and end dates or times.

 Validating Complex Data 1079

Ch
ap

te
r 2

0

Of course, the Housing Reservations application (Housing.accdb) must make sure that
an employee doesn’t enter an overlapping reservation request. To see how this works,
open the sample database and then open the frmSplash form to start the application.
Choose any employee name you like from the combo box in the sign-on dialog box
(Jack Richins is a good choice), type password as the password, and click the Sign On
button. On the main switchboard, click the Reservation Requests button. If you see the
Edit Reservation Requests dialog box (because you happened to sign on as a manager),
click the Edit All button.

The Reservation Requests form won’t let you enter a reservation start date in the past.
Click in the blank new row in the list of reservation requests, enter a reservation
request for next week for a span of several days, and save the row. (Remember, you can
click the Calendar buttons that appear next to the date fi elds when the focus is on the
fi eld to help you choose dates.) Enter another request that overlaps the reservation you
just created either at the beginning, the end, or across the middle of the reservation you
just entered. Try to save the row, and you should see a warning message similar to the
one in Figure 20-10.

Figure 20-10 The Housing Reservations application displays a warning when you attempt to save
an overlapping reservation request.

If you click No, the code cancels your save and returns you to the record to fi x it.
Notice that you can click Yes to save the duplicate—the application allows this because
an employee might want to intentionally reserve two or more rooms on the same or

Chapter 20

1080 Chapter 20 Automating Your Application with Visual Basic
overlapping dates. The code that performs this check in the BeforeUpdate event of the
 fsubReservationRequests form is as follows:

Dim varNum As Variant
 ' Check for overlap with existing request
 ' Try to grab RequestID - will be Null on unsaved row
 varNum = Me.RequestID
 If IsNull(varNum) Then varNum = 0 ' Set dummy value
 If Not IsNull(DLookup("RequestID", "tblReservationRequests", _
 "(EmployeeNumber = " & _
 Me.Parent.EmployeeNumber & ") AND (CheckInDate < #" & Me.CheckOutDate & _
 "#) AND (CheckOutDate > #" & Me.CheckInDate & "#) AND (RequestID <> " & _
 varNum & ")")) Then
 If vbNo = MsgBox("You already have a room request " & _
 "that overlaps the dates you have " & _
 "requested. Are you sure you want to make this request?", _
 vbQuestion + vbYesNo + vbDefaultButton2, gstrAppTitle) Then
 Cancel = True
 Exit Sub
 End If
 End If

The code uses the DLookup function to see if another reservation exists (but a differ-
ent request ID) for the same employee with dates that overlap. The criteria asks for any
record that has a check-in date less than the requested checkout date (an employee can
legitimately check out and then check back in on the same date) and a checkout date
that is greater than the requested check-in date. You might be tempted to build more
complex criteria that checks all combinations of reservations that overlap into the start
of the requested period, overlap into the end of the requested period, span the entire
requested period, or are contained wholly within the requested period, but the two
simple tests are all you need. (Draw it out on a sheet of paper if you don’t believe us!)

 Controlling Tabbing on a Multiple-Page Form
In Chapter 13, you learned how to create a multiple-page form as one way to handle
displaying more data than will fi t on one page of a form on your computer screen. You
also learned how to control simple tabbing on the form by setting the form’s Cycle prop-
erty to Current Page. One disadvantage of this approach is you can no longer use Tab or
Shift+Tab to move to other pages or other records. You must use the Page Up and Page
Down keys or the record selector buttons to do that. You can set Cycle to All Records to
restore this capability, but some strange things happen if you don’t add code to handle
page alignment.

To see what happens, open the frmXmplContactsPages form in the Conrad Systems
Contacts sample database (Contacts.accdb) from the Navigation Pane. Press Page Down
to move to the Home Address fi eld for the fi rst contact. Next press Shift+Tab once (back
tab). Your screen should look something like Figure 20-11.

 Controlling Tabbing on a Multiple-Page Form 1081

Ch
ap

te
r 2

0

Figure 20-11 The form page doesn’t align correctly when you back-tab from the Home Address
fi eld in frmXmplContactsPages.

If you leave the Cycle property set to All Records or Current Record, tabbing across page
boundaries causes misalignment unless you add some code to fi x it. What happens is
that Access moves the form display only far enough to show the control you just tabbed
to. (In this example, you’re tabbing to the Notes text box control.) Open the sample
frmContactsPages form that has the code to fi x this problem and try the same exercise.
You should discover that Shift+Tab places you in the Notes fi eld, but the form scrolls up
to show you the entire fi rst page.

To allow tabbing across a page boundary while providing correct page alignment, you
need event procedures in the Enter event for the fi rst and last controls that can receive
the focus on each page. If you examine the code behind the frmContactsPages form,
you’ll fi nd these four procedures:

Private Sub ContactID_Enter()
 ' If tabbing forward into this fi eld from previous record
 ' align page 1
 Me.GoToPage 1
End Sub

Private Sub HomeAddress_Enter()
 ' If tabbing forward into this fi eld, align page 2
 Me.GoToPage 2
End Sub

Private Sub Notes_Enter()
 On Error Resume Next
 ' If tabbing backward into the last control on page 1, align it
 Me.GoToPage 1
End Sub

Chapter 20

1082 Chapter 20 Automating Your Application with Visual Basic
Private Sub Photo_Enter()
 On Error Resume Next
 ' If tabbing backward into the last control on page 2, align it
 Me.GoToPage 2
End Sub

This is arguably some of the simplest example code in any of the sample databases, but
this attention to detail will make the users of your application very happy.

Note
The code also executes when you tab backward into the ContactID and HomeAddress

controls or forward into the Notes or Photo controls, or you can click in any of the con-

trols. Access realizes that the form is already on the page requested in each case, so it

does nothing.

Automating Data Selection
One of the most common tasks to automate in a database application is fi ltering data.
Particularly when a database contains thousands of records, users will rarely need to
work with more than a few records at a time. If your edit forms always display all the
records, performance can suffer greatly. So it’s a good idea to enable the user to easily
specify a subset of records. This section examines four ways to do this.

Working with a Multiple-Selection List Box
You work with list boxes all the time in Windows and in Access. For example, the fi le
list in Windows Explorer is a list box, the Access 2007 Navigation Pane is a list box,
and the list of properties on any tab in the property sheet is a list box. In the property,
you can select only one property from the list at a time. If you click a different property,
the previous object is no longer selected—this is a simple list box. In Windows Explorer,
you can select one fi le, select multiple noncontiguous fi les by holding down the Ctrl key
and clicking, or select a range of fi les by holding down the Shift key and clicking—this
is a multiple-selection list box.

Suppose you’re using the Conrad Systems Contacts application (Contacts.accdb) and
you’re interested in looking at the details for several contacts at one time but will rarely
want to look at the entire list. Start the application by opening the frmSplash form,
select John Viescas as the User Name, and click Sign On (no password required). Click
the Contacts button on the main switchboard form, and the application opens the

Note
The code also executes when you tab backward into the ContactID and HomeAddress

controls or forward into the Notes or Photo controls, or you can click in any of the con-

trols. Access realizes that the form is already on the page requested in each case, so it

does nothing.

 Automating Data Selection 1083

Ch
ap

te
r 2

0

Select Contacts form (frmContactList). As shown in Figure 20-12, the frmContactList
form contains a multiple-selection list box.

Note
You won’t see the Select Contacts dialog box if the Don’t Show Contact List option is

selected in John’s user profi le. If the Contacts form opens when you click the Contacts

button on the main switchboard, close the form and click the Users button. Clear the

Don’t Show Contact List option in John’s profi le, save the record, and close the form. You

should now see the Select Contacts dialog box when you click the Contacts button on

the main switchboard.

Figure 20-12 You can select multiple contact records to edit in the frmContactList form.

In this list box, the contacts are shown in alphabetic order by last name, and the list is
bound to the ContactID fi eld in the underlying table. You can edit any single contact by
simply double-clicking the person’s name. You can move the highlight up or down by
using the arrow keys. You can also type the fi rst letter of a contact last name to jump to
the next contact whose last name begins with that letter. You can hold down the Shift
key and use the arrow keys to extend the selection to multiple names. Finally, you can
hold down either the Shift key or the Ctrl key and use the mouse to select multiple
names.

Note
You won’t see the Select Contacts dialog box if the Don’t Show Contact List option is

selected in John’s user profi le. If the Contacts form opens when you click the Contacts

button on the main switchboard, close the form and click the Users button. Clear the

Don’t Show Contact List option in John’s profi le, save the record, and close the form. You

should now see the Select Contacts dialog box when you click the Contacts button on

the main switchboard.

Chapter 20

1084 Chapter 20 Automating Your Application with Visual Basic
Figure 20-12 shows three contacts selected using the Ctrl key and the mouse. When you
click the Edit button, the application opens the frmContacts form with only the records
you selected. As shown in Figure 20-13, the caption to the right of the Record Number
box indicates three available records and that the recordset is fi ltered.

Figure 20-13 After you select the records you want to edit in the frmContactList form, the applica-
tion opens the frmContacts form displaying only those records.

To see how this works, you need to go behind the scenes of the frmContactList form.
Click Exit on the main switchboard form to return to the Navigation Pane. (Click
Yes in the message box that asks “Are you sure you want to exit?,” and click No if the
application offers to create a backup for you.) Select frmContactList, and open the
form in Design view, as shown in Figure 20-14. Click the list box control, and open its
property sheet to see how the list box is defi ned. The list box uses two columns from
the qlkpContacts query, hiding the ContactID (the primary key that will provide a fast
lookup) in the fi rst column and displaying the contact name in the second column.
The key to this list box is that its Multi Select property is set to Extended. Using the
Extended setting gives you the full Ctrl+click or Shift+click features that you see in
most list boxes in Windows. The default for this property is None, which lets you select
only one value at a time. You can set it to Simple if you want to select or clear multiple
values using the mouse or the Spacebar.

 Automating Data Selection 1085

Ch
ap

te
r 2

0

Figure 20-14 The multiple-selection list box on the frmContactList form has its Multi Select prop-
erty set to Extended.

If you scroll down to the Event properties, you’ll fi nd an event procedure defi ned for On
Dbl Click. The code for this event procedure (which is called when you double-click an
item in the list box) runs only the cmdSome_Click procedure. Right-click the cmdSome
command button (the one whose caption says Edit), and choose Build Event from the
shortcut menu to jump to the cmdSome_Click procedure that does all the work, as
shown here:

Private Sub cmdSome_Click()
Dim strWhere As String, varItem As Variant
 ' Request to edit items selected in the list box
 ' If no items selected, then nothing to do
 If Me!lstCName.ItemsSelected.Count = 0 Then Exit Sub
 ' Loop through the items selected collection
 For Each varItem In Me!lstCName.ItemsSelected
 ' Grab the ContactID column for each selected item
 strWhere = strWhere & Me!lstCName.Column(0, varItem) & ","
 Next varItem
 ' Throw away the extra comma on the "IN" string
 strWhere = Left$(strWhere, Len(strWhere) - 1)
 ' Open the contacts form fi ltered on the selected contacts
 strWhere = "[ContactID] IN (" & strWhere & ") And (Inactive = False)"
 DoCmd.OpenForm FormName:="frmContacts", WhereCondition:=strWhere
 DoCmd.Close acForm, Me.Name
End Sub

Chapter 20

1086 Chapter 20 Automating Your Application with Visual Basic
When you set the Multi Select property of a list box to something other than None, you
can examine the control’s ItemsSelected collection to determine what (if anything) is
selected. In the cmdSome_Click procedure, the Visual Basic code fi rst checks the Count
property of the control’s ItemsSelected collection to determine whether anything is
selected. If the Count is 0, there’s nothing to do, so the procedure exits.

The ItemsSelected collection is composed of variant values, each of which provides an
index to a highlighted item in the list box. The For Each loop asks Visual Basic to loop
through all the available variant values in the collection, one at a time. Within the loop,
the code uses the value of the variant to retrieve the Contact ID from the list. List boxes
also have a Column property, and you can reference all the values in the list by using a
statement such as

Me.ListBoxName.Column(ColumnNum, RowNum)

where ListBoxName is the name of your list box control, ColumnNum is the relative
 column number (the fi rst column is 0, the second is 1, and so on), and RowNum is the
relative row number (also starting at 0). The variant values in the ItemsSelected col-
lection return the relative row number. This Visual Basic code uses column 0 and the
values in the ItemsSelected collection to append each selected ContactID to a string
variable, separated by commas. You’ll recall from studying the IN predicate in Chapter
7 that a list of values separated by commas is ideal for an IN clause.

After retrieving all the ContactID numbers, the next statement removes the trailing
comma from the string. The fi nal Where clause includes an additional criterion to dis-
play only active contacts. The DoCmd.OpenForm command uses the resulting string
to create a fi lter clause as it opens the form. Finally, the code closes the frmContactList
form. (Me.Name is the name of the current form.)

Providing a Custom Query By Form
Suppose you want to do a more complex search on the frmContacts form—using criteria
such as contact type, company, or products owned rather than simply using contact
name. You could teach your users how to use the Filter By Form features to build the
search, or you could use Filter By Form to easily construct multiple OR criteria on
simple tests. But if you want to fi nd, for example, all contacts who own the Single User
edition or whom you contacted between certain dates, there’s no way to construct this
request using standard fi ltering features. The reason for this is that when you defi ne a
fi lter for a subform (such as the Events subform in frmContacts) using Filter By Form,
you’re fi ltering only the subform rows. You’re not fi nding contacts who have only a
matching subform row.

The only solution, then, is to provide a custom Query By Form that provides options
to search on all the important fi elds and then build the Where clause to solve the
search problem using Visual Basic code. To start, open the Conrad Systems Contacts

 Automating Data Selection 1087

Ch
ap

te
r 2

0

application. (If you have exited to the Navigation Pane, you can start the application by
opening frmSplash.) Sign on, click the Contacts button on the main switchboard form,
and then click the Search button in the Select Contacts dialog box. You should see the
 fdlgContactSearch form, as shown in Figure 20-15.

Figure 20-15 You can design a custom Query By Form to perform a complex search.

Try selecting contacts whose last name begins with the letter M, whom you contacted
between March 1, 2007, and June 15, 2007, and who own the BO$$ Single User prod-
uct (from the Owns Product drop-down list). When you click the Search button, you
should see the frmContacts form open and display two contacts.

To see how this works, you need to explore the design of the fdlgContactSearch form.
Switch to the Navigation Pane (press F11), and open the form in Design view. You
should see a window like that shown in Figure 20-16. Notice that the form is not bound
to any record source. The controls must be unbound so they can accept any criteria val-
ues that a user might enter.

Chapter 20

1088 Chapter 20 Automating Your Application with Visual Basic
Figure 20-16 When you look at the fdlgContactSearch form in Design view, you can see that it has
no record source.

The bulk of the work happens when you click the Search button. The code for the event
procedure for the Click event of the Search button is shown here:

Private Sub cmdSearch_Click()
Dim varWhere As Variant, varDateSearch As Variant
Dim rst As DAO.Recordset
 ' Initialize to Null
 varWhere = Null
 varDateSearch = Null
 ' First, validate the dates
 ' If there's something in Contact Date From
 If Not IsNothing(Me.txtContactFrom) Then
 ' First, make sure it's a valid date
 If Not IsDate(Me.txtContactFrom) Then
 ' Nope, warn them and bail
 MsgBox "The value in Contact From is not a valid date.", _
 vbCritical, gstrAppTitle
 Exit Sub
 End If
 ' Now see if they specifi ed a "to" date
 If Not IsNothing(Me.txtContactTo) Then
 ' First, make sure it's a valid date
 If Not IsDate(Me.txtContactTo) Then
 ' Nope, warn them and bail
 MsgBox "The value in Contact To is not a valid date.", _

 Automating Data Selection 1089

Ch
ap

te
r 2

0

 vbCritical, gstrAppTitle
 Exit Sub
 End If
 ' Got two dates, now make sure "to" is >= "from"
 If Me.txtContactTo < Me.txtContactFrom Then
 MsgBox "Contact To date must be greater than " & _
 "or equal to Contact From date.", _
 vbCritical, gstrAppTitle
 Exit Sub
 End If
 End If
 Else
 ' No "from" but did they specify a "to"?
 If Not IsNothing(Me.txtContactTo) Then
 ' Make sure it's a valid date
 If Not IsDate(Me.txtContactTo) Then
 ' Nope, warn them and bail
 MsgBox "The value in Contact To is not a valid date.", _
 vbCritical, gstrAppTitle
 Exit Sub
 End If
 End If
 End If
 ' If there's something in Follow-up Date From
 If Not IsNothing(Me.txtFollowUpFrom) Then
 ' First, make sure it's a valid date
 If Not IsDate(Me.txtFollowUpFrom) Then
 ' Nope, warn them and bail
 MsgBox "The value in Follow-up From is not a valid date.", _
 vbCritical, gstrAppTitle
 Exit Sub
 End If
 ' Now see if they specifi ed a "to" date
 If Not IsNothing(Me.txtFollowUpTo) Then
 ' First, make sure it's a valid date
 If Not IsDate(Me.txtFollowUpTo) Then
 ' Nope, warn them and bail
 MsgBox "The value in Follow-up To is not a valid date.", _
 vbCritical, gstrAppTitle
 Exit Sub
 End If
 ' Got two dates, now make sure "to" is >= "from"
 If Me.txtFollowUpTo < Me.txtFollowUpFrom Then
 MsgBox "Follow-up To date must be greater than " & _
 "or equal to Follow-up From date.", _
 vbCritical, gstrAppTitle
 Exit Sub
 End If
 End If
 Else
 ' No "from" but did they specify a "to"?
 If Not IsNothing(Me.txtFollowUpTo) Then
 ' Make sure it's a valid date

Chapter 20

1090 Chapter 20 Automating Your Application with Visual Basic
 If Not IsDate(Me.txtFollowUpTo) Then
 ' Nope, warn them and bail
 MsgBox "The value in Follow-up To is not a valid date.", _
 vbCritical, gstrAppTitle
 Exit Sub
 End If
 End If
 End If
 ' OK, start building the fi lter
 ' If specifi ed a contact type value
 If Not IsNothing(Me.cmbContactType) Then
 ' .. build the predicate
 varWhere = "(ContactType.Value = '" & Me.cmbContactType & "')"
 End If
 ' Do Last Name next
 If Not IsNothing(Me.txtLastName) Then
 ' .. build the predicate
 ' Note: taking advantage of Null propagation
 ' so we don't have to test for any previous predicate
 varWhere = (varWhere + " AND ") & "([LastName] LIKE '" & _
 Me.txtLastName & "*')"
 End If
 ' Do First Name next
 If Not IsNothing(Me.txtFirstName) Then
 ' .. build the predicate
 varWhere = (varWhere + " AND ") & "([FirstName] LIKE '" & _
 Me.txtFirstName & "*')"
 End If
 ' Do Company next
 If Not IsNothing(Me.cmbCompanyID) Then
 ' .. build the predicate
 ' Must use a subquery here because the value is in a linking table...
 varWhere = (varWhere + " AND ") & _
 "([ContactID] IN (SELECT ContactID FROM tblCompanyContacts " & _
 "WHERE tblCompanyContacts.CompanyID = " & Me.cmbCompanyID & "))"
 End If
 ' Do City next
 If Not IsNothing(Me.txtCity) Then
 ' .. build the predicate
 ' Test for both Work and Home city
 varWhere = (varWhere + " AND ") & "(([WorkCity] LIKE '" & _
 Me.txtCity & "*')" & _
 " OR ([HomeCity] LIKE '" & Me.txtCity & "*'))"
 End If
 ' Do State next
 If Not IsNothing(Me.txtState) Then
 ' .. build the predicate
 ' Test for both Work and Home state
 varWhere = (varWhere + " AND ") & "(([WorkStateOrProvince] LIKE '" & _
 Me.txtState & "*')" & _
 " OR ([HomeStateOrProvince] LIKE '" & Me.txtState & "*'))"
 End If

 Automating Data Selection 1091

Ch
ap

te
r 2

0

 ' Do Contact date(s) next -- this is a toughie
 ' because we want to end up with one fi lter on the subquery table
 ' for both Contact Date range and FollowUp Date range
 ' Check Contact From fi rst
 If Not IsNothing(Me.txtContactFrom) Then
 ' .. build the predicate
 varDateSearch = "tblContactEvents.ContactDateTime >= #" & _
 Me.txtContactFrom & "#"
 End If
 ' Now do Contact To
 If Not IsNothing(Me.txtContactTo) Then
 ' .. add to the predicate, but add one because ContactDateTime includes
 ' a date AND a time
 varDateSearch = (varDateSearch + " AND ") & _
 "tblContactEvents.ContactDateTime < #" & _
 CDate(Me.txtContactTo) + 1 & "#"
 End If
 ' Now do Follow-up From
 If Not IsNothing(Me.txtFollowUpFrom) Then
 ' .. add to the predicate
 varDateSearch = (varDateSearch + " AND ") & _
 "tblContactEvents.ContactFollowUpDate >= #" & Me.txtFollowUpFrom & "#"
 End If
 ' Finally, do Follow-up To
 If Not IsNothing(Me.txtFollowUpTo) Then
 ' .. add to the predicate
 varDateSearch = (varDateSearch + " AND ") & _
 "tblContactEvents.ContactFollowUpDate <= #" & Me.txtFollowUpTo & "#"
 End If
 ' Did we build any date fi lter?
 If Not IsNothing(varDateSearch) Then
 ' OK, add to the overall fi lter
 ' Must use a subquery here because the value is in a linking table...
 varWhere = (varWhere + " AND ") & _
 "([ContactID] IN (SELECT ContactID FROM tblContactEvents " & _
 "WHERE " & varDateSearch & "))"
 End If
 ' Do Product
 If Not IsNothing(Me.cmbProductID) Then
 ' .. build the predicate
 ' Must use a subquery here because the value is in a linking table...
 varWhere = (varWhere + " AND ") & _
 "([ContactID] IN (SELECT ContactID FROM tblContactProducts " & _
 "WHERE tblContactProducts.ProductID = " & Me.cmbProductID & "))"
 End If
 ' Finally, do the Inactive check box
 If (Me.chkInactive = False) Then
 ' Build a fi lter to exclude inactive contacts
 varWhere = (varWhere + " AND ") & "(Inactive = False)"
 End If
 ' Check to see that we built a fi lter

Chapter 20

1092 Chapter 20 Automating Your Application with Visual Basic
 If IsNothing(varWhere) Then
 MsgBox "You must enter at least one search criteria.", _
 vbInformation, gstrAppTitle
 Exit Sub
 End If
 ' Open a recordset to see if any rows returned with this fi lter
 Set rst = CurrentDb.OpenRecordset("SELECT * FROM tblContacts " & _
 "WHERE " & varWhere)
 ' See if found none
 If rst.RecordCount = 0 Then
 MsgBox "No Contacts meet your criteria.", vbInformation, gstrAppTitle
 ' Clean up recordset
 rst.Close
 Set rst = Nothing
 Exit Sub
 End If
 ' Hide me to fi x later focus problems
 Me.Visible = False
 ' Move to last to fi nd out how many
 rst.MoveLast
 ' If 5 or less or frmContacts already open,
 If (rst.RecordCount < 6) Or IsFormLoaded("frmContacts") Then
 ' Open Contacts fi ltered
 ' Note: if form already open, this just applies the fi lter
 DoCmd.OpenForm "frmContacts", WhereCondition:=varWhere
 ' Make sure focus is on contacts
 Forms!frmContacts.SetFocus
 Else
 ' Ask if they want to see a summary list fi rst
 If vbYes = MsgBox("Your search found " & rst.RecordCount & _
 " contacts. " & _
 "Do you want to see a summary list fi rst?", _
 vbQuestion + vbYesNo, gstrAppTitle) Then
 ' Show the summary
 DoCmd.OpenForm "frmContactSummary", WhereCondition:=varWhere
 ' Make sure focus is on contact summary
 Forms!frmContactSummary.SetFocus
 Else
 ' Show the full contacts info fi ltered
 DoCmd.OpenForm "frmContacts", WhereCondition:=varWhere
 ' Make sure focus is on contacts
 Forms!frmContacts.SetFocus
 End If
 End If
 ' Done
 DoCmd.Close acForm, Me.Name
 ' Clean up recordset
 rst.Close
 Set rst = Nothing
End Sub

 Automating Data Selection 1093

Ch
ap

te
r 2

0

The fi rst part of the procedure validates the contact date from and to values and the
 follow-up date from and to values. If any are not valid dates or the from date is later
than the to date, the code issues an appropriate warning message and exits.

The next several segments of code build up a WHERE string by looking at the unbound
controls one at a time. If the corresponding fi eld is a string, the code builds a test using
the LIKE predicate so that whatever the user enters can match any part of the fi eld in
the underlying table, but not all the fi elds are strings. When the function adds a clause
as it builds the WHERE string, it inserts the AND keyword between clauses if other
clauses already exist. Because the variable containing the WHERE clause is a Variant
data type initialized to Null, the code can use a + concatenation to optionally add the
AND keyword. Note that because the ContactType fi eld is a multi-value fi eld, the code
specifi cally searches the Value property of the fi eld.

The underlying record source for the frmContacts form does not include either contact
event or product information directly, so the procedure has to build a predicate using
a subquery if you ask for a search by contact date, follow-up date, or product. In the
case of contact date or follow-up date, the code builds a separate fi lter string (varDate-
Search) because both fi elds are in the same table (tblContactEvents). If you ask for any
date range check, the code builds criteria using a subquery that fi nds the ContactID
from records in the tblContactEvents table that fall within the date range. For a search
by product, the code builds criteria using a subquery that fi nds the ContactID from
records in the tblContactProducts table that match the product you selected. Finally,
if you leave the Include Inactive Contacts check box cleared, the code adds a test to
include only records that are active.

After examining all the possible fi lter values the user could have entered, the code
checks to see if there’s anything in the fi lter string (varWhere). There’s no point in open-
ing the form without a fi lter, so the code displays a message and exits, leaving the form
open to allow the user to try again.

The fi nal part of the procedure builds a simple recordset on the tblContacts table used
in both the frmContacts and frmContactSummary forms, applying the WHERE clause
built by the code in the fi rst part of the procedure. If it fi nds no records, it uses the
 MsgBox function to inform the user and then gives the user a chance to try again.

When you fi rst open a Recordset object in code, its RecordCount property is 0 if the
recordset is empty and is some value greater than 0 if the recordset contains some
records. The RecordCount property of a Recordset object contains only a count of the
number of rows visited and not the number of rows in the recordset. So if it fi nds some
rows, the procedure moves to the last row in the temporary recordset to get an accu-
rate count. When the record count is greater than 5 and the frmContacts form is not
already open, the procedure uses the MsgBox function to give the user the option to
view a summary of the records found in the frmContactSummary form or to display
the records found directly in the frmContacts form. (As noted earlier, both forms use
the same record source, so the code can apply the fi lter it built as it opens either form.)
We’ll examine how the frmContactSummary form works in the next section.

Chapter 20

1094 Chapter 20 Automating Your Application with Visual Basic
Selecting from a Summary List
As you saw in the cmdSearch_Click procedure in the previous section, the user gets to
make a choice if more than 5 rows meet the entered criteria. To examine this feature in
more detail, make sure the frmContacts form is not open, and ask for a search of con-
tacts with a Contact Type of Customer in the fdlgContactSearch form. The result should
look like that shown in Figure 20-17, in which 30 contacts are categorized as customers.

Figure 20-17 This message box appears when the cmdSearch_Click procedure returns more than
fi ve rows.

When you click Yes, the cmdSearch_Click procedure opens the Contact Search Sum-
mary form (frmContactSummary), as shown in Figure 20-18. You can scroll down to
any row, put the focus on that row (be sure the row selector indicator is pointing to that
row), and then click the View Details button to open the frmContacts form and view the
details for the one contact you selected. You can see that this is a very effi cient way to
help the user narrow a search down to one particular contact.

Figure 20-18 You can select a specifi c contact from the search summary form.

 Automating Data Selection 1095

Ch
ap

te
r 2

0

You can also double-click either the Contact ID or the Name fi eld to see the details for
that contact. Because this list is already fi ltered using the criteria you specifi ed in the
fdlgContactSearch form, the code that responds to your request builds a simple fi lter
on the one Contact ID to make opening the frmContacts form most effi cient. The code
behind this form that responds to your request is as follows:

 ' Set up the fi lter
 strFilter = "(ContactID = " & Me.ContactID & ")"
 ' Open contacts fi ltered on the current row
 DoCmd.OpenForm FormName:="frmContacts", WhereCondition:=strFilter
 ' Close me
 DoCmd.Close acForm, Me.Name
 ' Put focus on contacts
 Forms!frmContacts.SetFocus

Filtering One List with Another
You might have noticed when editing products on the Products tab in the frmContacts
form (see Figure 20-1) that you can fi rst choose a product type to narrow down the list
of products and then choose the product you want. There are only 11 products in the
sample application, so being able to narrow down the product selection fi rst isn’t all
that useful, but you can imagine how a feature like this would be absolutely necessary
in an application that had thousands of products available for sale.

The secret is that the row source for the Product combo box is a parameter query that
fi lters the products based on the product type you chose. When you use this technique
in a form in Single Form view, all you need to do is requery the fi ltered combo box (in
this case, the Product combo box) when the user moves to a new record (in the Current
event of the form) and requery when the user chooses a different value in the combo
box that provides the fi lter value (in the AfterUpdate event of the combo box providing
the fi lter value).

However, using this technique on a form in Continuous Forms view is considerably
more complex. Even though you can see multiple rows in Continuous Forms view, there
is actually only one copy of each control on the form. If you always requery the Product
combo box each time you move to a new row, the product name displayed in other rows
that have a different product type will appear blank! When the value in a row doesn’t
match a value in the list, you get a blank result, not the actual value of the fi eld.

The way to solve this is to include the display name in the recordset for the form and
carefully overlay each combo box with a text box that always displays the correct value
regardless of the fi lter. You can open the fsubContactProducts form in Design view to
see how we did this. Figure 20-19 shows you the form with the two overlay text boxes
(CategoryDescription and ProductName) pulled down from the underlying combo
boxes (Unbound and ProductID).

Chapter 20

1096 Chapter 20 Automating Your Application with Visual Basic
Figure 20-19 You can solve a fi ltered combo box display problem by overlaying text boxes.

Notice that the control source of the Product combo box is actually the ProductID fi eld,
but the combo box displays the ProductName fi eld. Also, the Product Type combo
box isn’t bound to any fi eld at all—there is no CategoryDescription fi eld in tblContact-
Products—but it does display the CategoryDescription fi eld from the lookup table. To
make this work, you need to include the ProductName and CategoryDescription fi elds
in the record source for this form. You don’t want the user to update these values, but
you need them to provide the overlay display. These two text boxes have their Locked
property set to Yes to prevent updating and their Tab Stop property set to No so that the
user will tab into the underlying combo boxes and not these text boxes. Figure 20-20
shows you the qryContactProducts query that’s the row source for this form.

Figure 20-20 The qryContactProducts query provides the necessary ProductName and
CategoryDescription fi elds from a related table so that you can display the values.

To make it all work correctly, several event procedures make sure the focus goes where
necessary and that the fi ltered Product combo box gets requeried correctly. The code
behind the fsubContactProducts form that does this is as follows:

Private Sub CategoryDescription_GotFocus()
 ' We have some tricky "overlay" text boxes here that
 ' shouldn't get the focus. Move focus to the underlying
 ' combo box if that happens.
 Me.cmbCategoryDescription.SetFocus
End Sub

 Automating Data Selection 1097

Ch
ap

te
r 2

0

Private Sub cmbCategoryDescription_AfterUpdate()
 ' If they pick a new Category, then requery the
 ' product list that's fi ltered on category
 Me.cmbProductID.Requery
 ' Set the Product to the fi rst row in the new list
 Me.cmbProductID = Me.cmbProductID.ItemData(0)
 ' .. and signal Product after update.
 cmbProductID_AfterUpdate
End Sub

Private Sub Form_Current()
 ' If we have a valid Category Description on this row...
 If Not IsNothing(Me.CategoryDescription) Then
 ' Then make sure the unbound combo is in sync.
 Me.cmbCategoryDescription = Me.CategoryDescription
 End If
 ' Requery the product list to match the current category
 Me.cmbProductID.Requery
End Sub

Private Sub ProductName_GotFocus()
 ' We have some tricky "overlay" text boxes here that
 ' shouldn't get the focus. Move focus to the underlying
 ' combo box if that happens.
 Me.cmbProductID.SetFocus
End Sub

As expected, the code requeries the Product combo box whenever you pick a new
category (cmbCategoryDescription_AfterUpdate) or when you move to a new row
(Form_Current). It also keeps the unbound combo box in sync as you move from
row to row as long as the underlying record has a valid category. (A new record won’t
have a related CategoryDescription until you choose a Product ID, so the code doesn’t
update the unbound combo box on a new record.) Finally, if you try to click in Category-
Description or ProductName, the GotFocus code moves you to the underlying combo
box where you belong. Why didn’t we simply set the Enabled property for Category-
Description and ProductName to No? If you do that, then you can’t ever click into the
category or product combo boxes because the disabled text box overlaid on top would
block you.

Note
If you want to see what the fi ltered combo box looks like without the overlay, make a

backup copy of Contacts.accdb, open the fsubContactProducts form in Design view,

move the Category Description and Product Name text boxes down similar to Figure

20-19, and save the form. Now open the frmContacts form and click on the Products tab.

Note
If you want to see what the fi ltered combo box looks like without the overlay, make a

backup copy of Contacts.accdb, open the fsubContactProducts form in Design view,

move the Category Description and Product Name text boxes down similar to Figure

20-19, and save the form. Now open the frmContacts form and click on the Products tab.

Chapter 20

1098 Chapter 20 Automating Your Application with Visual Basic
 Linking to Related Data in Another Form or Report
Now that you know how to build a fi lter to limit what the user sees, you can probably
surmise that using a fi lter is a good way to open another form or report that displays
information related to the current record or set of fi ltered records in the current form.
This section shows you how to do this for both forms and reports. Later in this section,
you will learn how to use events in class modules to build sophisticated links.

Linking Forms Using a Filter
You’ve already seen the frmContactSummary form (Figure 20-18) that uses a simple fi l-
ter to link from the record selected in that form to full details in the frmContacts form.
You can fi nd similar code behind the fsubCompanyContacts form used as a subform in
the frmCompanies form. Figure 20-21 shows you the frmCompanies form and the Edit
This buttons we provided on the subform.

Figure 20-21 You can provide a link from the Companies / Organizations form to details about a
particular contact.

To see the details for a particular contact, the user clicks the Edit This button on the
chosen contact record, and code opens the frmContacts form with that contact dis-
played. The code behind the button is as follows:

Private Sub cmdEdit_Click()
 ' Open Contacts on the related record
 DoCmd.OpenForm "frmContacts", WhereCondition:="ContactID = " & Me.ContactID
End Sub

 Linking to Related Data in Another Form or Report 1099

Ch
ap

te
r 2

0

And code in the form’s Current event prevents the user from clicking on the button
when on a new record that doesn’t have a contact ID, as shown here:

Private Sub Form_Current()
 ' Disable "edit this" if on a new row
 Me.cmdEdit.Enabled = Not (Me.NewRecord)
End Sub

Setting the button’s Enabled property to False causes it to appear dimmed, and the user
cannot click the button.

Linking to a Report Using a Filter
Now let’s take a look at using the Filter technique to link to related information in
a report. Open the frmInvoices form in the Conrad Systems Contacts application
 (Contacts.accdb) and move to an invoice that looks interesting. Click the Print button
to open the Print Invoices form (fdlgInvoicePrintOptions) that gives you the option to
see the current invoice formatted in a report, display all unprinted invoices in a report,
display only unprinted invoices for the current customer, or print all invoices currently
shown in the frmInvoices form. (You can use Search to fi lter the displayed invoices to
the ones you want.) Select the Current Invoice Only option and click Print again to see
the invoice in a report, as shown in Figure 20-22. (The fi gure shows you the sequence
you see after clicking the Print button on the frmInvoices form. The Print Invoices dia-
log box closes after opening the report.)

Figure 20-22 You can ask to print only the current invoice in the Conrad Systems Contacts database.

Chapter 20

1100 Chapter 20 Automating Your Application with Visual Basic
The code from the Click event of the Print button in the fdlgInvoicePrintOptions form
is as follows:

Private Sub cmdPrint_Click()
Dim strFilter As String, frm As Form
 ' Set an error trap
 On Error GoTo cmdPrint_Error
 ' Get a pointer to the Invoices form
 Set frm = Forms!frmInvoices
 Select Case Me.optFilterType.Value
 ' Current Invoice
 Case 1
 ' Set fi lter to open Invoice report for current invoice only
 strFilter = "[InvoiceID] = " & frm!InvoiceID
 ' All unprinted invoices
 Case 2
 ' Set fi lter to open all unprinted invoices
 strFilter = "[InvoicePrinted] = 0"
 ' Unprinted invoices for current company
 Case 3
 ' Set fi lter to open unprinted invoices for current company
 strFilter = "[CompanyID] = " & frm!cmbCompanyID & _
 " AND [InvoicePrinted] = 0"
 ' Displayed invoices (if fi lter set on form)
 Case 4
 ' Check for a fi lter on the form
 If IsNothing(frm.Filter) Then
 ' Make sure they want to print all!
 If vbNo = MsgBox("Your selection will print all " & _
 "Invoices currently in the " & _
 "database. Are you sure you want to do this?", _
 vbQuestion + vbYesNo + vbDefaultButton2, _
 gstrAppTitle) Then
 Exit Sub
 End If
 ' Set "do them all" fi lter
 strFilter = "1 = 1"
 Else
 strFilter = frm.Filter
 End If
 End Select
 ' Hide me
 Me.Visible = False
 ' Have a fi lter now. Open the report on that fi lter
 DoCmd.OpenReport "rptInvoices", acViewPreview, , strFilter
 ' Update the Print fl ag for selected invoices
 CurrentDb.Execute "UPDATE tblInvoices SET InvoicePrinted = -1 WHERE " & _
 strFilter
 ' Refresh the form to show updated Printed status
 frm.Refresh
 ' Execute the Current event on the form to make sure it is locked correctly
 frm.Form_Current

 Linking to Related Data in Another Form or Report 1101

Ch
ap

te
r 2

0

cmdPrint_Exit:
 ' Clear the form object
 Set frm = Nothing
 ' Done
 DoCmd.Close acForm, Me.Name
 Exit Sub
cmdPrint_Error:
 ' Got an error
 ' If Cancel, that means the fi lter produced no Invoices
 If Err = errCancel Then
 ' Exit - report will display "no records" message
 Resume cmdPrint_Exit
 End If
 ' Got unknown error - display and log
 MsgBox "Unexpected error while printing and updating print fl ags: " & _
 Err & ", " & _
 Error, vbCritical, gstrAppTitle
 ErrorLog Me.Name & "_Print", Err, Error
 Resume cmdPrint_Exit
End Sub

This fi rst part of this procedure sets an object reference to the frmInvoices form to make
it easy to grab either the InvoiceID or the CompanyID and to reference properties and
methods of the form’s object. The Select Case statement examines which option button
the user selected on fdlgInvoicePrintOptions and builds the appropriate fi lter for the
report. Notice that if the user asks to print all the invoices currently displayed on the
form, the code fi rst looks for a user-applied fi lter on the frmInvoices form. If the code
fi nds no fi lter, it asks if the user wants to print all invoices. The code uses the fi lter it
built (or the current fi lter on the frmInvoices form) to open the rptInvoices report in
Print Preview. It also executes an SQL UPDATE statement to fl ag all the invoices the
user printed. If you look at code in the Current event of the frmInvoices form, you’ll fi nd
that it locks all controls so that the user can’t update an invoice that has been printed.

Synchronizing Two Forms Using a Class Event
Sometimes it’s useful to give the user an option to open a pop-up form that displays
additional details about some information displayed on another form. As you move
from one row to another in the main form, it would be nice if the form that displayed
the additional information stayed in sync.

Of course, the Current event of a form lets you know when you move to a new row.
In the Wedding List sample database built with macros (WeddingListMC.accdb), the
 macros do some elaborate fi ltering to keep a pop-up form with additional city informa-
tion in sync with the main form. However, doing it with macros is the hard way!

The primary Wedding List sample application is in WeddingList.accdb, and it uses
Visual Basic to provide all the automation. With Visual Basic, we were able to declare
and use a custom event in the WeddingList form to signal the CityInformation form if
it’s open and responding to the events. In the Current event of the WeddingList form,
we don’t have to worry about whether the companion form is open. The code simply

Chapter 20

1102 Chapter 20 Automating Your Application with Visual Basic
signals the event and lets the City Information form worry about keeping in sync with
the main form. (The user can open the City Information form at any time by clicking
the City Info button on the Wedding List form.) You can see these two forms in action
in Figure 20-23.

Figure 20-23 The CityInformation form pops open over the main WeddingList form to display
additional information about the invitee’s home city.

Here’s the code from the WeddingList class module that makes an event available to
signal the CityInformation form:

Option Compare Database
Option Explicit
' Event to signal we've moved to a new city
Public Event NewCity(varCityName As Variant)
' End of Declarations Section

Private Sub Form_Current()
On Error GoTo Form_Current_Err
 ' Signal the city form to move to this city
 ' and pass the city name to the event
 RaiseEvent NewCity(Me!City)
Form_Current_Exit:
 Exit Sub

 Linking to Related Data in Another Form or Report 1103

Ch
ap

te
r 2

0

Form_Current_Err:
 MsgBox Error$
 Resume Form_Current_Exit
End Sub

Private Sub cmdCity_Click()
On Error GoTo cmdCity_Click_Err
 ' If the city form not open, do it
 If Not IsFormLoaded("CityInformation") Then
 DoCmd.OpenForm "CityInformation", acNormal, , , acFormReadOnly, acHidden
 ' Give the other form a chance to "hook" our event
 DoEvents
 End If
 ' Signal the form we just opened
 RaiseEvent NewCity(Me!City)
cmdCity_Click_Exit:
 Exit Sub
cmdCity_Click_Err:
 MsgBox Error$
 Resume cmdCity_Click_Exit
End Sub

In the Declarations section of the module, we declared an event variable and indicated
that we’re going to pass a parameter (the city name) in the event. In the Form_Current
event procedure, the code uses RaiseEvent to pass the current city name to any other
module that’s listening. The code doesn’t have to worry about whether any other mod-
ule is interested in this event—it just signals the event when appropriate and then ends.
(This is not unlike how Access works. When a form moves to a new record, Access
signals the Form_Current event, but nothing happens unless you have written code to
respond to the event.) Note that the variable passed is declared as a Variant to handle
the case when the user moves to the new row at the end—the City control will be Null
in that case. A command button (cmdCity) on the WeddingList form allows the user to
open the CityInformation form. The Click event of that button opens the form hidden
and uses the DoEvents function to give the CityInformation form a chance to open and
indicate that it wants to listen to the NewCity event on the WeddingList form. After
waiting for the CityInformation form to fi nish processing, the code raises the event to
notify that form about the city in the current row.

The CityInformation form does all the work (when it’s open) to respond to the event
signaled by the WeddingList form and move to the correct row. The code is shown here:

Option Compare Database
Option Explicit
Dim WithEvents frmWedding As Form_WeddingList
' End of the Declarations Section

Private Sub Form_Load()
On Error GoTo Form_Load_Err
 ' If the wedding list form is open
 If IsLoaded("WeddingList") Then
 ' Then set to respond to the NewCity event
 Set frmWedding = Forms!WeddingList
 End If

Chapter 20

1104 Chapter 20 Automating Your Application with Visual Basic
Form_Load_Exit:
 Exit Sub
Form_Load_Err:
 MsgBox Error$
 Resume Form_Load_Exit
End Sub

Private Sub frmWedding_NewCity(varCityName As Variant)
 ' The Wedding List form has asked us to move to a
 ' new city via the NewCity event
 On Error Resume Next
 If IsNothing(varCityName) Then
 ' Hide me if city name is empty
 Me.Visible = False
 Else
 ' Reveal me if there's a city name, and go
 ' fi nd it
 Me.Visible = True
 Me.Recordset.FindFirst "[CityName] = """ & _
 varCityName & """"
 End If
End Sub

In the Declarations section, you can fi nd an object variable called frmWedding that has
a data type equal to the class module name of the WeddingList form. The WithEvents
keyword indicates that code in this class module will respond to events signaled by
any object assigned to this variable. When the form opens, the Form_Load procedure
checks to see that the WeddingList form is open (just in case you opened this form by
itself from the Navigation Pane). If the WeddingList form is open, it “hooks” the New-
City event in that form by assigning it to the frmWedding variable.

The frmWedding_NewCity procedure responds to the NewCity event of the
 frmWedding object. Once the Load event code establishes frmWedding as a pointer to
the WeddingList form, this procedure runs whenever code in the class module for that
form signals the NewCity event with RaiseEvent.

The code in the event procedure is pretty simple. If the CityName parameter passed
by the event is “nothing” (Null or a zero length string), the procedure hides the form
because there’s nothing to display. If the event passes a valid city name, the procedure
uses the FindFirst method of the Recordset object of this form to move to the correct city.

Note
The Recordset property of a form in an Access database (.accdb fi le) returns a DAO

recordset in Access 2007. For this reason, you should use a DAO FindFirst method, not an

ADO Find method, to locate rows in a form recordset.

Note
The Recordset property of a form in an Access database (.accdb fi le) returns a DAO

recordset in Access 2007. For this reason, you should use a DAO FindFirst method, not an

ADO Find method, to locate rows in a form recordset.

 Automating Complex Tasks 1105

Ch
ap

te
r 2

0

Automating Complex Tasks
The most complex Visual Basic code we’ve examined thus far in this chapter is the pro-
cedure to build a search clause from the data you enter in the fdlgContactSearch form.
Trust us, we’ve only started to scratch the surface!

Triggering a Data Task from a Related Form
One of the more complex pieces of code in the Conrad Systems Contacts sample data-
base is triggered from the fsubContactEvents form that’s part of the frmContacts form.
After signing on correctly to the application, the user can open the frmContacts form,
click on the Events tab, and add an event indicating the sale of a product. As soon as the
user saves the record, code behind the subform automatically adds the product to the
contact, as shown in Figure 20-24.

Figure 20-24 Logging a product sale event on the Events tab automatically sells the product to the
contact.

If you look behind the fsubContactEvents form, you’ll fi nd event procedures that detect
when the user has created a sale event and execute an SQL INSERT command to create
the related product row. The code is as follows:

Option Compare Database
Option Explicit
' Flag to indicate auto-add of a product if new event requires it
Dim intProductAdd As Integer
' Place to store Company Name on a product add

Chapter 20

1106 Chapter 20 Automating Your Application with Visual Basic
Dim varCoName As Variant
' End of the Declarations Section

Private Sub ContactEventTypeID_BeforeUpdate(Cancel As Integer)
 ' Did they pick an event that involves a software sale?
 ' NOTE: All columns in a combo box are TEXT
 If Me.ContactEventTypeID.Column(4) = "-1" Then
 ' Try to lookup this contact's Company Name
 varCoName = DLookup("CompanyName", "qryContactDefaultCompany", _
 "ContactID = " & Me.Parent.ContactID.Value)
 ' If not found, then disallow product sale
 If IsNothing(varCoName) Then
 MsgBox "You cannot sell a product to a Contact " & _
 "that does not have a " & _
 "related Company that is marked as the default for this Contact." & _
 " Press Esc to clear your edits and click on the Companies tab " & _
 "to defi ne the default Company for this Contact.", _
 vbCritical, gstrAppTitle
 Cancel = True
 End If
 End If
End Sub

Private Sub Form_BeforeUpdate(Cancel As Integer)
 ' Did they pick an event that involves a software sale?
 ' NOTE: All columns in a combo box are TEXT
 If Me.ContactEventTypeID.Column(4) = "-1" Then
 ' Do this only if on a new record or they changed the EventID value
 If (Me.NewRecord) Or (Me.ContactEventTypeID <> _
 Me.ContactEventTypeID.OldValue) Then
 ' Set the add product fl ag
 '- product added by AfterUpdate code for safety
 intProductAdd = True
 End If
 End If
End Sub

Private Sub Form_AfterUpdate()
Dim strSQL As String, curPrice As Currency,
Dim lngProduct As Long, varCoID As Variant
Dim rst As DAO.Recordset, strPreReqName As String
 ' See if we need to auto-add a product
 If (intProductAdd = True) Then
 ' Reset so we only do this once
 intProductAdd = False
 ' Set an error trap
 On Error GoTo Insert_Err
 ' Save the Product ID
 lngProduct = Me.ContactEventTypeID.Column(5)
 ' Fetch the product record
 Set rst = CurrentDb.OpenRecordset("SELECT * FROM tblProducts " & _
 "WHERE ProductID = " & lngProduct)

 Automating Complex Tasks 1107

Ch
ap

te
r 2

0

 ' Make sure we got a record
 If rst.EOF Then
 MsgBox "Could not fi nd the product record for this sales event." & _
 " Auto-create of " & _
 "product record for this contact has failed.", _
 vbCritical, gstrAppTitle
 rst.Close
 Set rst = Nothing
 GoTo Insert_Exit
 End If
 ' Check for prerequisite product
 If Not IsNull(rst!PreRequisite) Then
 ' Make sure contact owns the prerequisite product
 If IsNull(DLookup("ProductID", "tblContactProducts", _
 "ProductID = " & rst!PreRequisite & " And ContactID = " & _
 Me.Parent.ContactID)) Then
 ' Get the name of the prerequisite
 strPreReqName = DLookup("ProductName", "tblProducts", _
 "ProductID = " & rst!PreRequisite)
 ' Display error
 MsgBox "This contact must own prerequisite product " & _
 strPreReqName & " before you can sell this product." & _
 vbCrLf & vbCrLf & _
 "Auto-create of product record for this contact has failed", _
 vbCritical, gstrAppTitle
 ' Bail
 rst.Close
 Set rst = Nothing
 GoTo Insert_Exit
 End If
 End If
 ' Save the price
 curPrice = rst!UnitPrice
 ' Done with the record - close it
 rst.Close
 Set rst = Nothing
 ' Now, fi nd the default company for this contact
 varCoID = DLookup("CompanyID", "qryContactDefaultCompany", _
 "ContactID = " & Me.Parent.ContactID.Value)
 ' If not found, then disallow product sale
 If IsNothing(varCoID) Then
 MsgBox "You cannot sell a product to a Contact who does not have a " & _
 "related Company that is marked as the default for this Contact.", _
 vbCritical, gstrAppTitle
 GoTo Insert_Exit
 End If
 ' Set up the INSERT command
 strSQL = "INSERT INTO tblContactProducts " & _
 "(CompanyID, ContactID, ProductID, DateSold, SoldPrice) " & _
 "VALUES(" & varCoID & ", " & Me.Parent.ContactID & ", " & _
 lngProduct & ", #" & _
 DateValue(Me.ContactDateTime) & "#, " & _
 curPrice & ")"

Chapter 20

1108 Chapter 20 Automating Your Application with Visual Basic
 ' Attempt to insert the Product row
 CurrentDb.Execute strSQL, dbFailOnError
 ' Got a good add - inform the user
 MsgBox "The product you sold with this event " & _
 "has been automatically added " & _
 "to the product list for this user. " & _
 "Click the Products tab to verify the price.", _
 vbInformation, gstrAppTitle
 ' Requery the other subform to get the new row there
 Me.Parent.fsubContactProducts.Requery
 End If
Insert_Exit:
 Exit Sub
Insert_Err:
 ' Was error a duplicate row?
 If Err = errDuplicate Then
 MsgBox "CSD Contacts attempted to auto-add " & _
 "the product that you just indicated " & _
 "that you sold, but the Contact appears " & _
 "to already own this product. Be sure " & _
 "to verify that you haven't tried to sell the same product twice.", _
 vbCritical, gstrAppTitle
 Else
 MsgBox "There was an error attempting to auto-add " & _
 "the product you just sold: " & _
 Err & ", " & Error, vbCritical, gstrAppTitle
 ' Log the error
 ErrorLog Me.Name & "_FormAfterUpdate", Err, Error
 End If
 Resume Insert_Exit
End Sub

In the Declarations section of the module, you can fi nd two variables that the event
procedures use to pass information between events. (If you declare the variables inside
one of the procedures, only that procedure can use the variables.) The BeforeUpdate
event procedure for the contact event type checks to see if the event is a product sale
(by examining one of the hidden columns in the combo box row source). If the user is
trying to log a product sale and this particular contact doesn’t have a default company
defi ned, the code displays an error message and won’t let the user save that event type.
Remember, a record in the tblContactProducts table must have a CompanyID as well as
a ContactID.

When the user attempts to save a new or changed event record, Access runs the form’s
BeforeUpdate event procedure. This code again checks to see if the record about to be
saved is for a product sale. However, if this isn’t a new record or the user is saving an
old event record but didn’t change the event type, the code exits because it doesn’t want
to add a product record twice. (If this is an existing record and the event type didn’t
change, this code probably created the companion contact product record the fi rst time

 Automating Complex Tasks 1109

Ch
ap

te
r 2

0

the user saved the record.) The code could insert the record into tblContactProducts
at this point, but, as you learned in Chapter 17, the record isn’t really saved until after
the BeforeUpdate event fi nishes. So, this code sets the module variable to tell the form’s
AfterUpdate event procedure to perform that task after Access has saved the changed
record.

After Access saves the new or changed event record, it runs the form’s AfterUpdate
event procedure. If the code in BeforeUpdate indicated that a product insert is required
by setting the module intProductAdd variable to True, this code sets up to add the new
record. It opens a recordset on the tblProducts table for the product that was just sold
so that it can get the product price and check for any prerequisite product. If the prod-
uct has a prerequisite but this contact doesn’t own the prerequisite, the code displays
an error message and exits.

Although previous code checked to see that this contact has a default CompanyID, this
code checks again and exits if it can’t fi nd one. After the code has completed all checks
and has the price and company ID information it needs, it inserts the new record into
the tblContactProducts table using SQL. Notice that at the bottom of the procedure
you can fi nd error-trapping code that tests to see if the insert caused a duplicate record
error.

Linking to a Related Task
Let’s switch to the Housing Reservations application (Housing.accdb) and take a look
at the process for confi rming a room for a reservation request. To see this in action,
you must start the application by opening the frmSplash form, and then sign on as an
administrator (Conrad, Jeff, Richins, Jack S., Schare, Gary, or Viescas, John L.) using
password as the password. On the main switchboard, click Reservation Requests, and
then click View Unbooked in the Edit Reservation Requests dialog box. You’ll see the
Unbooked Requests form (frmUnbookedRequests) as shown in Figure 20-25.

Note
The query that provides the records displayed in the frmUnbookedRequests form

includes criteria to exclude any requests that have a check-in date earlier than today’s

date. (It doesn’t make sense to confi rm a reservation request for a date in the past.) The

latest requested check-in date in the original database is September 15, 2007, so you will

probably see an error message when you attempt to look at unbooked requests. You can

use the zfrmLoadData form to load new reservations and requests that are more current

into the qryUnbookedRequests query to not eliminate old requests to be able to see how

the frmUnbookedRequests form works.

Note
The query that provides the records displayed in the frmUnbookedRequests form

includes criteria to exclude any requests that have a check-in date earlier than today’s

date. (It doesn’t make sense to confi rm a reservation request for a date in the past.) The

latest requested check-in date in the original database is September 15, 2007, so you will

probably see an error message when you attempt to look at unbooked requests. You can

use the zfrmLoadData form to load new reservations and requests that are more current

into the qryUnbookedRequests query to not eliminate old requests to be able to see how

the frmUnbookedRequests form works.

Chapter 20

1110 Chapter 20 Automating Your Application with Visual Basic
Figure 20-25 The Unbooked Requests form lets administrators view pending requests and start
the booking process.

Earlier in this chapter, in “Linking to Related Data in Another Form or Report” on page
1098, you learned one technique for using a command button to link to a related task.
The key task in the Housing Reservations application for the housing manager (or any
administrator) is to assign a room and book a reservation for pending requests. When
you click one of the Book buttons on the Unbooked Requests form, code behind the
form opens a form to show the manager the rooms that match the request and aren’t
booked for the time span requested. If you click the request from Kirk DeGrasse for a
room with a king bed from June 7, 2007, to June 25, 2007, you’ll see the list of available
rooms in the fdlgAvailableRooms form as shown in Figure 20-26.

 Automating Complex Tasks 1111

Ch
ap

te
r 2

0

Figure 20-26 The fdlgAvailableRooms form shows a list of available rooms matching the selected
reservation request.

The code behind the Book button on the frmUnbookedRequests form is as follows:

Private Sub cmdBook_Click()
 ' Make sure no changes are pending
 If Me.Dirty Then Me.Dirty = False
 ' Open the available rooms form - hidden, dialog
 ' and check if any available
 DoCmd.OpenForm "fdlgAvailableRooms", _
 WhereCondition:="Smoking = " & Me.Smoking, _
 WindowMode:=acHidden
 If Forms!fdlgAvailableRooms.RecordsetClone.RecordCount = 0 Then
 MsgBox "There are no available rooms of this " & _
 "type for the dates requested." & _
 vbCrLf & vbCrLf & _
 "You can change the Room Type or dates and try again.", _
 vbInformation, gstrAppTitle
 DoCmd.Close acForm, "fdlgAvailableRooms"
 Exit Sub
 End If

Chapter 20

1112 Chapter 20 Automating Your Application with Visual Basic
 ' Show the available rooms
 ' - form will call our public sub to create the res.
 Forms!fdlgAvailableRooms.Visible = True
End Sub

The record source of the fdlgAvailableRooms form is a parameter query that fi lters
out rooms already booked for the specifi ed dates and includes the remaining rooms
that match the requested room type. The code behind the Book button adds a fi lter
for the smoking or nonsmoking request because the room type doesn’t include this
information but each specifi c available room does. Behind the Pick This button on the
 fdlgAvailableRooms form, you can fi nd the following code:

Private Sub cmdPick_Click()
Dim intReturn As Integer
 ' Call the build a reservation proc in the calling form
 intReturn = Form_frmUnbookedRequests.Bookit(Me.FacilityID, Me.RoomNumber, _
 Me.DailyRate, Me.WeeklyRate)
 If (intReturn = True) Then
 MsgBox "Booked!", vbExclamation, gstrAppTitle
 Else
 MsgBox "Room booking failed. Please try again.", _
 vbCritical, gstrAppTitle
 End If
 DoCmd.Close acForm, Me.Name
End Sub

Can you fi gure out what’s happening? Back in frmUnbookedRequests, there’s a public
function called Bookit that this code calls as a method of that form. It passes the critical
FacilityID, RoomNumber, DailyRate, and WeeklyRate fi elds to complete the booking.
Back in frmUnbookedRequests, the code in the public function is as follows:

Public Function Bookit(lngFacility As Long, lngRoom As Long, _
 curDaily As Currency, curWeekly As Currency) As Integer
' Sub called as a method by fdlgAvailableRooms to book the selected room
' Caller passes in selected Facility, Room number, and rates
Dim db As DAO.Database, rstRes As DAO.Recordset
Dim varResNum As Variant, strSQL As String, intTrans As Integer
 ' Set error trap
 On Error GoTo BookIt_Err
 ' Get a pointer to this database
 Set db = CurrentDb
 ' Open the reservations table for insert
 Set rstRes = db.OpenRecordset("tblReservations", _
 dbOpenDynaset, dbAppendOnly)
 ' Start a transaction
 BeginTrans
 intTrans = True
 ' Get the next available reservation number
 varResNum = DMax("ReservationID", "tblReservations")
 If IsNull(varResNum) Then varResNum = 0
 varResNum = varResNum + 1
 ' Update the current row

 Automating Complex Tasks 1113

Ch
ap

te
r 2

0

 strSQL = "UPDATE tblReservationRequests SET ReservationID = " & _
 varResNum & " WHERE RequestID = " & Me.RequestID
 db.Execute strSQL, dbFailOnError
 ' Book it!
 rstRes.AddNew
 ' Copy reservation ID
 rstRes!ReservationID = varResNum
 ' Copy employee number
 rstRes!EmployeeNumber = Me.EmployeeNumber
 ' Copy facility ID from the room we picked
 rstRes!FacilityID = lngFacility
 ' .. and room number
 rstRes!RoomNumber = lngRoom
 ' Set reservation date = today
 rstRes!ReservationDate = Date
 ' Copy check-in, check-out, and notes
 rstRes!CheckInDate = Me.CheckInDate
 rstRes!CheckOutDate = Me.CheckOutDate
 rstRes!Notes = Me.Notes
 ' Copy daily and weekly rates
 rstRes!DailyRate = curDaily
 rstRes!WeeklyRate = curWeekly
 ' Calculate the total charge
 rstRes!TotalCharge = ((Int(Me.CheckOutDate - Me.CheckInDate) \ 7) * _
 curWeekly) + _
 ((Int(Me.CheckOutDate - Me.CheckInDate) Mod 7) * _
 curDaily)
 ' Save the Reservation Row
 rstRes.Update
 ' Commit the transaction
 CommitTrans
 intTrans = False
 ' Clean up
 rstRes.Close
 Set rstRes = Nothing
 Set db = Nothing
 ' Requery this form to remove the booked row
 Me.Requery
 ' Return success
 Bookit = True
BookIt_Exit:
 Exit Function
BookIt_Err:
 MsgBox "Unexpected Error: " & Err & ", " & Error, vbCritical, gstrAppTitle
 ErrorLog Me.Name & "_Bookit", Err, Error
 Bookit = False
 If (intTrans = True) Then Rollback
 Resume BookIt_Exit
End Function

A

Chapter 20

1114 Chapter 20 Automating Your Application with Visual Basic
It makes sense to have the actual booking code back in the frmUnbookedRequests
form because the row the code needs to insert into tblReservations needs several fi elds
from the current request record (EmployeeNumber, CheckInDate, CheckOutDate, and
Notes). The code starts a transaction because it must simultaneously enter a Reserva-
tionID in both the tblReservationRequests table and the tblReservations table. If either
fails, the error-trapping code rolls back both updates. Notice that the code opens the
tblReservations table for append only to make the insert of the new reservation more
effi cient.

Calculating a Stored Value
If you follow the rules of good table design (see Article 1, “Designing Your Database
Application”), you know that storing a calculated value in a table isn’t usually a good
idea because you must write code to maintain the value. But sometimes, in a very large
database, you need to calculate and save a value to improve performance for searching
and reporting. The Housing Reservations application isn’t all that large—but it could be
in real life. We chose to store the calculated total charge for each reservation to show
you some of the steps you must take to maintain a value like this.

Users can create and edit reservation requests, but the creation of the reservation
records that contain the calculated value is controlled entirely by code, so maintaining
the calculated TotalCharge value in this application is simple. You’ve already seen the
one place where a new reservation record is created—in the public Bookit function in
the frmUnbookedRequests form. The little piece of code that calculates the value is as
follows:

 ' Calculate the total charge
 rstRes!TotalCharge = ((Int(Me.CheckOutDate - Me.CheckInDate) \ 7) * _
 curWeekly) + _
 ((Int(Me.CheckOutDate - Me.CheckInDate) Mod 7) * _
 curDaily)

However, in many applications, you may not be able to control the editing of a calcu-
lated value this closely. You need to carefully consider the ramifi cations of saving a
calculated value in your table and perhaps write code that an administrator can run to
periodically verify that any saved calculated value hasn’t become out of sync with the
other fi elds used to perform the calculation.

utomating Reports
In a typical application, you’ll probably spend 80 to 90 percent of your coding effort in
event procedures for your forms. That doesn’t mean that there aren’t many tasks that
you can automate on reports. This last section shows you just a few of the possibilities.

 Automating Reports 1115

Ch
ap

te
r 2

0

Allowing for Used Mailing Labels
Have you ever wanted to create a mailing label report and come up with a way to use up
the remaining labels on a partially used page? You can fi nd the answer in the Conrad
Systems Contacts sample application (Contacts.accdb). Let’s say you want to send a
promotional mailing to all contacts who own the Single User product offering them an
upgrade to Multi-User. Open the main switchboard form (frmMain), click Contacts,
and then click Search in the Select Contacts pop-up window. Perform a search for all
contacts who own the Single User product—you should fi nd eight records in the original
sample data. (Click No when the application asks you if you want to see a summary
list fi rst.) Click the Print button on the frmContacts form, select Avery 5163 Labels
(2" × 4"), ask for the report to include the Displayed Contacts, and specify that your fi rst
page of labels is missing three used ones. Your screen should look like Figure 20-27 at
this point.

Figure 20-27 You can request mailing labels and specify that some labels have already been used
on the fi rst page.

Click the Print button in the dialog box, and you should see the labels print—but with
three blank spaces fi rst to avoid the used ones—as shown in Figure 20-28.

Chapter 20

1116 Chapter 20 Automating Your Application with Visual Basic
Figure 20-28 The labels print and avoid the used ones.

You can fi nd some interesting code in the AfterUpdate event of the option group to
choose the report type in the fdlgContactPrintOptions form. The code is as follows:

Private Sub optReportType_AfterUpdate()
 ' Figure out whether to show the "used labels" combo
 Select Case Me.optReportType
 Case 1
 ' Show the used labels combo
 Me.cmbUsedLabels.Visible = True
 ' Hide the number of days option group
 Me.optDisplay.Visible = False
 ' up to 29 used labels on 5160
 Me.cmbUsedLabels.RowSource = "0;1;2;3;4;5;6;7;8;9;10;11;12;13;" & _
 "14;15;16;17;18;19;20;21;22;23;24;25;26;27;28;29"
 Case 2
 ' Show the used labels combo
 Me.cmbUsedLabels.Visible = True
 ' Hide the number of days option group
 Me.optDisplay.Visible = False
 ' up to 9 used labels on 5163
 Me.cmbUsedLabels.RowSource = "0;1;2;3;4;5;6;7;8;9"

 Automating Reports 1117

Ch
ap

te
r 2

0

 Case 3, 4
 ' Don't need the combo for Envelopes and contact list
 Me.cmbUsedLabels.Visible = False
 ' .. or the number of days fi lter
 Me.optDisplay.Visible = False
 Case 5, 6
 ' Don't need the used labels combo for contact events or products
 Me.cmbUsedLabels.Visible = False
 ' Do need the day fi lter
 Me.optDisplay.Visible = True
 End Select
End Sub

You can have up to 29 used labels when printing on Avery 5160 (1" × 2.625") label
paper. You can have up to 9 used labels when printing on Avery 5163 (2" × 4") label
paper. The combo box that you can use to indicate the number of used labels has a
Value List as its row source type, so the code sets up the appropriate list based on the
label type you choose.

However, the real trick to leaving blank spaces on the report is in the query that is the
record source for the rptContactLabels5163 report. In the sample database, you can
fi nd a table, ztblLabelSpace, that has 30 records, and each record has one fi eld contain-
ing the values 1 through 30. The SQL for the query is as follows:

PARAMETERS [Forms]![fdlgContactPrintOptions]![cmbUsedLabels] Long;
SELECT "" As Contact, "" As CompanyName, "" As Address, "" As CSZ,
Null As ContactID, "" As Zip, "" As LastName, "" As FirstName,
"" As ContactType, "" As WorkCity, "" As WorkStateOrProvince,
"" As HomeCity, "" As HomeStateOrProvince, 0 As Inactive
FROM ztblLabelSpace
WHERE ID <= [Forms]![fdlgContactPrintOptions]![cmbUsedLabels]
UNION ALL
SELECT ([tblContacts].[Title]+" ") & [tblContacts].[FirstName] & " " &
([tblContacts].[MiddleInit]+". ") & [tblContacts].[LastName] &
(", "+[tblContacts].[Suffi x]) AS Contact,
Choose([tblContacts].[DefaultAddress], qryContactDefaultCompany.CompanyName,
Null) As CompanyName,
Choose([tblContacts].[DefaultAddress],[tblContacts].[WorkAddress],
[tblContacts].[HomeAddress]) AS Address,
Choose([tblContacts].[DefaultAddress],[tblContacts].[WorkCity] & ", " &
[tblContacts].[WorkStateOrProvince] & " " & [tblContacts].[WorkPostalCode],
[tblContacts].[HomeCity] & ", " & [tblContacts].[HomeStateOrProvince]
& " " & [tblContacts].[HomePostalCode]) AS CSZ,
tblContacts.ContactID,
Choose([tblContacts].[DefaultAddress],[tblContacts].[WorkPostalCode],
[tblContacts].[HomePostalCode]) AS Zip,
tblContacts.LastName, tblContacts.FirstName, tblContacts.ContactType,
tblContacts.WorkCity, tblContacts.WorkStateOrProvince, tblContacts.HomeCity,
tblContacts.HomeStateOrProvince, tblContacts.Inactive
FROM tblContacts
LEFT JOIN qryContactDefaultCompany
ON tblContacts.ContactID = qryContactDefaultCompany.ContactID;

Chapter 20

1118 Chapter 20 Automating Your Application with Visual Basic
The fi rst SELECT statement (up to the UNION ALL) creates dummy blank columns
for each fi eld used by the report and uses the ztblLabelSpace table and a fi lter on the
combo box in the fdlgContactPrintOptions form (Figure 20-27) to return the correct
number of blank rows. The query uses a UNION with the actual query that returns con-
tact data to display information on the report.

Because this label report prints a logo and a label control containing the return address,
there’s one fi nal bit of code that keeps these from appearing on the blank labels in the
rptContactLabels5163 report. The code is as follows:

Private Sub Detail_Format(Cancel As Integer, FormatCount As Integer)
 ' Don't print the return logo and address if this is a "spacer" record
 If IsNull(Me.ContactID) Then
 Me.imgConrad Systems.Visible = False
 Me.lblRtnAddr.Visible = False
 Else
 Me.imgConrad Systems.Visible = True
 Me.lblRtnAddr.Visible = True
 End If
End Sub

The Format event of the Detail section depends on the fact that the ContactID in the
“spacer” rows is Null. When printing a blank row for spacing, the code hides the logo
and the return address label.

Drawing on a Report
When you want to draw a border around a report print area, sometimes you’ll need to
write some code to ask Access to draw lines or a border after placing the data on the
page. This is especially true if one or more controls on the report can grow to accommo-
date a large amount of data.

We used the Report Wizard to create the basic rptContacts report using the Justifi ed
format. (We customized the report after the wizard fi nished.) The wizard created a
fairly decent layout with a border around all the fi elds, but it didn’t make the text box
to display notes large enough to display the text for all contacts. Figure 20-29 shows
you the report displaying John’s contact record from the database. You can see that the
notes about John are cut off at the bottom.

 Automating Reports 1119

Ch
ap

te
r 2

0

Figure 20-29 This report uses a border around the data, but one of the text boxes isn’t large
enough to display all the text.

It’s simple enough to change the Can Grow property of the text box to Yes to allow it to
expand, but the rectangle control used to draw the border around all the text doesn’t
also have a Can Grow property. The solution is to remove the rectangle and use the Line
method of the Report object in the report’s Format event of the Detail section to get
the job done. Below is the code you can fi nd in this event procedure in the rptContacts-
ExpandNotes report.

Private Sub Detail_Print(Cancel As Integer, PrintCount As Integer)
Dim sngX1 As Single, sngY1 As Single
Dim sngX2 As Single, sngY2 As Single, lngColor As Long
 ' Set coordinates
 sngX1 = 120
 sngY1 = 120
 sngX2 = 9120
 ' Adjust the height if Notes has expanded
 sngY2 = 7680 + (Me.Notes.Height - 2565)
 ' Draw the big box around the data
 ' Set width of the line
 Me.DrawWidth = 8
 ' Draw the rectangle around the expanded fi elds
 Me.Line Step(sngX1, sngY1)-Step(sngX2, sngY2), RGB(0, 0, 197), B
End Sub

Chapter 20

1120 Chapter 20 Automating Your Application with Visual Basic
The Line method accepts three parameters:

1. The upper-left and lower-right corners of the line or box you want to draw,
expressed in twips. (There are 1440 twips per inch.) Include the Step keyword to
indicate that the coordinates are relative to the current graphics position, which
always starts at 0, 0. When you use Step for the second coordinate, you provide
values relative to those you specifi ed in the fi rst set of coordinates.

2. The color you want to draw the line or box, expressed as a red-green-blue (RGB)
value. (The RGB function is handy for this.)

3. An indicator to ask for a line, a rectangle, or a fi lled rectangle. No indicator draws
a line. Include the letter B to ask for a rectangle. Add the letter F to ask for a fi lled
rectangle.

Before you call the Line method, you can set the DrawWidth property of the report to
set the width of the line. (The default width is in pixels.)

The only tricky part is fi guring out the coordinates. On the original report, the rect-
angle starts at 0.0833 inch in from the left and down from the top, so multiplying that
value by 1440 twips per inch gave us the starting values of 120 down from the top and
120 in from the left edge. The width of the rectangle needs to be about 6.3333 inches, so
the relative coordinate for the upper-right corner is 6.3333 × 1440, or about 9,120 twips.
The height of the rectangle needs to be at least 5.3333 inches, or about 7,680 twips, and
the height needs to be adjusted for the amount that the Notes text box expands. The
Notes text box is designed to be a minimum of 1.7813 inches high, or 2,565 twips, so
subtracting 2,565 from the actual height of the Notes text box when it’s formatted (the
Height property is also in twips) gives you the amount you need to add to the original
height of the rectangle. Trust us, we didn’t get it right on the fi rst try!

If you open the rptContactsExpandNotes report and move to John’s record on page 18,
you’ll see that the rectangle now expands nicely to fi t around the Notes text box that
grew to display all the text in John’s record. Figure 20-30 shows you the report with the
rectangle drawn by the code behind the report.

 Automating Reports 1121

Ch
ap

te
r 2

0

Figure 20-30 Code in the rptContactsExpandNotes report draws a custom rectangle around
expanded text.

Dynamically Filtering a Report When It Opens
The two most common ways to open a report fi ltered to print specifi c records are

O Use the WhereCondition parameter with the DoCmd.OpenReport method (usu-
ally in code in an event procedure behind a form) to specify a fi lter.

O Base the report on a parameter query that prompts the user for the fi lter values or
references control values on an open form.

In some cases, you might design a report that you intend to open from several locations
in your application, and you can’t guarantee that the form to provide fi lter values will
always be open. Or, you might have multiple reports that need the same fi lter criteria,
and you don’t want to have to design a separate fi lter form for each report. To solve
these problems, you can add code to the report to have it open its own fi lter dialog box
from the report’s Open event procedure. Let’s go back to the Housing Reservations
application (Housing.accdb) to take a look at a report that uses this technique.

In the Housing Reservations application, both the rptFacilityOccupancy report and
the rptFacilityRevenueChart report depend on a single form, fdlgReportDateRange,
to provide a starting and ending date for the report. To see the rptFacilityOccupancy
report, you can start the application by opening the frmSplash form, sign on as an
administrator (Conrad, Jeff, Richins, Jack S., Schare, Gary, or Viescas, John L.), click the
Reports button on the main switchboard, and then click the Reservations button in the

Chapter 20

1122 Chapter 20 Automating Your Application with Visual Basic
 Facilities category on the Reports switchboard. (You can also simply open the report
directly from the Navigation Pane.) When you open the report, you’ll see a dialog box
prompting you for the dates you want as shown in Figure 20-31.

Figure 20-31 A parameter dialog box opens from the report that you asked to view.

Unless you’ve reloaded the sample data, the database contains reservations from Feb-
ruary 28, 2007 through September 26, 2007, so asking for a report for April, May, and
June should work nicely. Enter the dates you want and click Go to see the report, as
shown in Figure 20-32.

The report has a parameter query in its record source, and the parameters point to
the from and to dates on the fdlgReportDateRange form that you see in Figure 20-31.
However, the code behind the Reservations button on the Reports switchboard opens
the report unfi ltered. It’s the code in the report’s Open event procedure that opens the
dialog box so that the query in the record source can fi nd the parameters it needs. The
code is as follows:

Private Sub Report_Open(Cancel As Integer)
 ' Open the date range dialog
 ' .. report record source is fi ltered on this!
 DoCmd.OpenForm "fdlgReportDateRange", WindowMode:=acDialog
End Sub

 Automating Reports 1123

Ch
ap

te
r 2

0

Figure 20-32 The Facility Occupancy report uses a shared fi lter dialog box to let you specify a
date range.

This works because a Report object doesn’t attempt to open the record source for the
report until after the code in the Open event fi nishes. So, you can place code in the
Open event to dynamically change the record source of the report or, as in this exam-
ple, open a form in Dialog mode to wait until that form closes or hides itself. The code
behind the dialog form, fdlgReportDateRange, is as follows:

Private Sub Form_Load()
 ' If passed a parameter, reset defaults to last quarter
 If Not IsNothing(Me.OpenArgs) Then
 ' Set the start default to fi rst day of previous quarter
 Me.txtFromDate.DefaultValue = "#" & _
 DateSerial(Year(Date), ((Month(Date) - 1) \ 3) * 3 - 2, 1) & "#"
 ' Set the end default to last day of previous quarter
 Me.txtToDate.DefaultValue = "#" & _
 DateSerial(Year(Date), ((Month(Date) - 1) \ 3) * 3 + 1, 1) & "#"
 End If
End Sub

Private Sub cmdGo_Click()
 ' Hide me so report can continue
 Me.Visible = False
End Sub

The code in the form’s Load event checks to see if the report that is opening the form
has passed a parameter in the OpenArgs property. If so, the code resets the default val-
ues for the two date text boxes to the start and end date of the previous quarter. If you
look at the code behind the rptFacilityRevenueChart report, you’ll fi nd that this report

Chapter 20

1124 Chapter 20 Automating Your Application with Visual Basic
asks for the different default values. But it’s the code in the Click event of the Go com-
mand button that gets things rolling. The code behind the form responds to your click-
ing the Go button to hide itself so that the report can continue. It can’t close because
the record source of the report depends on the two date parameters. As noted earlier,
hiding this form opened in Dialog mode allows the code in the Open event of the report
to fi nish, which lets the report fi nally load its record source. As you might suspect,
there’s code in the Close event of the report to close the parameter form when you close
the report or the report fi nishes printing.

As you’ve seen in this chapter, Visual Basic is an incredibly powerful language, and the
tasks you can accomplish with it are limited only by your imagination. In the next chap-
ter of this book, you’ll learn how to set startup properties, create custom menus, and
build a main switchboard form for your application.

PART 5

Linking Access and
the Web

CHAPTER 21

Publishing Data on the Web 1127

CHAPTER 22

Working with Windows
SharePoint Services . 1165

CHAPTER 23

Using XML. 1235
 1125

CHAPTER 21

Publishing Data on the Web

The World Wide Web, built from simple low-cost servers and universal clients, has
revolutionized computing. Not so long ago, the very concept of a common global

information network was unthinkable. In fact, even Microsoft was unconvinced that
Web technology would ever mature successfully. Originally, The Microsoft Network
(MSN) was constructed with proprietary technology, modeled after similar networks
such as CompuServe and Prodigy. To connect to these networks, you had to install pro-
prietary software on your computer.

Today, the concept of living without the Web is just as unthinkable, and all the formerly
proprietary networks (including MSN) have spent millions of dollars to convert their
networks to the universal access offered by the Web. Although MSN, CompuServe (now
owned by AOL), and Prodigy (owned by SBC) all still offer specialized programs that
you can install to enhance your experience as a member of any of the networks, all
these programs are merely customized versions of your Web browser. You can also log
on to these networks with a standard Web browser.

Database applications were among the last to appear on the Web, but today they are
arguably the fastest growing type of Web application. The prospect of distributing data
to or collecting it from literally a world of clients, working on disparate computers and
operating systems, and not requiring software distribution other than the ubiquitous
browser, is simply too compelling to resist for long.

Microsoft Offi ce Access 2007 doesn’t provide a complete Web development environ-
ment. However, it does provide useful tools for developing a variety of Web database
applications. This chapter explores the Web, explains how the Web capabilities of
Offi ce Access 2007 work, and provides pointers to other tools in case Access doesn’t
satisfy all your needs. This chapter serves as an introduction to topics that will be cov-
ered in detail in the next two chapters.

Working with the Web
Designing and developing Web applications requires a different set of tools, a dif-
ferent approach, and a different mindset than performing the same tasks solely in
Access. A properly designed Web application can offer signifi cant improvements over

Working with the Web . 1127

Understanding Static Web Pages. 1137

Viewing Static HTML Pages . 1139

Creating a Static HTML Document 1140

Creating Dynamic Web Pages 1158

Sharing Your Data with SharePoint 1161
 1127

Chapter 21

1128 Chapter 21 Publishing Data on the Web
typical desktop applications—in timeliness (frequency of update and reporting), inter-
activity (degree of user control), and partitioning (distributed location of application
 components).

With each new version of development environments, software companies provide
improved tools that allow developers to more easily deliver desktop and Web solu-
tions. Some of these tools allow developers to create desktop and Web applications
that work with each other. However, there is quite a leap between desktop application
development, such as Access 2007, and Web application development. Before you begin
to explore ways to create Web applications, you fi rst need to become familiar with a
couple of key underlying technologies—HTML (Hypertext Markup Language) and XML
(Extensible Markup Language).

Understanding HTML
Web pages are simple text fi les containing a mix of textual content and codes that
your browser interprets when it loads the Web page. The codes (called tags) that your
browser understands are part of an international language specifi cation called Hyper-
text Markup Language (HTML). The basic specifi cation is documented by ISO (Inter-
national Organization for Standardization) standard ISO/IEC 15445:2000. However,
the standard that most software vendors implement is an enhanced version created and
published by the World Wide Web Consortium (W3C), which is made up of representa-
tives from major software vendors around the world. (You can visit the W3C Web site at
www.w3.org.)

Actually, HTML isn’t a programming language—it’s a descriptive language that defi nes
objects on your Web page. These objects can have properties, methods, and events simi-
lar to many of the objects you fi nd in Access. You can include procedural code (known
as a script) in your Web page defi nition that responds to events. The two most common
scripting languages are VBScript, a second cousin to the Visual Basic you use in Access,
and JavaScript, a language invented by Sun Microsystems.

Most Web page developers use an HTML editor (such as Microsoft Expression Web) to
create Web pages. A good editor hides the actual coding and allows the developer to
create pages—in much the same way that you create Access forms or reports—by provid-
ing a what-you-see-is-what-you-get (WYSIWYG) interface. However, most developers at
one time or another must dig into the HTML to do some custom work.

Most browsers can display the HTML that the browser used to create a Web page that

you’re viewing. In Windows Internet Explorer version 7, click Page, and then click View

Source to see the code behind any Web page. When you understand the basics of HTML,

this can be a fun way to discover advanced techniques.

SIDE OUT Viewing the HTML Code of a Web Page

Most browsers can display the HTML that the browser used to create a Web page that

you’re viewing. In Windows Internet Explorer version 7, click Page, and then click View

Source to see the code behind any Web page. When you understand the basics of HTML,

this can be a fun way to discover advanced techniques.

 Working with the Web 1129

Ch
ap

te
r 2

1

Introducing HTML Coding
As noted earlier, the codes in HTML that tell your browser how to format your Web
page are in the form of tags. A tag begins with the < character and ends with the > char-
acter. The characters immediately following the < character identify the type of tag, and
you can usually follow this tag identifi er with attributes that further qualify how the
tag behaves. For example, a particular type of tag might accept attributes that tell your
browser what font to use or how to align the text that follows the tag.

All tags defi ne objects on your Web page, and all Web pages begin with the <html> tag
that defi nes the page object. Most Web page objects can contain other object defi ni-
tions (for example, a table is an object, and the rows within the table are objects), and
such objects require an end tag to defi ne the end of the object. An end tag is in the
form </tagname>, so, for example, every page ends with an </html> tag. Tags that defi ne
objects that cannot contain other objects include
 (line break) and (image),
and you cannot defi ne an end tag for these objects. Table 21-1 shows you a small subset
of the HTML tags that you can use.

Table 21-1 Common HTML Tags

HTML Tags Description

<html></html> Designates the beginning and ending of your Web page.

<head></head> Specifi es an optional heading section at the beginning of your
Web page. Any text that you include in this section (with the
exception of the text in a <title> tag that appears in the browser
title bar—see below) does not appear on the page. In the
heading section, you can defi ne keywords for search engines and
default fonts and styles to be used in the body of the page.

<title></title> Defi nes text that the browser displays in its title bar. You place
this in the heading section.

<body></body> Designates the body section of the page. You code the majority
of other tags inside the body section.

<script></script> Surrounds script language that responds to events on your page.
Script languages include VBScript and JavaScript.

<div></div> Splits the page into divisions (similar to a section break in a
Microsoft Offi ce Word 2007 document) that can have different
style attributes. You can optionally provide text between the
begin and end tags to create a heading for the division.

<h1></h1> Surrounds a fi rst-level heading. You can defi ne the default
attributes of headings in your heading section, or you can
specify attributes for this heading following the tag name in the
begin tag.

<h2></h2> Surrounds a second-level heading.

<p></p> Defi nes a paragraph.

 Adds a line break. This tag does not have an end tag because
you cannot defi ne other objects inside a line break object.

Chapter 21

1130 Chapter 21 Publishing Data on the Web
HTML Tags Description

Formats the text between the tags with a larger font.

 Creates a bulleted list. Code the lines of text between these two
tags.

 Defi nes a list item within a bulleted list. Insert the text for the
line between these tags.

<a> Designates a hyperlink. You code the hyperlink address following
the tag name inside the begin tag. Your browser displays any
text or any image object you include between the begin and
end tags as a hyperlink, and your browser follows the defi ned
hyperlink when you click the text or image. You can use these
tags between other tags, such as between <p></p>, to have
only a portion of the paragraph text display as a hyperlink.

 Specifi es an image object that your browser displays. You defi ne
the location of the image following the tag name inside the tag.
You can surround this tag with <a> to create a graphic
hyperlink. Note that this tag does not have an end tag because
you cannot defi ne other objects inside an image object.

<table></table> Defi nes a table. Between these begin and end tags you use other
tags such as <tr></tr> (table row) to defi ne the format of a row
and <td></td> (table data) to defi ne the data displayed in a
row. Following the tag name inside the begin tag, you can defi ne
attributes such as the width of the table, the border style, and
the spacing between cells in the table.

This is an HTML example for a very simple Web page:

<html>
 <head>
 <title>My Simple HTML</title>
 </head>
 <body>
 This is my simple page showing some simple HTML commands
 </body>
</html>

The previous HTML creates the Web page displayed in Figure 21-1.

Figure 21-1 A simple Web page is displayed in Internet Explorer.

 Working with the Web 1131

Ch
ap

te
r 2

1

You can fi nd this fi le, called Simple.htm, on the companion CD in the WebChapters\
SimpleHTML folder. You can also type the HTML commands in Notepad and save the
text with the extension of .htm or .html. When you double-click the fi le you saved, it
opens in your default browser.

The rendering of tags, members, and other features you code into your Web pages

depends on which browser, such as Internet Explorer, Firefox, Opera, or Netscape, you

are using to display the pages. In addition, different versions of the same browser might

support different features. These limitations are known as cross-browser issues and can

be diffi cult to deal with when writing advanced HTML. Writing HTML code that can be

displayed on multiple browsers and platforms can be very important if you want your

pages to be accessed by users all over the world. When you are creating a Web site for

an intranet inside a corporation, you can usually identify which browser is the company’s

standard.

If you are working with an HTML editor such as Visual Studio .NET, you can look up the

various tags, and in the description you can fi nd something like the following: “This

object is defi ned in HTML 3.2 and is defi ned in World Wide Web Consortium (W3C)

 Document Object Model (DOM) Level 1.” This tells you that as long as your browser sup-

ports this version of HTML, using this tag should work. In some editors, such as Expres-

sion Web, you can specify the browser, browser version, and server type for which the

editor should generate the HTML. However, when working with the simple tags men-

tioned here, you shouldn’t have any problems with any of the browsers.

Tag Members
As noted earlier, tags defi ne objects on your Web page. As part of the begin tag, you can
create members—also called elements (properties, methods, or events)—that let you con-
trol or further refi ne the object defi ned by the tag. Script that you write to respond to
events for an object can reference members that you have defi ned. Table 21-2 shows you
some of the member types you can defi ne for your Web page objects.

SIDE OUT Not All Browsers Support All Tags

The rendering of tags, members, and other features you code into your Web pages

depends on which browser, such as Internet Explorer, Firefox, Opera, or Netscape, you

are using to display the pages. In addition, different versions of the same browser might

support different features. These limitations are known as cross-browser issues and can

be diffi cult to deal with when writing advanced HTML. Writing HTML code that can be

displayed on multiple browsers and platforms can be very important if you want your

pages to be accessed by users all over the world. When you are creating a Web site for

an intranet inside a corporation, you can usually identify which browser is the company’s

standard.

If you are working with an HTML editor such as Visual Studio .NET, you can look up the

various tags, and in the description you can fi nd something like the following: “This

object is defi ned in HTML 3.2 and is defi ned in World Wide Web Consortium (W3C)

Document Object Model (DOM) Level 1.” This tells you that as long as your browser sup-

ports this version of HTML, using this tag should work. In some editors, such as Expres-

sion Web, you can specify the browser, browser version, and server type for which the

editor should generate the HTML. However, when working with the simple tags men-

tioned here, you shouldn’t have any problems with any of the browsers.

Chapter 21

1132 Chapter 21 Publishing Data on the Web
Table 21-2 Common HTML Object Members

Member Description

Attribute/property Like Access properties, these members describe something about
the object defi ned by the tag. For example, a table object has
width and height properties. This is the member type you are
likely to use most often.

Behavior Lets you specify various behaviors for the tag object. For example,
in a table object, rowover enables alternate shading and row
highlighting for table elements.

Collection Every tag has at least one collection, called the attributes
collection, which is a collection of all the members for the object
defi ned by the tag. Additional collections depend on the object
type. For example, the table object has a collection called rows,
which is made up of the tr objects included in the table.

Event You can include events that you want the browser to recognize,
and you can write script to handle various tasks for you in
response to these events. For example, the table object supports
more than 50 events, including onmouseover and ondblclick.

Filters Filters affect visual aspects of the object. For example, you can
defi ne a glow fi lter for the table object that sets a glow around
the table.

Method A method is an action that an object can perform, and you can
write script to execute the method of the object. An example for
the table object is the focus method, which just like an Access
control’s SetFocus method, causes the focus to move to the
object.

Object Objects can contain other objects. When an object can contain
multiple instances of another object (for example, rows in a
table object), those subordinate objects are in a collection. When
an object can have only one instance of a subordinate object,
that subordinate object is an object member. For example, most
objects, including the table object, have a single Styles object.

Styles The Styles object in HTML contains a collection of attributes that
are similar to the properties you can fi nd on the Format tab of
an Access object’s property sheet. For example, the table object
has a Styles object that has a collection of attributes that includes
bordercolor and borderstyle. You can set the style attributes either
by defi ning them directly as attributes of the object or by setting
them in the attributes collection of the Styles object. If you use
the Styles object, you put a dash between the words that make
up the attribute. For example, use border-color and border-style
inside a Styles object.

Now that you have a basic understanding of tags and members, let’s look at some spe-
cifi c members of commonly used tags and then study a more complex Web page design.
Table 21-3 shows you some of the members of the <a> (hyperlink), <table> (table), and
 (image) tags.

 Working with the Web 1133

Ch
ap

te
r 2

1

Table 21-3 Some Members of Commonly Used Tags

Tag Member Member Type Description

<a> href Property The URL to which you want to link.

title Property The title of the hyperlink. Some
browsers display the title as a ScreenTip
for the link.

<table> frame Object The frame around the table.

border Property The width of the border in pixels.

width Property The width of the table in pixels or as
a percentage of the available browser
window.

Rows Collection The rows that make up the table.

cellspacing Property The spacing between the cells in pixels.

cellpadding Property The spacing within the cells in pixels.

 alt Property A short description of the image. Most
browsers display this property as a
ScreenTip.

src Property The URL of the image to display.

height Property Overrides the defi ned height of the
image fi le.

width Property Overrides the defi ned width of the
image fi le.

You can now apply what you’ve learned to understanding a more complex page. The
following HTML is for a page that contains a page title, two sections (<div>) with indi-
vidual titles, a table in the fi rst section that includes an image and a hyperlink, and a
bulleted list in the second section:

<html>
 <head>
 <title>My More Complex Page</title>
 </head>
 <body>
 <div>My Favorite Types of Hotels</div>
 <table cellSpacing="1" cellPadding="1" width="300" border="1">
 <tr>
 <td width="127">Bed and Breakfasts</td>
 <td></td>
 </tr>
 <tr>
 <td width="127">Ski Lodges</td>
 <td>

 </td>
 </tr>

Chapter 21

1134 Chapter 21 Publishing Data on the Web
 <tr>
 <td width="127">Fishing Cabins</td>
 <td></td>
 </tr>
 </table>

 <div>Features I Look For:</div>

 Quiet

 Good Food

 Good Jazz Music Nearby

 </body>
</html>

The previous HTML gives you the Web page displayed in Figure 21-2. Note that to dis-
play the image correctly, the Ski.jpg fi le must be in the Images subfolder of the location
where you put your HTML.

Figure 21-2 A more complex Web page is shown with a hyperlink behind the graphic image.

You can fi nd this fi le, called MoreComplexPage.htm, on the companion CD in the Web-
Chapters\MoreComplexHTML folder.

Editing HTML
For the two simple examples shown thus far, we typed the HTML directly into Notepad
to create the page. As you can imagine, this can be a slow and tedious process for a com-
plex Web page, especially if you are not an HTML guru. The good news: Many editors
are available that create the HTML code for you. The not-so-good news: If much of your
work involves creating more advanced Web pages, you are going to have to learn HTML
coding.

 Working with the Web 1135

Ch
ap

te
r 2

1

When you fi rst start creating Web pages, you may dread having to work in HTML. But
as you become more profi cient at it, you’ll enjoy seeing your browser convert your code
into a Web page. However, if you can use an editor such as Expression Web to create
the HTML for you, all the better. You can see an example of working with HTML using
Expression Web in Figure 21-3. Expression Web lets you see both the HTML and the
graphical Design view of the page at the same time. Notice that Expression Web high-
lights the HTML code that generates the object selected in Design view.

Figure 21-3 The HTML view in Expression Web allows you to see the results of your code while
editing the HTML.

For details about creating a simple HTML page from Access 2007, see “Creating a Static
HTML Document” on page 1140.

Introducing XML
With all the businesses that are accessing the Web and using software to connect to
each other and exchange data, a standard way of describing the data and its structure
is necessary to allow these systems to understand the data. That standard is XML
 (Extensible Markup Language). As with HTML, the current XML standard is based on
an ISO standard, but the most commonly used version is the one maintained and pub-
lished by W3C. Where HTML deals with presentation, XML deals with data. Because a
fi le in XML format contains not only the data but also a description of the structure of

Chapter 21

1136 Chapter 21 Publishing Data on the Web
the data, receiving systems know exactly how to process the data from the information
included in the fi le.

For example, an insurance company might receive data from an outside company that
manages some of its insurance claims. The insurance company needs to know which
fi elds the fi le includes, the data type of the fi elds, and the order in which the fi elds
occur in the data fi le. If the fi le is coded in XML, the company can easily import this fi le
into Access or any other program that understands XML, even if the sending company
changes the format or content of the fi le. With other fi le types, such as fi xed-width text
fi les, you must know the fi le format so that you can defi ne the import/export specifi ca-
tion for Access before you attempt to import the fi le.

One of the major features in Access 2007 is the ability to work with data published
using the latest XML standards. Access 2007 can easily import and export XML fi les
and related style sheets. You can see an example of a fi le imported as XML and dis-
played in a datasheet subform in Figure 21-4.

Figure 21-4 You can load, edit, and save XML fi les using Access 2007.

You can fi nd this form saved as frmXMLExample in the Housing.accdb sample data-
base. When you fi rst open the form, the subform window is blank. You can enter the
location of any XML fi le in the XML File To Work With box or click the Browse button
to locate an XML fi le on your computer. You can also use the XMLDepartments.xml fi le
that you’ll fi nd in the WebChapters\XML folder on the companion CD. Click the Load
XML button to import the fi le into a local table and display it in the subform window.
You can actually change any of the data that you see in the subform window and then
click the Save And Close XML button to write the changes back to the XML fi le that you
imported.

When Access imports the XML fi le, it builds the defi nition of the table fi elds from the
information in the fi le and then loads the data. Code behind the form then loads the
table into the subform control so that you can edit it. No fancy code is required to deci-
pher what’s in the fi le.

Microsoft has enhanced the XML capabilities in all components of the 2007 Microsoft
Offi ce system. When you create custom Ribbons in Access 2007, you use XML to

 Understanding Static Web Pages 1137

Ch
ap

te
r 2

1

build the various tabs, groups, and other Ribbon elements. The Microsoft Internet
development architecture, .NET (pronounced dot net), depends heavily on XML. The
Internet development platform, Visual Studio .NET, makes extensive use of XML in its
ADO.NET data model and manages some of its system features using XML.

With XML growing in use, does this mean you have to become an XML guru? The
answer is no, but it’s a good idea to know how and where you can use it. You’ll learn
additional details about working with XML in Chapter 23, “Using XML,” and in Chap-
ter 24, “The Finishing Touches.”

Understanding Static Web Pages
The Web pages you’ve seen thus far in this chapter are static—after you publish a page
like these to a Web server, the information doesn’t change until you replace or edit the
text. Actually, static Web pages are the most common type of page you’ll fi nd on any
noncommercial site on the Web. All the pages at the W3C Web site (www.w3.org) and
all the pages on John’s Web site (www.viescas.com) are static. So, you won’t see any new
information on John’s Web site unless he edits and updates the pages.

To understand how static Web pages work (and the way the Web works in general), you
need to know a bit about the architecture of the Web. Like all network applications, the
World Wide Web defi nes two roles computers can play: client or server. (Sometimes,
a single computer can serve both roles.) The client software, called a browser, requests
fi les from the server and displays them on the client computer. The server software,
called a Web server, accepts requests from browsers and transmits the requested fi les to
the browser. Figure 21-5 provides a highly simplifi ed diagram of these components.

Web Browser

Web Server

File System

Clients

Server

TCP/IP Network

Figure 21-5 On the World Wide Web, Web browsers connect to Web servers using TCP/IP.

Note
TCP/IP stands for Transmission Control Protocol/Internet Protocol. TCP describes the way

computers on Internet-style networks can exchange data without loss. IP describes the

identifi cation scheme for computers on Internet-style networks.

Note
TCP/IP stands for Transmission Control Protocol/Internet Protocol. TCP describes the way

computers on Internet-style networks can exchange data without loss. IP describes the

identifi cation scheme for computers on Internet-style networks.

Chapter 21

1138 Chapter 21 Publishing Data on the Web

When you connect your computer to a network, the communications software on each

computer must send and receive information in a format that all the computers under-

stand. Think of a computer network as a railway system. If one station can handle boxcars

but not hopper cars, any other station that sends cargo to that station must send boxcars

only. Similarly, a network protocol defi nes a specifi c type of data packaging that can be

sent over your network “rails.”

In early Microsoft Windows–based systems, Microsoft packaged the data using a proto-

col called NetBEUI. Systems networked using Novell Netware used a protocol called IPX/

SPX. The World Wide Web standardized on the TCP/IP protocol. Today, most computers

include software to support multiple protocols so that you can be connected to a local

network using IPX/SPX, NetBEUI, or TCP/IP and also to the World Wide Web using TCP/IP.

TCP/IP is a transport protocol that defi nes the general packaging of the messages sent

over the network. What your computer sends within the packaging parameters of a

protocol depends on the applications sending and receiving the information—the appli-

cation protocol. (To continue our train analogy, what kind of boxes inside the boxcar is

the stationmaster on the other end prepared to unlock?) When you copy a fi le to a local

server using Windows Explorer, Windows Explorer packages your fi le information in a

format the receiving fi le system understands. Windows then wraps these packages in an

available transport protocol for sending over the network.

When you work on a Web-based network (such as the World Wide Web), your browser

uses standardized application protocols to send and receive information. Two of the

most common Web protocols are Hypertext Transport Protocol (HTTP) for transmitting

information such as Web pages and pictures and File Transfer Protocol (FTP) for upload-

ing and downloading fi les.

The key to the explosive success of the World Wide Web is the broad acceptance and

adoption of the transport protocol, application protocols, and page defi nition standard

(HTML) by virtually every computer and software manufacturer. These common stan-

dards let you point your Web browser at a Web server halfway around the world to send

and receive information. You don’t have to worry or care about what kind of computer

or operating system is installed for the Web server. For the most part, the folks who pro-

gram the Web server don’t have to worry about what kind of computer you’re using or

what Web browser you have installed.

When you publish a static page on a Web server, that server stores your text in its fi le
system. When a browser on a client sends a request for the page to the server, the server
reads the fi le from its fi le system and sends it unmodifi ed to the client browser. To
change what the server sends, you must change the text fi le stored in the server’s fi le
system. If the static page contains hyperlinks or script that responds to events defi ned
on the page, it’s the browser on the requesting client computer that interprets what
should happen next, and it executes any script on the client computer.

SIDE OUT What Is a Protocol?

When you connect your computer to a network, the communications software on each

computer must send and receive information in a format that all the computers under-

stand. Think of a computer network as a railway system. If one station can handle boxcars

but not hopper cars, any other station that sends cargo to that station must send boxcars

only. Similarly, a network protocol defi nes a specifi c type of data packaging that can be

sent over your network “rails.”

In early Microsoft Windows–based systems, Microsoft packaged the data using a proto-

col called NetBEUI. Systems networked using Novell Netware used a protocol called IPX/

SPX. The World Wide Web standardized on the TCP/IP protocol. Today, most computers

include software to support multiple protocols so that you can be connected to a local

network using IPX/SPX, NetBEUI, or TCP/IP and also to the World Wide Web using TCP/IP.

TCP/IP is a transport protocol that defi nes the general packaging of the messages sent

over the network. What your computer sends within the packaging parameters of a

protocol depends on the applications sending and receiving the information—the appli-

cation protocol. (To continue our train analogy, what kind of boxes inside the boxcar is

the stationmaster on the other end prepared to unlock?) When you copy a fi le to a local

server using Windows Explorer, Windows Explorer packages your fi le information in a

format the receiving fi le system understands. Windows then wraps these packages in an

available transport protocol for sending over the network.

When you work on a Web-based network (such as the World Wide Web), your browser

uses standardized application protocols to send and receive information. Two of the

most common Web protocols are Hypertext Transport Protocol (HTTP) for transmitting

information such as Web pages and pictures and File Transfer Protocol (FTP) for upload-

ing and downloading fi les.

The key to the explosive success of the World Wide Web is the broad acceptance and

adoption of the transport protocol, application protocols, and page defi nition standard

(HTML) by virtually every computer and software manufacturer. These common stan-

dards let you point your Web browser at a Web server halfway around the world to send

and receive information. You don’t have to worry or care about what kind of computer

or operating system is installed for the Web server. For the most part, the folks who pro-

gram the Web server don’t have to worry about what kind of computer you’re using or

what Web browser you have installed.

 Viewing Static HTML Pages 1139

Ch
ap

te
r 2

1

What can you do if your static Web page contains a table with data generated from a
database? If the data in the database is reasonably static (for example, a membership
name and address list that you update once a month), it doesn’t really matter that your
Web page displays a static copy of data from the table. Access can make the periodic
update of your Web page easy because it provides an export facility that allows you to
save the data from a table, query, form, or report as an HTML table.

Of course, if you need your Web pages to display up-to-the-minute information from
active database tables, static Web pages won’t do at all. To solve this problem, you need
to defi ne a Web page that can dynamically fetch the latest information, format it as
HTML, and send it to the requesting browser. See “Creating Dynamic Web Pages” on
page 1158 to fi nd additional information for creating dynamic Web pages from data in
an Access database.

Viewing Static HTML Pages
Figure 21-6 shows a simple HTML Web page created as a menu to allow you to link to
other pages on the Web site to view reservations and requests. We used Expression
Web to create the page and then added two buttons to go to the related pages. We also
applied one of the simple Expression Web themes to the page. We asked Expression
Web to create the hyperlinks behind the two buttons as relative links to fi les in the
same folder, so the three pages should work together no matter where you publish them
as long as all three are in the same folder. (You can fi nd this example page saved as
menu.htm in the WebChapters\StaticHTML folder on the companion CD.)

Note
The examples in the remainder of this chapter are based on the tables and data in the

Housing Reservations database (Housing.accdb). You can fi nd the sample Web pages in

the \WebChapters\StaticHTML folder on your companion CD.

Figure 21-6 You can create a simple HTML menu page easily using Expression Web.

Note
The examples in the remainder of this chapter are based on the tables and data in the

Housing Reservations database (Housing.accdb). You can fi nd the sample Web pages in

the \WebChapters\StaticHTML folder on your companion CD.

Chapter 21

1140 Chapter 21 Publishing Data on the Web
If you open the simple menu page in your browser and click the Reservations button,
you’ll see the data from the tblReservations table in the Housing Reservations database,
as shown in Figure 21-7. We created this page by exporting the tblReservations table
from Access as an HTML fi le. To move back to the menu Web page, click the Back but-
ton of your browser.

Figure 21-7 This simple Web site displays data exported from an Access table.

 Creating a Static HTML Document
When you want to make relatively static data available in a Web page, you can export
your data in HTML format. The Web page that you create in this way won’t allow users
to update the data, and your users will have limited search capabilities. However, you
can create automated procedures in your application that make it easy to periodically
update the Web page to ensure that it is current.

The simplest way to publish data from your database to a Web page is to export the
data as a simple, static HTML fi le. This type of fi le presents a snapshot of your data at
the time you create the HTML fi le. To refresh the data on your Web page, you’ll have
to repeat the export process each time you want to present fresh data. You can use the
export tools in Access to export data from a table, query, form, or report, but this has
some limitations. Table 21-4 lists these objects and the options you have when you
export them to HTML.

 Creating a Static HTML Document 1141

Ch
ap

te
r 2

1

Table 21-4 Options for Exporting Access Objects to HTML

Object Data Exported Comments

Table Table datasheet Access attempts to duplicate any formatting that
you have applied to the datasheet (font, gridlines).
You can also specify a template fi le to enhance the
fi nal output. The table name appears as a caption in
the exported HTML table.

Query Query datasheet Same as a table. When you export a parameter
query, Access prompts you for the parameters and
exports the result of fetching the data after resolving
the parameter values.

Form The recordset for
the outer form

Same as a table except you control formatting by
setting the format of the form’s Datasheet view.
Access will not export data in any subform.

Report The data displayed
in the report

Access attempts to duplicate the format of the
report but does not output any line or rectangle
controls. Access also exports any data in any
subreport. Access exports the report one page
at a time. It assigns the fi le name you specify for
the fi rst page and appends PageN (where N is
the subsequent page number) for the second
through last pages. You can specify a template fi le
to enhance the overall appearance of the exported
pages. You can include information in the template
to ask Access to generate links to the various pages
of the report.

The procedure to export to HTML is very similar for all object types. In the Navigation
Pane, select the object you want to export, click the More button in the Export group
on the External Data tab, and then click HTML Document. You can also right-click
the object, click Export on the shortcut menu, and then click HTML Document on the
submenu. For this example, open the Housing Reservations database (Housing.accdb),
select tblDepartments in the Navigation Pane, click the More button in the Export
group on the External Data tab, and then click HTML Document. Access displays the
Export–HTML Document dialog box, as shown in Figure 21-8.

In the File Name box you can enter the location of where you want to save the exported
HTML document. Click Browse to open the Windows File Save dialog box, browse to a
specifi c folder to which you want to save the HTML document, and then click Save.
(You can fi nd the sample static HTML fi les installed from the companion CD in the
\WebChapters\StaticHTML subfolder, as shown in Figure 21-8.) If you select the Export
Data With Formatting And Layout check box, Access attempts to preserve any format-
ting you might have applied to the data. Be sure to leave this check box cleared for this
example. The object here is to discover the simple format that Access uses to export
to HTML.

Chapter 21

1142 Chapter 21 Publishing Data on the Web
Figure 21-8 You can export the data in an Access table as simple HTML using the Export–HTML
Document dialog box.

The Export – HTML Document dialog box has two additional check boxes: Open The
Destination File After The Export Operation Is Complete and Export Only The Selected
Records. If you select the Export Data With Formatting And Layout check box (which
we’ll explore later in this chapter), Access lets you select the Open The Destination File
After The Export Operation Is Complete check box. This option tells Access to open
the HTML document in your default Web browser as soon as the export procedure is
completed. The Export Only The Selected Records check box is available only when you
have a table, query, or form open; have selected a subset of the records; and have also
selected the Export Data With Formatting And Layout check box. When you select only
a few of the records in a table or query and then select this check box, Access exports
only the selected records. If you leave this check box cleared, Access exports all the
records in the table or query, even if you selected only a few of the records.

Click OK to complete the creation of your Web page. Access displays a confi rmation
message in the Export – HTML Document dialog box if the export is successful. If the
export fails for any reason, Access displays an error message describing the problem.
Access also offers you the opportunity to save these export steps if you plan to execute
them frequently. Click Close to close the dialog box, open Windows Explorer, fi nd the
page you just created, and double-click the fi le to open it in your Web browser. Your
result should look like Figure 21-9.

 Creating a Static HTML Document 1143

Ch
ap

te
r 2

1

Figure 21-9 This is data from the tblDepartments table exported to HTML using a simple format.

Not very attractive, is it? Access doesn’t even provide column headings. You could
 certainly open this page in an HTML editor and improve it, but you have additional
options in Access to minimize the work needed to make this Web page more attractive.
(You can fi nd this page saved as tblDepartmentsPlain.html in the \WebChapters\
StaticHTML folder on your companion CD.)

Improving the Look of Exported Data in HTML
Creating more attractive HTML output from Access isn’t diffi cult. You can customize
the Datasheet view of your output source to specify a font and the appearance of the
gridlines in the resulting HTML table. You can also create a template fi le that Access
can use to make the resulting HTML more appealing.

Customizing Datasheet View
You can change the default settings for all datasheets in the Access Options dialog box.
You can also customize the Datasheet view of any individual table, query, or form. To
change settings for all datasheets, start by opening the Housing Reservations sample
database, click the Microsoft Offi ce Button, click Access Options, and then click the
Datasheet category. You can see that you have several formatting options for datasheets,
as shown in Figure 21-10.

CAUTION!
Keep in mind that any setting that you change in the Access Options dialog box affects

the look of all datasheets in any database on your computer. However, temporarily

choosing custom settings in this dialog box might be a good option when you want

to export several datasheets and do not want to change the settings for the individual

objects.

C U O !

Chapter 21

1144 Chapter 21 Publishing Data on the Web
Figure 21-10 You can change settings that affect all datasheets using the options in the Access
Options dialog box.

Under Default Colors, you can choose from a palette of Access theme colors and stan-
dard colors, or you can customize your own colors for Font, Background, Alternate
Background, and Gridlines. Be careful to not choose the same color for the font as for
the background—the data won’t be visible in the output table.

In the Default Gridlines Showing section under Gridlines And Cell Effects, you can
specify whether you want Horizontal or Vertical or both gridlines displayed. Setting the
Default Cell Effect changes the look of the cells in the HTML table. When you choose
Raised or Sunken, Access ignores the settings for Background and Gridlines under
Default Colors and ignores the Horizontal and Vertical settings under Default Gridlines
Showing. When you choose Raised, Access uses Silver as the background color and
Gray as the gridline color. For Sunken, Access also uses Silver as the background color
and uses White for the gridlines. When you choose Raised or Sunken, be careful not to
choose Silver as the color for the font because Silver is the background color. Although
you can specify a default column width under Gridlines And Cell Effects, changing this
setting does not affect the column widths in the HTML output. (Changing this setting
does affect all datasheets that you open within Access.) Access creates the HTML table
so that the column widths and heights adjust to display all the data within the width of
the browser window.

Finally, under Default Font, you can choose the font name; the size; the weight (Thin,
Extra Light, Light, Normal, Medium, Semi-Bold, Bold, Extra Bold, and Heavy); and
whether you want the font underlined, italic, or both. The choices for Weight vary
depending on the particular font you select. Keep in mind that the font you choose
must also be available on the user’s computer. Typical fonts on most Windows systems

 Creating a Static HTML Document 1145

Ch
ap

te
r 2

1

include Arial, Comic Sans, Courier New, Georgia, Modern, MS Sans Serif, MS Serif,
Tahoma, Times New Roman, and Verdana.

If you want to set the format of the datasheet for an individual table, query, or form, you
must fi rst open the object in Datasheet view. Open the qryFacilities query in the Hous-
ing Reservations database in Datasheet view, as shown in Figure 21-11. (The query sorts
by facility name.) We changed the font, font color, alternating row color, and gridlines.

Figure 21-11 You can customize the format of an individual query in Datasheet view.

To change the font settings for this query’s datasheet, use the options available in the
Font group on the Home tab. You can enter the name of the font and select the style
that you want—bold, italics, or underline. (Clicking the Underline button draws a line
under all characters in both the column headings and the data.) You can also enter a
font size or choose a size from the drop-down list. Choose a color for the font from the
drop-down color palette, but be sure that you do not select a color that is the same as
the background of the grid.

To see the other settings that affect the format of the datasheet, click the Datasheet For-
matting Dialog Box Launcher button in the lower-right corner of the Font group on the
Home tab, as shown in Figure 21-12.

Figure 21-12 To see additional formatting options, click the Datasheet Formatting Dialog Box
Launcher button.

Chapter 21

1146 Chapter 21 Publishing Data on the Web
Access displays the Datasheet Formatting dialog box, as shown in Figure 21-13.

Figure 21-13 Use the Datasheet Formatting dialog box to specify settings for a specifi c datasheet.

You can choose a cell effect exactly as you can in the Access Options dialog box. How-
ever, in this dialog box when you choose Raised or Sunken, Access disables the choices
for Gridlines Shown. Access does change the background color, alternate background
color, and gridline color to refl ect the colors that it uses when you choose one of the
two special effects. Although you can change settings under Border And Line Styles
to affect the look of the datasheet in Access, you’ll see only solid lines in the resulting
HTML. If you want to see how these settings affect the datasheet in Access, select Flat
under Cell Effect, select either the Horizontal or Vertical check box (or both) under
Gridlines Shown, select Datasheet Border or Column Header Underline in the left
combo box under Border And Line Styles, and then choose a setting in the right combo
box. Choices in the right combo box include Transparent Border, Solid, Dashes, Short
Dashes, Dots, Sparse Dots, Dash-Dot, Dash-Dot-Dot, and Double Solid.

When you have fi nished changing formatting settings, click OK, click the Save button
on the Quick Access Toolbar, and then close the query. If you don’t want to save your
changes, close the Datasheet view, and reply No when Access asks you whether you
want to save the layout changes.

After you set the options you want (either in the Access Options dialog box for all
datasheets or in the Font group and Datasheet Formatting dialog box for an individual
datasheet), you’re ready to export the results with formatting applied. For this example,
select the qryFacilities query in the Navigation Pane, click the More button in the
Export group on the External Data tab, and then click HTML Document. Access opens
the Export – HTML Document dialog box, as shown in Figure 21-14.

 Creating a Static HTML Document 1147

Ch
ap

te
r 2

1

Figure 21-14 You can export a query to HTML and preserve its formatting.

Be sure to select the Export Data With Formatting And Layout check box so that Access
knows to honor the formatting of the query’s datasheet. Also select the Open The Des-
tination File After The Export Operation Is Complete check box—Access will open the
HTML fi le in your browser as soon as it completes the export. Click OK, and Access
displays the HTML Output Options dialog box, as shown in Figure 21-15.

Figure 21-15 You can choose to use an existing HTML template in the HTML Output Options
dialog box.

In this dialog box, you can also select an HTML template fi le to further customize the
output. You’ll learn how to create and use a template fi le that includes special embed-
ded codes that Access understands in the next section. For now, leave the Select A
HTML Template check box clear. You can also select the character encoding that you
want Access to use for the fi le. In most cases, the Default Encoding option (Windows)

Chapter 21

1148 Chapter 21 Publishing Data on the Web
works just fi ne. If your data contains unusual characters (for example, the Swedish
character å) and your Web page might be viewed on non-Windows computers, you
should choose Unicode or Unicode (UTF-8).

What Is Unicode?
The two Unicode options are a result of international standards established by the Uni-

code Consortium (www.unicode.org) to avoid problems with the internal numeric code

used by different platforms to represent special characters. For example, the character å

is the value 229 on a Windows computer but the value 140 on a Macintosh.

Unicode, however, presents two problems. First, not all systems support the standard.

Second, Unicode can double the size of your HTML fi le, resulting in performance prob-

lems over slow networks. Unicode (which is UTF-16) is a 2-byte character set that is rec-

ognized by all browsers that support the Unicode standard. Unicode (UTF-8) supports

most common characters in a single byte that can be understood by most platforms

and uses 2 bytes to store special characters. If your data does contain special characters,

UTF-8 provides the best compromise of speed and support for extended character sets

across multiple platforms.

Click OK to complete the export of the query. When the export is fi nished, Access
starts your browser and shows you the result that you can see in Figure 21-16. You can
see that because you asked Access to export the data with formatting, the table now has
column headings and is using the font and gridlines specifi ed for the query datasheet.
You can fi nd this sample page saved as qryFacilitiesCustomDS.html. (After you return
to the Access window, close the Export – HTML Document dialog box.)

Figure 21-16 The HTML page shows the formatted query you exported.

Designing and Using HTML Output Templates
When you take the time to format a table, query, or form datasheet before you export it
to HTML, you can see that the result is superior to the default export format. You can
take this one step further by defi ning a template HTML fi le and asking Access to apply
the template when it exports your data. In fact, creating a template is a good way to

What Is Unicode?
The two Unicode options are a result of international standards established by the Uni-

code Consortium (www.unicode.org) to avoid problems with the internal numeric code

used by different platforms to represent special characters. For example, the character å

is the value 229 on a Windows computer but the value 140 on a Macintosh.

Unicode, however, presents two problems. First, not all systems support the standard.

Second, Unicode can double the size of your HTML fi le, resulting in performance prob-

lems over slow networks. Unicode (which is UTF-16) is a 2-byte character set that is rec-

ognized by all browsers that support the Unicode standard. Unicode (UTF-8) supports

most common characters in a single byte that can be understood by most platforms

and uses 2 bytes to store special characters. If your data does contain special characters,

UTF-8 provides the best compromise of speed and support for extended character sets

across multiple platforms.

 Creating a Static HTML Document 1149

Ch
ap

te
r 2

1

establish a common design for all your Web pages. Not only can you use a template to
improve the appearance of data you export from Access, you can also use the same tem-
plate to apply a common design to Web pages that you create from many HTML editors.

You can embed special comments in your template fi le (called tokens) that Access uses
to place certain key elements in the fi nal page. Table 21-5 lists the tokens and how
Access uses them.

Table 21-5 HTML Template Tokens Recognized by Access

Token Meaning

<!--AccessTemplate_Title--> Inserts the name of the table, query, or form,
or the contents of the Caption property of the
report in place of this token.

<!--AccessTemplate_Body--> Inserts the exported data as an HTML table at
this location.

<!--AccessTemplate_FirstPage--> When you are exporting a report, places a
hyperlink to the fi rst page of the report at this
location.

<!--AccessTemplate_PreviousPage--> When you are exporting a report, places a
hyperlink to the previous page of the report at
this location.

<!--AccessTemplate_NextPage--> When you are exporting a report, places a
hyperlink to the next page of the report at this
location.

<!--AccessTemplate_LastPage--> When you are exporting a report, places a
hyperlink to the last page of the report at this
location.

<!--AccessTemplate_PageNumber--> When you are exporting a report, places the
page number at this location.

In the \WebChapters\StaticHTML folder on your companion CD, you can fi nd two tem-
plate fi les. The fi rst one, StaticTemplate.htm, does not include any of the special report
tokens, so it is more suitable for exporting the datasheet of a table, query, or form. The
contents of the template are as follows:

<html>
<head>
<title><!--ACCESSTEMPLATE_TITLE--></title>
</head>
<body leftmargin="50" background="sumiback.jpg">
 Housing Reservation System
<p>

<!--ACCESSTEMPLATE_BODY-->

</p>
</body>
</html>

Chapter 21

1150 Chapter 21 Publishing Data on the Web
The template isn’t very complex, but it does specify a background graphic for the page,
a heading, and an embedded JPEG fi le. You can see that the template places the name of
the output object in the browser title bar and asks Access to insert the table results fol-
lowing the graphic image.

To see how this works, you can export the qryFacilityRooms query from the Housing
Reservations database. We saved the query datasheet using a purple Verdana font and
vertical gridlines only. Select this query in the Navigation Pane, click the More but-
ton in the Export group on the External Data tab, and then click HTML Document to
open the Export – HTML Document dialog box. Click the Browse button, and navigate
to the WebChapters\StaticHTML folder in the File Save dialog box. Enter qryFacility-
Rooms.html in the File Name box (Access should fi ll this in for you), and then click
Save to return to the Export – HTML Document dialog box. Select the Export Data
With Formatting And Layout check box, select the Open The Destination File After
The Export Operation Is Complete check box, and then click OK. In the HTML Output
Options dialog box, select the Select A HTML Template check box. Click the Browse
button, fi nd the StaticTemplate.htm fi le in the \WebChapters\StaticHTML folder, and
then click OK. The HTML Output Options dialog box should look like Figure 21-17.
Notice that the dialog box disables the encoding options when you choose the option to
use a template—the encoding for your fi nal page will be inherited from the template.

Figure 21-17 You can specify to use a custom template when you export data to HTML.

Click OK to fi nish the export. Access displays the result in your browser window, as
shown in Figure 21-18. You can fi nd this Web page saved as qryFacilityRoomsCustom-
DSTemplate.html on the companion CD.

TROUBLESHOOTING
I don’t see the graphic or the background on my sample page. What am I
doing wrong?
Take another look at the HTML for the template fi le. The fi le specifi es a background using

the sumiback.jpg fi le. It also references the housing.jpg fi le to be displayed as an image.

When you include fi le references like these in your HTML and you do not include a rela-

tive path from the current location of the Web page, your browser expects to fi nd the

fi les in the same folder as the Web page. If you saved your sample fi le to a folder other

than the \WebPages\StaticHTML folder, you won’t see the graphics unless you copy the

two fi les to the folder where you saved the sample fi le. Copy the two fi les, and try open-

ing the Web page again.

TROUBLESHOOTING

 Creating a Static HTML Document 1151

Ch
ap

te
r 2

1

Figure 21-18 The HTML page displays the formatted query using the template specifi cations.

As you can see, the HTML page is vastly improved over the simple results that you get
when you export data without formatting and a template. It’s a simple matter to edit the
fi nal HTML to replace the query name in the title bar and the table caption with some-
thing more meaningful.

Generating an HTML Page from an Access Report
Access does a much better job of exporting reports to HTML. It attempts to mimic the
layout and fonts that you designed into your original report. It also places the Caption
property defi ned for the report in the title bar of your Web browser. The two limita-
tions are that Access cannot export bound OLE or other graphic objects (such as check
boxes) and it cannot duplicate lines and rectangles that you include in the report
design. When your report contains more than one page, Access creates one HTML fi le
per page and includes hyperlinks in the pages to make it easy to navigate from one page
to another.

Creating a Template for a Report
Although Access does format reports nicely when you output them to HTML, you can
further enhance the result by designing a template fi le. On the companion CD, you can

Chapter 21

1152 Chapter 21 Publishing Data on the Web
fi nd a template that you can use with reports, StaticTemplateReport.htm. The code in
the template fi le is as follows:

<html>
<head>
<title><!--ACCESSTEMPLATE_TITLE--></title>
</head>
<body leftmargin="50" background="sumiback.jpg">

Housing Reservation System<p>

<!--ACCESSTEMPLATE_BODY-->

<a href="<!--AccessTemplate_FirstPage-->">

<a href="<!--AccessTemplate_PreviousPage-->">
<img border="0" id="img1" src="buttonB.jpg" height="30" width="100"
alt="Previous">
<a href="<!--AccessTemplate_NextPage-->">
<img border="0" id="img1" src="buttonC.jpg" height="30" width="100"
alt="Next">
<a href="<!--AccessTemplate_LastPage-->">
<img border="0" id="img1" src="buttonD.jpg" height="30" width="100"
alt="Last">

Page <!--AccessTemplate_PageNumber-->.
</p>
</body>
</html>

As noted earlier, when your report contains multiple pages, Access exports each page
as a separate fi le and inserts hyperlinks to navigate through the pages. However, the
default hyperlinks are simple text links that aren’t very attractive. The sample template
replaces the four links (First, Previous, Next, Last) with graphic button images. The
template also inserts a page number at the bottom of each page. You can see that this
template also specifi es a background image and an embedded graphic and heading.

Exporting a Report with a Template
You can use the sample template to export any of the reports in the sample Housing
Reservations database. To try it out, select the rptDepartments report in the Navigation
Pane, click More in the Export group on the External Data tab, and then click HTML
Document to open the Export – HTML Document dialog box. Click the Browse button,
navigate to the WebChapters\StaticHTML folder in the File Save dialog box, and then
click Save to return to the Export – HTML Document dialog box. Select the Open The
Destination File After The Export Operation Is Complete check box, as shown in Figure
21-19. Notice that Access automatically selected and dimmed the Export Data With For-
matting And Layout check box—Access always exports reports to HTML formatted.

 Creating a Static HTML Document 1153

Ch
ap

te
r 2

1

Figure 21-19 When you export a report to HTML, Access automatically keeps any formatting.

Click OK, and Access displays the HTML Output Options dialog box that you saw
earlier in Figure 21-17. Be sure to select the Select A HTML Template check box, then
choose the StaticTemplateReport.htm fi le from the \WebChapters\StaticHTML folder
as the template fi le, and fi nally click OK. Click OK again to export the report, and you
should see a result in your browser as shown in Figure 21-20. (You can fi nd an example
saved as rptDepartmentsTemplate.html in the sample fi les.)

Notice that the check box control used to display the Admin? column on the report is
missing. (You would need to change the check box on the report to a text box before
exporting to fi x this.) Also, the report already includes page numbers, so the page num-
ber added by the template is redundant. (We included the page number token in the
template so that you can see how it works.) However, the Web page does include nice
graphic hyperlinks to make it easy to move from page to page in the report. When you
return to the Access window, close the Export – HTML Document dialog box.

Chapter 21

1154 Chapter 21 Publishing Data on the Web
Figure 21-20 When you export the report to HTML with a template applied, you can see the
 template elements with the report formatting.

Writing HTML from Visual Basic
Remember that HTML fi les are actually text fi les containing tags and perhaps script
that your browser can interpret. After you become familiar with HTML coding, you
might fi nd it easiest to create a Visual Basic procedure to rewrite static Web pages that
need to be updated periodically.

Unless you have a lot of turnover in your organization, the work phone numbers for
employees probably don’t change very often. So, to make this information available in
a Web page, a static HTML page probably works just fi ne. However, you need an easy
way to update the information in the Web page periodically—perhaps once a month—to
make sure the information is current.

In the Housing Reservations sample database (Housing.accdb), you can fi nd a proce-
dure in the modHTML module that does just that. The following is the Visual Basic
code for the WriteHTML function that you can fi nd in the module:

Public Function WriteHTML() As Integer
’ Function demonstrates how to format and write a
’ static Web page with embedded data
’ Declare some variables
Dim db As DAO.Database, rstDept As DAO.Recordset, rstEmp As DAO.Recordset
Dim strWebPath As String, strPagePath As String
 ’ Trap all errors

 Creating a Static HTML Document 1155

Ch
ap

te
r 2

1

 On Error GoTo Err_HTML
 ’ Set up the location to put the page
 strWebPath = CurrentProject.Path & "\WebChapters\StaticHTML\"
 strPagePath = strWebPath & "EmployeePhone.htm"
 ’ Delete the old page, if it’s there
 If Len(Dir(strPagePath)) > 0 Then
 Kill strPagePath
 End If
 ’ Open a new output fi le
 Open strPagePath For Output As #1
 ’ Write the HTML headings
 ’ Using Print to avoid quotes in the output
 Print #1, "<HTML>"
 Print #1, "<head><title>Employee Phone List</title></head>"
 Print #1, ""
 Print #1, "<body leftmargin=""50"" background=""sumiback.jpg"">"
 Print #1, "<p align=""left""><font size=""6"" face=""Times New Roman""" & _
 " color=darkblue>Employee Phone List</p>"
 Print #1, ""
 ’ Point to the current database
 Set db = CurrentDb
 ’ Open departments sorted by name
 Set rstDept = db.OpenRecordset("SELECT DepartmentID, Department " & _
 "FROM tblDepartments ORDER BY Department")
 ’ Loop through all departments
 Do Until rstDept.EOF
 ’ Write the table description, caption, and headings
 Print #1, "<table border=""3"" style=""border-collapse: collapse""" & _
 " bordercolor=steelblue width=""400"" cellpadding=""5"">"
 Print #1, "<caption><p align=""left"">" & _
 "<font face=""Verdana""" & _
 " color=""darkblue"">Department: " & rstDept!Department & _
 "</p></caption>"
 Print #1, ""
 Print #1, "<THEAD>"
 Print #1, "<TR>"
 Print #1, "<TH BGCOLOR=whitesmoke BORDERCOLOR=#000000 " & _
 "style=""border-style: double; border-width: 3"" >"
 Print #1, "<FONT style=FONT-SIZE:10pt FACE=""Verdana"" " & _
 "COLOR=darkblue>Employee Name</TH>"
 Print #1, "<TH BGCOLOR=whitesmoke BORDERCOLOR=#000000 " & _
 "style=""border-style: double; border-width: 3"" >"
 Print #1, "<FONT style=FONT-SIZE:10pt FACE=""Verdana"" " & _
 "COLOR=darkblue>Phone Number</TH>"
 Print #1, "</TR></THEAD>"
 Print #1, ""
 Print #1, "<TBODY>"
 ’ Now open a recordset on the employees in this department
 ’ sorted by last name, fi rst name
 Set rstEmp = db.OpenRecordset("SELECT FirstName, MiddleName, " & _
 LastName, WorkPhone FROM tblEmployees " & _
 "WHERE DepartmentID = " & rstDept!DepartmentID & _

Chapter 21

1156 Chapter 21 Publishing Data on the Web
 " ORDER BY LastName, FirstName")
 ’ Loop through all employees in this department
 Do Until rstEmp.EOF
 ’ Write a table row for each employee
 Print #1, " <tr>"
 Print #1, " <td width=""65%"" style=""border-style: double; " & _
 "border-width: 3"">"
 Print #1, " " & _
 rstEmp!LastName & ", " & rstEmp!FirstName & _
 (" " + rstEmp!MiddleName) & _
 "</td>"
 Print #1, " <td width=""35%"" style=""border-style: double; " & _
 "border-width: 3"">"
 Print #1, " " & _
 Format(rstEmp!WorkPhone, "(@@@) @@@-@@@@") & "</td>"
 Print #1, " </tr>"
 ’ Get next employee
 rstEmp.MoveNext
 Loop
 ’ Close off the table
 Print #1, "</table>"
 Print #1, ""
 ’ Create a space between tables
 Print #1, "</table>"
 Print #1, "<p> </p>"
 Print #1, ""
 ’ Get the next department
 rstDept.MoveNext
 Loop
 ’ Close off the Web page
 Print #1, "</Body>"
 Print #1, "</HTML>"
 ’ Done - close up shop
 Close #1
 rstDept.Close
 Set rstDept = Nothing
 rstEmp.Close
 Set rstEmp = Nothing
 Set db = Nothing
 WriteHTML = True
Exit_HTML:
 Exit Function
Err_HTML:
 ’ Display the error
 MsgBox "Error writing HTML: " & Err & ", " & Error
 ’ Log the error
 ErrorLog "WriteHTML", Err, Error
 ’ Bail
 Resume Exit_HTML
End Function

 Creating a Static HTML Document 1157

Ch
ap

te
r 2

1

The procedure begins by using the Dir function to check to see whether the old Web
page fi le exists. If it fi nds the fi le, it deletes it using the Visual Basic Kill statement. Next,
the procedure takes advantage of the ability to read and write fi les that’s built into
Visual Basic. The code uses the Open statement to create a new .htm fi le, followed by a
series of Print statements to write the heading tags to the fi le. You can also use a Write
statement to write to a fi le opened this way, but Write includes double quotes around
string variables or literals that you write to the fi le. Print writes only the text you specify.

The code opens a recordset on the tblDepartments table, sorted by department name.
It creates an HTML table with a caption and a heading for each department. It opens
a second recordset for all the employees in the department and loads the HTML table
rows using information from the employee recordset. After writing out all the employ-
ees for the current department, the code writes tags to close off the table and create a
space between tables. The code moves to the next department and loops back to start
a new HTML table for the next department. When it has fi nished with the last depart-
ment, it closes off the Web page with </Body> and </HTML> tags.

You can open the modHTML module, click anywhere in the function, and click the
Run button on the toolbar to run the code. After the code fi nishes, you can open the
EmployeePhone.htm fi le that you can fi nd in the \WebChapters\StaticHTML folder.
Figure 21-21 shows you the result. (If you don’t want to run the code, you can fi nd the
result saved as EmployeePhoneXmpl.htm in the sample fi les.)

Figure 21-21 The completed Web page created by a Visual Basic procedure shows the current
phone numbers of all employees.

Chapter 21

1158 Chapter 21 Publishing Data on the Web
When you combine your Visual Basic skills with your knowledge about writing HTML,
the options are limitless.

Creating Dynamic Web Pages
To create Web pages that display (and perhaps allow the user to update) data from a
database, you must create a special type of Web page containing script that can fetch
and update the data. The most common way to do this is to create an Active Server Page
(ASP) that runs on the Web server to fetch requested information from a database, for-
mat it as HTML, and send it to the client browser. An alternate method is to use HTML
forms that contain an ActiveX control and script to perform the same tasks. When you
create an HTML form, you can design it to run the database code on the server or on
the client.

With Microsoft’s introduction of the .NET architecture and ASP.NET, creating dynamic
Web pages is almost as easy as creating desktop database applications. These tools
help you create ASPs or HTML forms to handle the database processing. You can also
use Expression Web to build HTML forms that deliver dynamic information from your
database. Let’s take a brief look at these technologies.

Delivering Dynamic Query Results
If, whenever a Web visitor requests a page, you want your Web page to query the data-
base and return the result to the visitor, you must create a dynamic Web page. Figure
21-22 shows the most common network architecture you can build using Access as the
database fi le server to report up-to-the-minute, live database contents. The browser
requests a special kind of Web page—an ASP—that contains a mixture of HTML and
script code. The script code, running on the server and working through several lay-
ers of software, opens the database, runs the query, and formats the results. The Web
server then transmits the results to the Web visitor’s browser as pure HTML.

Note
The script code generated by Microsoft products in ASPs is Microsoft Visual Basic

 Scripting Edition (VBScript).

Note
The script code generated by Microsoft products in ASPs is Microsoft Visual Basic

Scripting Edition (VBScript).

 Creating Dynamic Web Pages 1159

Ch
ap

te
r 2

1

Web Server

(File Sharing)

File System

ActiveX Objects

Web Browser
Active Server
Page (ASP)

ActiveX Data
Objects (ADO)

Open Database
Connectivity (ODBC)

Database Mgmt
System (DBMS)

TCP/IP Network

Figure 21-22 A high-level schematic shows the delivery of database queries dynamically.

Any ASP that you create with Microsoft products is designed to work on Microsoft

 Internet Information Services (IIS). You can install IIS on Windows 2000 Server, Windows

XP Professional, Windows Vista, or Windows Server 2003. If you have Windows Vista on

your desktop computer, you can install a local IIS server to test your work. If you didn’t

choose to install IIS when you installed Windows Vista, you can add it later by starting

the Programs And Features application in Windows Control Panel and then clicking the

Turn Windows Features On Or Off link.

If you plan to use Expression Web, you must also install the Microsoft .NET

Framework 2.0.

SIDE OUT Installing Microsoft Internet Information Services and
Expression Web

Any ASP that you create with Microsoft products is designed to work on Microsoft

Internet Information Services (IIS). You can install IIS on Windows 2000 Server, Windows

XP Professional, Windows Vista, or Windows Server 2003. If you have Windows Vista on

your desktop computer, you can install a local IIS server to test your work. If you didn’t

choose to install IIS when you installed Windows Vista, you can add it later by starting

the Programs And Features application in Windows Control Panel and then clicking the

Turn Windows Features On Or Off link.

If you plan to use Expression Web, you must also install the Microsoft .NET

Framework 2.0.

Chapter 21

1160 Chapter 21 Publishing Data on the Web
Figure 21-22 shows the following additional components. Even if you never work with
these directly, it’s good to know what they are so that you can decipher documentation
and error messages.

O ActiveX objects are prewritten software modules that provide commonly used
functions. Most VBScript code in ASPs works by loading and controlling ActiveX
objects that run on the Web server. The ActiveX objects you need to build most
ASPs are included with the Microsoft Offi ce system and in the Expression Design
add-on for the Expression Web product.

O ActiveX Data Objects (ADO) are collections of ActiveX objects specifi cally
designed to process databases. As you learned in Chapter 19, “Understanding
Visual Basic Fundamentals,” the ADO libraries are a standard part of Access.

O Open Database Connectivity (ODBC) provides a standard interface to many dif-
ferent types of database systems. You confi gure ODBC through Windows Control
Panel. See Chapter 6, “Importing and Linking Data,” for details about managing
ODBC connections.

O The database management system (DBMS) organizes data into databases, tables,
and fi elds. It also accepts commands (usually coded in SQL) that update or query
the database. Access 2007 and Microsoft SQL Server are typical DBMSs you can
use to support ASPs.

Processing Live Data with HTML Forms
Among the many objects Web pages can contain are various form elements: text boxes,
drop-down lists (similar to combo boxes in Access forms), check boxes, option buttons,
push buttons (similar to command buttons in Access forms), and ActiveX controls. Web
visitors can use these to enter data and submit it to an ASP or other server-based pro-
gram for processing. Typical database processing includes running customized queries
and adding, changing, or deleting records in tables. Processing follows the schematic
previously shown in Figure 21-22, except that the server receives form fi eld data from
the Web page and the ASP programming is more complex.

HTML forms can’t provide nearly as rich or as helpful an interface as Access forms, but
using HTML forms means authorized users anywhere can run your Web application
without loading any additional software and regardless of the type of computer the user
has. These are important considerations when you need to support many users, many
environments, or both.

Using Visual Studio .NET and ASP.NET
Microsoft’s latest answer to software development, Visual Studio .NET, is an editor and
project manager that lets you create both Windows desktop applications using one
of several languages and Web applications using ASP.NET. .NET allows you to create
applications using the programming language of your choice, including Visual Basic

 Sharing Your Data with SharePoint 1161

Ch
ap

te
r 2

1

.NET, Visual C++ .NET, Visual C# .NET, or Visual J# .NET. No matter which program-
ming language you choose, the compiled version of your program shares the same run-
time library with all other languages. When you build a Web application, ASP.NET lets
you use any of the available programming languages to generate HTML forms and ASP
pages to implement your application.

Visual Studio uses essentially the same user interface as the Visual Basic editor sup-
plied with Access 2007. In addition, Visual Studio provides a WYSIWYG HTML editor,
ActiveX controls that generate HTML whenever you save a page that contains them, an
assortment of database wizards and design tools, and an interactive debugger for both
ASP.NET and scripts that run on the browser. ASP.NET also lets you choose the lan-
guage that you want to use behind your Web forms, including Visual Basic. Yet, despite
all these aids, Visual Studio remains at heart a programmer’s environment. If you’re not
comfortable working directly with HTML code, Visual Basic programming, and ActiveX
interfaces, this probably isn’t the program for you. Otherwise, rest assured that any-
thing you can do in code, you can do in Visual Studio .NET.

For more information about Expression Web, consult Microsoft Expression Web Designer
Inside Out from Microsoft Press.

Sharing Your Data with SharePoint
It seems that every couple of years something new occurs in technology that causes a
stir. For Microsoft, the latest hot buttons are .NET, XML, and now Windows SharePoint
Services. In all three cases, the technologies (.NET and XML) and product (Windows
SharePoint Services) have increased productivity and made life simpler for developers
and users alike.

Introducing Windows SharePoint Services
Windows SharePoint Services consists of two components: Microsoft Windows
 SharePoint Services (version 3) and Microsoft Offi ce 2007 SharePoint Server. Windows
SharePoint Services allows teams of people to collaborate and share documents, tasks,
and schedules. Offi ce SharePoint Server is a Web portal that lets you set up your server
to handle the searching and storing of documents. You can think of Windows Share-
Point Services as a front end to Offi ce SharePoint Server, where multiple but separate
team services might use the same portal service. You can see an example of a Windows
SharePoint Services site in Figure 21-23. (This is a Microsoft Offi ce Live Web site that
John created.)

Chapter 21

1162 Chapter 21 Publishing Data on the Web
Figure 21-23 An Offi ce Live Web site uses Windows SharePoint Services.

Windows SharePoint Services uses ASP.NET to create Web sites that take advantage of
a technology called Web Parts. Web Parts are custom forms that you can ask Windows
SharePoint Services to dynamically include on your team site pages. These Web Parts
allow you to customize your Windows SharePoint Services site with items such as
announcements, contact lists, task lists, interactive discussion areas, and links to
other pages relevant to the team tasks. You will learn more about Windows SharePoint
 Services and Web Parts and how they work in Chapter 22, “Working with Windows
SharePoint Services,” and in Chapter 23.

Offi ce and Windows SharePoint Services
The development team for the Microsoft Offi ce system has gone to great efforts to inte-
grate all its products with Windows SharePoint Services so that you can share on your
site documents of various types, including data from Access. In addition to being able
to import data from and export data to a Windows SharePoint Services site, you can
create Access reports from the various lists within your site. Some of the other tasks you
can perform with the Microsoft Offi ce system and Windows SharePoint Services are

O Import data to and export data from Access

O Link to Windows SharePoint Services documents from Access to allow you to
work with the data stored in Windows SharePoint Services from your Access
application

 Sharing Your Data with SharePoint 1163

Ch
ap

te
r 2

1

O Attach local working documents to events on a Windows SharePoint Services site

O Import events into Microsoft Offi ce Outlook 2007 to allow users to have a local
copy of an event or reminder

O Store on the Windows SharePoint Services site Microsoft Offi ce Excel 2007 work-
sheets and Offi ce Word 2007 documents for sharing

O Use Offi ce Web Components such as the PivotTable and PivotChart as Web Parts
to enhance your Windows SharePoint Services site

We’ll discuss additional Microsoft Offi ce system and Windows SharePoint Services
features in the next chapter. You are now ready to dig in and see how to use Access
for some of your Web needs. In the next two chapters, we will delve deeper into the
 Windows SharePoint Services and XML topics that we discussed in this chapter.

CHAPTER 22

Working with
Windows SharePoint Services

M icrosoft Windows SharePoint Services (version 3) is a Web-based product from
Microsoft that enables companies to create a central repository of many types of

information that can be viewed and updated by authorized users. Windows SharePoint
Services runs as a service on Microsoft Windows Server 2003 or later and uses
 Microsoft SQL Server to store and manage the shared data.

Any company that needs a way to improve team collaboration should fi nd Windows
SharePoint Services very useful. With a Windows SharePoint Services Web site, you can

O Provide a central location for collaborating on documents created using Microsoft
Offi ce applications.

O Create separate workspaces for different teams.

O Assign users to different groups, allowing some to view only shared data, permit-
ting others to modify and contribute shared data, and allowing a few to custom-
ize the design of their own or shared sites.

O Create forums such as blogs and wikis using built-in templates.

O Customize a shared site using off-the-shelf Web Parts included as part of the
 Windows SharePoint Services product. These Web Parts include

Announcements that can be posted by the team leaders
Contact lists
Content from another Web page or fi le embedded within the
main page
Event and issue tracking and task assignment
Online discussion board
Links to other pages or Web sites
Team membership lists
Shared document sublibrary
Online survey

•
•
•

•
•
•
•
•
•

Working Within the Windows SharePoint
Services User Interface . 1167

Using Windows SharePoint Services from Access . . . 1182

Migrating an Access Database to a Windows
SharePoint Services Site . 1207
 1165

Chapter 22

1166 Chapter 22 Working with Windows SharePoint Services
Web Parts are a particularly powerful feature in Windows SharePoint Services. If
you are a member of a group that has design permission on the team site, you can
 customize the Web pages presented by Windows SharePoint Services by choosing the
components you want, indicating where you want the component to appear on the
page, and customizing the components by setting their properties. You can also apply
one of dozens of themes to the team site to give it a customized look. These features are
not unlike designing a form within Microsoft Access, but you perform your design work
directly within your browser.

Microsoft Offi ce Access 2007 extends the collaboration power of Windows SharePoint
Services by adding features that allow the two programs to work in tandem. In this
chapter you’ll learn how to

O Work within the Windows SharePoint Services user interface

O Export a table stored in Offi ce Access 2007 to a Windows SharePoint Services list

O Import a list from Windows SharePoint Services into Access 2007 as a local table

O Link to existing SharePoint lists

O Create new lists in Windows SharePoint Services from within Access 2007

O Work with Windows SharePoint Services lists offl ine and later synchronize any
changes

O Upload your Access 2007 database to a SharePoint site

O Publish your Access 2007 database in a document library on a SharePoint site

O Open SharePoint lists in Access 2007

O Open Access 2007 forms and reports inside a SharePoint site

Note
The samples in this chapter are based on the Housing Reservations Windows SharePoint

Services application, HousingSP.accdb, and the IssuesSample.accdb database that you

can fi nd on the companion CD. This particular Housing Reservations database is a scaled-

down version of the full Housing.accdb sample you have been working with throughout

this book. It is designed to be uploaded to a Windows SharePoint Services Version 3 Web

site. In order to take full advantage of this database, you will need to have access to a

Windows SharePoint Services Version 3 Web site to which you can connect. Also, all

screen shots were taken using a Microsoft Offi ce Live Web site, so the fi gures you see in

this chapter might differ from what you see on your screen based on your Windows

SharePoint Services Version 3 site. Many of the features of Windows SharePoint Services

discussed in this chapter require version 3. Earlier versions might not offer all the features

we discuss in this chapter. If you do not have access to a Windows SharePoint Services

Version 3 site, you can sign up for one (with a free trial) at http://offi ce.microsoft.com/
en-us/offi celive/default.aspx.

Note
The samples in this chapter are based on the Housing Reservations Windows SharePoint

Services application, HousingSP.accdb, and the IssuesSample.accdb database that you

can fi nd on the companion CD. This particular Housing Reservations database is a scaled-

down version of the full Housing.accdb sample you have been working with throughout

this book. It is designed to be uploaded to a Windows SharePoint Services Version 3 Web

site. In order to take full advantage of this database, you will need to have access to a

Windows SharePoint Services Version 3 Web site to which you can connect. Also, all

screen shots were taken using a Microsoft Offi ce Live Web site, so the fi gures you see in

this chapter might differ from what you see on your screen based on your Windows

SharePoint Services Version 3 site. Many of the features of Windows SharePoint Services

discussed in this chapter require version 3. Earlier versions might not offer all the features

we discuss in this chapter. If you do not have access to a Windows SharePoint Services

Version 3 site, you can sign up for one (with a free trial) at http://offi ce.microsoft.com/
en-us/offi celive/default.aspx.

 Working Within the Windows SharePoint Services User Interface 1167

Ch
ap

te
r 2

2

Working Within the Windows SharePoint Services
User Interface

In the process of writing this book, we used an Offi ce Live Web site running Windows
SharePoint Services Version 3 to test and demonstrate how Access 2007 and Windows
SharePoint Services can work together. A full discussion of Windows SharePoint
 Services Version 3 and all its features is beyond the scope of this book, so our goal in
this section is only to familiarize you with some of the user interface elements relevant
to Access 2007. Figure 22-1 shows the main page we created to demonstrate the Hous-
ing SharePoint sample you’ll see later in this chapter.

Figure 22-1 A Windows SharePoint Services Web site allows you to collaborate and share informa-
tion through a Web browser.

The left side of the page is a navigation bar similar to the Navigation Pane in Access
2007. Clicking one of these links takes you to another part of this Web site. In our
example, we clicked the Housing link to access the HousingSP database. Horizon-
tally near the top of the page is a dashboard that displays the internal contents of the
 Housing folder using tabs. You can see the name of the Housing SharePoint database
(HousingSP) and some of the lists within that database—tblDepartments, tblEmployees,
and tblReservationRequests.

Chapter 22

1168 Chapter 22 Working with Windows SharePoint Services
Click the Common Tasks button to see a list of customization options, as shown in Fig-
ure 22-2. You can customize the dashboard, assign permissions to various parts of your
Web site, view settings for your other applications and workspaces, create new elements
on your Web site, and modify the current workspace settings.

Figure 22-2 Click Common Tasks to create, edit, and customize the various elements of your
 Windows SharePoint Services Web site.

Editing Data in Lists
In Windows SharePoint Services terminology, a table is referred to as a list that stores
information about a single subject. In a list you have columns (fi elds) that contain the
different kinds of information about the subject. Similar to how you work in Access
2007, you can work with lists in different views for adding and editing records. Figure
22-3 shows the default view of an Employees list on our test site that looks like Data-
sheet view in Access. (This list was created as part of one of the sample business appli-
cations that Offi ce Live loaded when we set up the Web site.) You can see the column
headers—such as Last Name, First Name, and Job Title—and one employee row below
the column headers. This view is also set to display all the employees.

 Working Within the Windows SharePoint Services User Interface 1169

Ch
ap

te
r 2

2

Figure 22-3 A list displayed on a SharePoint site resembles Datasheet view of a table in Access.

Although this view resembles a datasheet, you cannot edit any of the columns or records
from this specifi c page because this is a read-only view. In the Windows SharePoint
Services user interface, you’ll notice that there are no record indicators or blank rows
for new records. To add a record to the Employees list, click the arrow to the right of the
New button and then click the New Item command, as shown in Figure 22-4.

Figure 22-4 Click the New Item command to add a new record.

Chapter 22

1170 Chapter 22 Working with Windows SharePoint Services
Windows SharePoint Services opens a new page that resembles a blank data entry form
in Access, as shown in Figure 22-5. All the column headers for this list are displayed
on the left side, and text boxes for the columns are on the right side. (You can’t see all
the columns for the Employees list in Figure 22-5.) This single-item edit form displays
a red asterisk next to any required columns—for this list, you must enter a value in
Last Name.

Figure 22-5 You can add new records via a view of the list that looks like a form.

As with a data entry form in Access, you enter the information for this record into the
various text boxes. In Figure 22-6 you can see we are entering John’s employee informa-
tion. Just like Access 2007, Windows SharePoint Services supports adding attachments
to individual records. In this particular view, we can click the Attach File link, shown
in Figure 22-6, to browse to a location and upload an attachment for this employee’s
record.

Windows SharePoint Services also supports Rich Text Format for text and memo fi elds.
The last column in the Employees list, Notes, includes formatting buttons you can use
to apply different fonts, font sizes, bolding, alignments, and colors for your text, as
shown in Figure 22-7. After we click OK to save this new record, we return to the default
view of the Employees list, which now displays John’s record, as shown in Figure 22-8.

 Working Within the Windows SharePoint Services User Interface 1171

Ch
ap

te
r 2

2

Figure 22-6 You can see John’s record details being added to the form.

Figure 22-7 Windows SharePoint Services supports Rich Text Format for text fi elds.

Chapter 22

1172 Chapter 22 Working with Windows SharePoint Services
Figure 22-8 John’s record has been added to the Employees list.

Creating New Views
Within the Windows SharePoint Services user interface, you can create new views of
your lists. If a particular view shows too many columns or too few columns, you can
create a custom view to display only the columns you need. You might fi nd this feature
handy for hiding certain columns from specifi c users or groups. You might also want to
set up a Datasheet view of your list for quick data entry and editing many records. On
our test site we created a Datasheet view of the Employees list. As shown in Figure 22-9,
we clicked the arrow to the right of View and then clicked the Create View command to
begin creating a new Datasheet view.

Figure 22-9 You can create new views of your lists within Windows SharePoint Services.

 Working Within the Windows SharePoint Services User Interface 1173

Ch
ap

te
r 2

2

The Create View page opens, where you can choose from several existing view formats,
as shown in Figure 22-10. This page includes built-in views such as Standard, Calendar,
Access, Datasheet, and Gantt. You can even use an existing view as a basis for creating
a new view. Not all views would be appropriate for certain types of lists. For instance, a
list of products would not function at all if displayed in Calendar view.

Figure 22-10 Windows SharePoint Services offers several built-in views for your lists.

We want to create a Datasheet view of the Employees list, so we clicked the Datasheet
View button to open a new page to customize our new view, as shown in Figure 22-11.
On this page we can choose from any of the following options for this new list view:

O Name Assign a name for this new list view.

O Audience Designate whether this view can be seen by others or only by yourself.
Public is the default.

O Columns Select which columns will appear in the list view and in what order.
All data columns appear in the sequence defi ned by default. You can also choose
to display other columns maintained by Windows SharePoint Services such as
attachments, date created, date modifi ed, and version.

O Sort Assign sorting options for one or two columns. By default, no columns are
sorted—the data appears in the order entered.

O Filter Apply one or more fi lters to the list view. By default, no fi lters are defi ned.

Chapter 22

1174 Chapter 22 Working with Windows SharePoint Services
O Totals Calculate totals for any of the columns. No totals are defi ned by default.

O Folders Choose to show items inside folders or in a fl at view without folders. The
default is to display items inside folders.

O Item Limit Assign a maximum number of records to display in the view. The
default is to display all records.

Figure 22-11 On this page, you can choose options to customize your new Datasheet view.

In our example, we named this new view Employee Datasheet and kept all of the other
options set to their defaults. In the Access world, what we are building is conceptually
a query and a data entry form for the Employees list. For the query, we are deciding
which fi elds to display and in which order to sort the fi elds. For the form, we are choos-
ing the form layout (Datasheet, in this case), and specifying any totals to display for the
columns. After clicking OK to save our new view, Windows SharePoint Services dis-
plays our Employee Datasheet list view, as shown in Figure 22-12.

 Working Within the Windows SharePoint Services User Interface 1175

Ch
ap

te
r 2

2

Figure 22-12 You can now see your new Datasheet view of the Employees list.

This view now looks very similar to Datasheet view of a form you might create in
Access. You can easily move through the columns and records using the Tab and
arrows keys. You can click the arrows on the column headers to apply additional fi lters
to the records. You can see a blank row at the bottom of this view for entering a new
record. Windows SharePoint Services even displays an Access icon in the upper-left cor-
ner of the view!

Adding Columns to Lists
In the Windows SharePoint Services user interface you can also add new columns to
your lists. For our example, we might want to add a Middle Name column between the
Last Name and First Name columns and reorder the columns to First Name, Middle
Name, and Last Name. This is a three-step process—add the column to the list, add the
column to the Employee Datasheet view, and then reorder the columns. To add the new
column to the Employees list, we clicked the arrow to the right of Settings and then
clicked the Create Column command, as shown in Figure 22-13.

Chapter 22

1176 Chapter 22 Working with Windows SharePoint Services
Figure 22-13 The Create Column command adds a new column to the list.

The Create Column page opens, on which you can assign properties for the new col-
umn, as shown in Figure 22-14. In Windows SharePoint Services, you assign the follow-
ing properties for the new column:

O Name and Type

O Description

O Required

O Field Size

O Default Value

O Add To Default View

Depending on the data type you choose, this page displays additional options, such
as the list of values for a Choice data type or the minimum and maximum values for a
Number or Currency data type. After you assign your column properties, click OK and
Windows SharePoint Services adds the new column to the list.

Now that we have added the column to the list, we must add the column to our
Employee Datasheet view. (However, if the Datasheet view is the default view—which
it isn’t in this case—and we selected the Add To Default View check box to add the col-
umn to the default view when we created it, we can skip these steps.) We have already
indicated which columns to display in the Employee Datasheet view so, by default,
Windows SharePoint Services does not add this column to our custom view. To add the
column to the custom view, we clicked the arrow to the right of View and then clicked
the Modify This View command, as shown in Figure 22-15.

 Working Within the Windows SharePoint Services User Interface 1177

Ch
ap

te
r 2

2

Figure 22-14 On this page you can set properties for the new column.

Figure 22-15 To display the new Middle Name column, you have to add it to the Employee
 Datasheet view.

Chapter 22

1178 Chapter 22 Working with Windows SharePoint Services
On the Edit Datasheet View page, you can modify the layout of the Employee Datasheet
view, as shown in Figure 22-16. This page displays the name of each column with a
check box to its left. Select the check box next to Middle Name to add this column to
your custom view. A Position From Left box to the right of the column name lets you
position each column in the view. In Figure 22-16, you can see we assigned the First
Name column to the 1 position to have it appear fi rst in the column order. When we
changed the Position From Left value for the First Name column, the sequence of the
other columns changed automatically. We then changed the position of the Middle
Name column to 2. Windows SharePoint Services changed the sequence the other col-
umns and assigned the Last Name column to the 3 position.

Figure 22-16 You can adjust the display positions for the columns on the Edit Datasheet View page.

Note that you can change the name of the view on this page. You can also specify the
Web page address, which by default will be the same as the name of the view. Finally,
you can select the Make This The Default View check box to make this the view users
see whenever they open the list. After you click OK to save the changes, you can see
your revised Employee Datasheet view with the new Middle Name column, as shown
in Figure 22-17. Windows SharePoint Services correctly positions the new column
between the First Name and Last Name columns and places the First Name column
fi rst in the column order.

 Working Within the Windows SharePoint Services User Interface 1179

Ch
ap

te
r 2

2

Figure 22-17 The new Middle Name column now appears in the Employee Datasheet view.

Note
You might be wondering why we used a space in the name of the Middle Name column,

especially considering that we recommended that you not use spaces for fi eld names in

your tables at the beginning of this book. In Windows SharePoint Services you cannot

assign captions to the columns, so the column names displayed in the various views are

always the actual names of the columns. For this reason, you’ll probably want to include

spaces in column names in lists defi ned in Windows SharePoint Services to make them

more readable.

Recycle Bin
One of the great advantages to having lists stored on a Windows SharePoint Services
site is the Recycle Bin. In most cases, if you delete something in Access, it is gone for
good. If you delete one record (or a thousand) by mistake and then close the database,
those records are lost. In some situations it is possible to retrieve deleted database ele-
ments using professional recovery services, but retrieval is not always guaranteed and
these services can be costly. If you’re lucky, you might have a backup of your database

Note
You might be wondering why we used a space in the name of the Middle Name column,

especially considering that we recommended that you not use spaces for fi eld names in

your tables at the beginning of this book. In Windows SharePoint Services you cannot

assign captions to the columns, so the column names displayed in the various views are

always the actual names of the columns. For this reason, you’ll probably want to include

spaces in column names in lists defi ned in Windows SharePoint Services to make them

more readable.

Chapter 22

1180 Chapter 22 Working with Windows SharePoint Services
that you can use to restore deleted records, but you still might lose some very important
data depending on when you made the last backup.

Windows SharePoint Services has a built-in Recycle Bin where you can easily recover
deleted records and other Windows SharePoint Services Web site elements. Suppose,
for example, we accidentally deleted John’s record in our Employees list that we have
been working on. We can go to the Recycle Bin on a SharePoint site by navigating to the
site settings (click Common Tasks and then Modify This Application Or Workspace)
and clicking Deleted Items under Recycle And Restore, as shown in Figure 22-18.

Figure 22-18 Windows SharePoint Services includes a Recycle Bin so you can recover
deleted items.

After you click Deleted Items, Windows SharePoint Services displays the Recycle Bin
for the Employee Directory, as shown in Figure 22-19. The Recycle Bin shows the type

 Working Within the Windows SharePoint Services User Interface 1181

Ch
ap

te
r 2

2

of object deleted (in this case a record), the name of the deleted record, the original
location of the list from which the record was deleted, who created the record, when the
record was deleted, and the size of the record.

Figure 22-19 John’s record can be restored from the Recycle Bin.

The Windows SharePoint Services Recycle Bin works in much the same way as the
 Windows Recycle Bin. The one difference is that Windows SharePoint Services auto-
matically empties deleted items that were deleted longer ago than 30 days. To restore
John’s record, we selected the check box next to his record and then clicked the Restore
Selection button. Windows SharePoint Services restored John’s record to the correct
list, as shown in Figure 22-20.

U

Chapter 22

1182 Chapter 22 Working with Windows SharePoint Services
Figure 22-20 John’s record has now been completely restored.

sing Windows SharePoint Services from Access
So far in this chapter you have read about how to work with lists within Windows
SharePoint Services. You’ve learned how to edit data through different views, add new
columns to your lists, and use the Recycle Bin to recover deleted records. Now that
you are more familiar with how to work within the Windows SharePoint Services user
interface, it’s time to discover how you can leverage the power of Windows SharePoint
Services within Access 2007.

Exporting Data to Windows SharePoint Services
In some situations you might fi nd that data stored in Access 2007 for your own per-
sonal use needs to be shared by several users in different locations. You might fi nd, for
example, that a list of contacts you maintain locally in an Access data table in Oregon
needs to be accessed by your sales force in Paris. By exporting this table to a SharePoint
site, both you and your sales force can view, add, and edit the contact information from
anywhere in the world.

 Using Windows SharePoint Services from Access 1183

Ch
ap

te
r 2

2

Access 2007 makes the process of exporting data from a table very easy. Let’s start by
using the Contacts database template that comes with Access for an example. Open
Access and click the Contacts database template icon in the middle of the screen.
Browse to a location to save this fi le and name it Contacts. Click the Download button
to download the database to your local computer. After Access opens the database,
close the opening Contacts form so that only the Navigation Pane is visible. Click the
Navigation Pane menu, click Object Type under Navigate To Category, and then click
All Access Objects to display a list of all objects.

This Contacts database includes only one table—Contacts—with no records. To see how
records are exported to a SharePoint site, you should add some records to this table.
Open the Contacts table in Datasheet view and add a couple of records of contact infor-
mation, as shown in Figure 22-21.

Figure 22-21 Enter some contact records before exporting the Contacts table to a SharePoint list.

Now that you have created some records, close the Contacts table. As you learned in
Chapter 6, “Importing and Linking Data,” all import and export commands are located
on the External Data tab of the Ribbon. Select the Contacts table in the Navigation
Pane, and then on the External Data tab, in the Export group, click the SharePoint List
button, as shown in Figure 22-22. Alternatively, you can right-click the table in the
 Navigation Pane, click the Export command on the shortcut menu that appears, and
then click SharePoint List on the submenu.

Access opens the Export – SharePoint Site wizard, as shown in Figure 22-23. Under
Specify A SharePoint Site, enter a valid address to a SharePoint site or subdirectory. Any
SharePoint sites that you have previously imported from, linked to, or exported to are
displayed in a list box. If one of these sites is the location to which you want to export
the table, you can click that address and Access fi lls in the address text box below the
list with that link. Enter a valid Windows SharePoint Services address in the text box
below the list, or select a previously visited Windows SharePoint Services address from
the list box.

Chapter 22

1184 Chapter 22 Working with Windows SharePoint Services
Figure 22-22 Click the SharePoint List button to start the Export – SharePoint Site wizard.

Figure 22-23 The Export – SharePoint Site wizard helps you export a table to a SharePoint list.

Under Specify A Name For The New List, give this new list a name. Keep in mind that
the name you use is exactly how it appears to users on the SharePoint site. If you name
it tblContacts, for instance, that is exactly how the name is displayed to users. For our
example, we kept the default name of Contacts that Access used. Also, if you use the
same name as an existing list, Windows SharePoint Services appends a number to the
end of the name to avoid duplication. For example, if a Contacts list is already present
on our site, the new list is named Contacts1.

 Using Windows SharePoint Services from Access 1185

Ch
ap

te
r 2

2

Under Description you can optionally enter some information to describe the use of
this list. This description is shown on the SharePoint site next to the name of the list.
For our example, we entered a description of “Contacts table for sales force in Paris,”
which you can see in Figure 22-23. Select the Open The List When Finished check box
if you want Access to immediately display the new list in your browser after the export
is complete. The wizard also displays a message noting that any tables related to this
one are also going to be exported to the SharePoint site. We’ll discuss this concept
later in the chapter. Click OK to start the export process. If you are not logged on to
your SharePoint site, you might be prompted to enter your logon information before
continuing. During the export process, Access displays a message screen with progress
 indicators.

The duration of the export process depends on how many tables you are exporting,
your connection speed, and the amount of data being transferred. In our simple test
of this Contacts table using a high-speed connection, Access completed the task in
only a few seconds. If you selected the Open The List When Finished check box in the
Export – SharePoint Site wizard, your browser should open, displaying the Contacts list
on the SharePoint site, as shown in Figure 22-24. You can see the name of the list, Con-
tacts, as well as the optional description we entered in the wizard. By default, Windows
SharePoint Services shows an All Items view for all lists; in this case it is called All Con-
tacts, which shows both contact records. In our example, our sales force can now view,
add, and edit these records in their Paris offi ce using their browser.

Figure 22-24 Your new Contacts table is now displayed as a list on the SharePoint site.

Chapter 22

1186 Chapter 22 Working with Windows SharePoint Services
When the export is complete, Access displays a confi rmation message on the last page
of the wizard, as shown in Figure 22-25. This page also offers you the option to save the
export steps you just performed if you plan to repeat these steps on a regular basis. You
can execute saved exports by clicking the Saved Exports button in the Export group
on the External Data tab of the Ribbon. If the export process encounters any problems,
Access displays a message on this page informing you of the errors and creates a local
table of those it encounters. We’ll discuss this error table later in the chapter. Click
Close to close the wizard.

Figure 22-25 Access confi rms whether the table export was successful on the last page of
the wizard.

Importing a List from Windows SharePoint Services
Importing a list into Access 2007 from a SharePoint site works in much the same way
as exporting a table. In this case, you are downloading data from a SharePoint site and
saving a local copy of the data in an Access table. After Access creates the table and
imports the records, you can use all the powerful tools at your disposal in Access—
 queries, forms, and reports—to analyze the data.

Continuing with our Contacts table example, let’s import the Contacts list from
the SharePoint site to the Contacts database we created earlier. You already have a

 Using Windows SharePoint Services from Access 1187

Ch
ap

te
r 2

2

 Contacts table in this database, so if you import the list, Access appends a number (in
this case, 1) to the name of the imported table—Contacts1. You can either temporarily
rename the existing Contacts table in your database to a new name, perhaps OldCon-
tacts, or just delete the table. We deleted the existing Contacts table by right-clicking
the table in the Navigation Pane and clicking Delete on the shortcut menu.

Begin the import process by opening the Contacts database in Access and on the
 External Data tab, in the Import group, clicking the SharePoint List button, as shown in
Figure 22-26.

Figure 22-26 Click the SharePoint List button to start the import process.

Access opens the fi rst page of the Get External Data – SharePoint Site wizard, as shown
in Figure 22-27. You can use this wizard to either import or link to Windows SharePoint
Services lists. We’ll discuss linking in the next section. Under Specify A SharePoint Site,
enter a valid address to a SharePoint site or subdirectory. Any SharePoint sites that you
have previously imported from, linked to, or exported to are displayed in a list box. If
one of these sites is the location from which you want to import the table, you can click
that address and Access fi lls in the address text box below the list with that link. Enter
a valid Windows SharePoint Services address in the text box, or select a previously
visited Windows SharePoint Services address from the list box. Select the fi rst option,
Import The Source Data Into A New Table In The Current Database, to import the list
and records to a local table and then click Next.

Chapter 22

1188 Chapter 22 Working with Windows SharePoint Services
Figure 22-27 You can import or link to Windows SharePoint Services lists using this wizard.

The second page of the wizard displays all the lists found in the SharePoint site direc-
tory that you specifi ed on the previous page, as shown in Figure 22-28. Select a check
box in the Import column to specify which list to import to Access. The Type column
displays icons representing the different types of lists. User-defi ned lists, for example,
are shown in orange, and built-in Windows SharePoint Services lists are shown in gray.
The Name column displays the names of the lists on the SharePoint site. The fourth col-
umn, Items To Import, shows a list of views. If the list has more than one view defi ned
in Windows SharePoint Services, you can select which specifi c view you want to import.
The default view, All Contacts, is the only view defi ned in our example. The last col-
umn, Last Modifi ed Date, displays the date the list was last modifi ed.

Near the bottom of this page is an option to import the display values from any lookup
fi elds instead of the actual lookup fi eld ID. If you think a list has one or more related
lookup lists, and you want to fetch the linking ID instead of the lookup value, clear this
check box so that you fetch the actual ID value. For example, if an Orders list is related
to a Customers list, clearing this check box fetches the Customer ID instead of the cus-
tomer name that might be defi ned in a lookup. If you leave this item selected, you’ll see
the customer name imported in the Customer ID fi eld. In this case there are no related
or lookup tables for Contacts, so this option does not apply.

 Using Windows SharePoint Services from Access 1189

Ch
ap

te
r 2

2

Figure 22-28 Select which lists to import to Access on the second page of the wizard.

Select the check box for the Contacts list, leave the other options set to their defaults,
and then click OK to begin the import process. Access creates a new local table in your
database and then imports the records. After the import process is complete, Access
displays the last page of the wizard, as shown in Figure 22-29. A message at the top of
this page indicates whether the import process was a success or if any problems were
encountered. The wizard also displays an option to save your import steps in case you
want to perform the exact import procedure again in the future. You can execute saved
imports by clicking the Saved Imports button in the Import group of the External Data
tab on the Ribbon. Click Close to dismiss the wizard.

Access now displays the new Contacts table in the Navigation Pane. Open the table in
Datasheet view to confi rm that the table includes the two contacts records, as shown
in Figure 22-30. You can now analyze the data using queries and reports or build data
entry forms for adding records to the table or editing them. Note, however, that you’ve
made a copy of the data stored on the SharePoint site. Any changes you make to the
local copy won’t be refl ected in the Web site list. If you want to be able update the data
in the list directly from Access, read on to the next section.

Chapter 22

1190 Chapter 22 Working with Windows SharePoint Services
Figure 22-29 The last page of the wizard asks if you want to save the import steps.

Figure 22-30 The Contacts list from the SharePoint site has now been imported as a local table
into Access.

 Using Windows SharePoint Services from Access 1191

Ch
ap

te
r 2

2

TROUBLESHOOTING
Why doesn’t my imported Windows SharePoint Services list include all
the records?
Earlier in this chapter, you learned how to create different views of a list in Windows

SharePoint Services. You can defi ne fi lters, include only certain columns, and assign sort

orders to a custom view. If your custom view restricts the number of records returned,

Access follows those rules and imports only those specifi c records. So, for example, if you

defi ne a custom view that shows only contacts whose last name equals Viescas and then

import that view into Access, the only records imported are ones where the last name

equals Viescas. If you need to import all the records into Access, make sure you import a

view that returns all the records in the list.

Linking a Windows SharePoint Services List into Access
As you might recall from Chapter 6, we discussed the differences between deciding
to import from or link to another data source. If you need to share your data with
other users or if the data changes frequently, you should consider linking to instead
of importing from another data source. You just imported a Contacts list from a
 SharePoint site to an Access database. If you add new records, edit existing records, or
delete records in this table, these changes are not refl ected in the list on the SharePoint
site. This can be problematic if all users need to have the most up-to-date data available
to them. You could make changes to your local table and then export the table to the
SharePoint list, but what if another user had also made changes to the records in the
list? You can see the dilemma this causes when trying to keep accurate data.

Fortunately, with Access you can link to a SharePoint site just as you can to other data
sources. If you export an Access table to Windows SharePoint Services and then link it
back, this allows both your desktop application users and authorized members of your
Windows SharePoint Services team to work with and update the same data. To link to a
SharePoint list from Access, click the SharePoint List button in the Import group on the
External Data tab, as shown in Figure 22-31.

Access opens the fi rst page of the Get External Data – SharePoint Site wizard, shown in
Figure 22-32. This particular wizard is the same one you used for importing lists from
a SharePoint site in the previous section. Enter a valid Windows SharePoint Services
address in the address text box below the list of previously visited sites or select a previ-
ously visited Windows SharePoint Services address from the list box. Select the second
option, Link To The Data Source By Creating A Linked Table, to link to an existing list
on a SharePoint site and then click Next.

TROUBLESHOOTING

Chapter 22

1192 Chapter 22 Working with Windows SharePoint Services
Figure 22-31 Click the SharePoint List button to start the Get External Data – SharePoint
Site wizard.

Figure 22-32 Select the link option on the fi rst page of the wizard to link to a list.

The second page of the wizard displays all the lists found in the SharePoint site direc-
tory that you specifi ed on the previous page, as shown in Figure 22-33. Select a check
box in the Link column to specify which list you want to link to Access. The Type
column displays icons representing the type of list. User-defi ned lists, for example,
are shown in orange when clicked, and built-in Windows SharePoint Services lists are
shown in gray when clicked or not clicked. The Name column displays the names of the
lists on the SharePoint site. The last column, Last Modifi ed Date, displays the date the

 Using Windows SharePoint Services from Access 1193

Ch
ap

te
r 2

2

list was last modifi ed. Select the Link check box next to Contacts and then click OK to
start the link process.

Figure 22-33 Select the list you want to link to on this wizard page.

Note
You’ll notice in Figure 22-33 that you cannot select any views on a SharePoint site as

you can when you are importing a list. Access allows you to link only to the full list as

opposed to views created from lists.

Access creates a link to the Windows SharePoint Services Contacts list and marks the
icon for linked Windows SharePoint Services tables in the Navigation Pane with a blue
arrow, as shown in Figure 22-34. If Access fi nds a duplicate name, it generates a new
name by adding a unique integer to the end of the name as described earlier. Because
objects such as forms, reports, macros, and modules might refer to the linked table by
its original name, you should carefully check name references if Access has to rename a
linked table.

On the status bar at the bottom of the Access window shown in Figure 22-34, you’ll
notice that Access displays Online With SharePoint. This message appears on the status
bar whenever you have any active links to a SharePoint site.

Note
You’ll notice in Figure 22-33 that you cannot select any views on a SharePoint site as

you can when you are importing a list. Access allows you to link only to the full list as

opposed to views created from lists.

Chapter 22

1194 Chapter 22 Working with Windows SharePoint Services
Linked Windows
SharePoint Services lists

Status bar message indicating an active link
to a Windows SharePoint Services site

Figure 22-34 Access now has a link to the Contacts list on the SharePoint site.

You might have noticed that Access created a link to the User Information List in addi-

tion to the Contacts list, even though you did not explicitly link to that list. Access adds

links to other related lists such as those used for lookup values. Every list in Windows

 SharePoint Services includes hidden columns for Created By and Modifi ed By dates, and

this data is stored in the User Information List in Windows SharePoint Services. If you

delete this link, Access displays error messages, like this one, whenever you attempt to

update records in the list.

SIDE OUT Do Not Delete the User Information List Link!

You might have noticed that Access created a link to the User Information List in addi-

tion to the Contacts list, even though you did not explicitly link to that list. Access adds

links to other related lists such as those used for lookup values. Every list in Windows

SharePoint Services includes hidden columns for Created By and Modifi ed By dates, and

this data is stored in the User Information List in Windows SharePoint Services. If you

delete this link, Access displays error messages, like this one, whenever you attempt to

update records in the list.

 Using Windows SharePoint Services from Access 1195

Ch
ap

te
r 2

2

You can now use this Contacts list just like the original table in this application. In
Figure 22-35, you can see that we opened the Contact List form in Access bound to the
linked table, and both contact records are there. If you add a new record to the Contacts
table using this form, the Contacts list on the SharePoint site is also updated. Note that
using data from a SharePoint list as a linked table in Access requires a high-speed Inter-
net connection or local area connection to your intranet server. Performance will be
poor over a dial-up connection.

Figure 22-35 You can update a linked SharePoint list just like local tables or tables linked to other
data sources.

Also note that Windows SharePoint Services doesn’t enforce referential integrity. If you
use Windows SharePoint Services lists as the tables in your application, your applica-
tion must perform additional checks to ensure that data integrity is maintained. For
example, you might have a Contact Events list that includes the Contact ID fi eld from
the Contacts list. Before allowing a user to delete a Contacts record, you should check
to see that no related records exist in the Contact Events list. If records exist, you can
either delete them or disallow deleting the Contacts records. You’ll learn more about
working with recordsets in code behind forms in Chapter 20, “Automating Your Appli-
cation with Visual Basic.”

Chapter 22

1196 Chapter 22 Working with Windows SharePoint Services
Using SharePoint List Options with Linked Lists
When you have a linked list, Access 2007 offers several options for interacting directly
with the SharePoint site interface through a shortcut menu. If you’ve been following
along to this point, you should still have an active link to the Windows SharePoint Ser-
vices Contacts list. Close the Contact List form if it’s still open, and then right-click the
Contacts table link in the Navigation Pane, as shown in Figure 22-36.

Figure 22-36 You can interact directly with the Windows SharePoint Services interface from within
Access by using commands on the shortcut menu of a linked list.

You can do any of the following from the SharePoint List Options submenu:

O Open Default View This option sends a command to the SharePoint site and
opens the default view for the list. In our example, Windows SharePoint Services
displays the All Contacts view.

O Modify Columns And Settings This option opens a page where you can modify
the design of the list. Similarly to modifying a table in an Access database, you
can rename columns, change data types, change the sequence of columns, delete
columns, or add new columns.

O Alert Me This option opens a page on the SharePoint site where you can set
options to be notifi ed via e-mail if any data is added to this list, if data is modifi ed,
or even if data is deleted.

 Using Windows SharePoint Services from Access 1197

Ch
ap

te
r 2

2

O Modify Workfl ow This option takes you to the Workfl ow page for this list where
you can modify existing workfl ow rules or add new workfl ow rules. You can use
workfl ow rules to attach business logic to items in a SharePoint, similarly to set-
ting validation rules in an Access table.

O Change Permissions For This List This option opens a page on the SharePoint
site where you can view and change the users and their permissions levels.

O SharePoint Site Recycle Bin This option opens the Recycle Bin page on the
 SharePoint site where you can restore items (lists, views, rows, and so on) to your
site or permanently delete them. Windows SharePoint Services stores elements in
the Recycle Bin for 30 days and automatically purges anything left in the Recycle
Bin longer than that.

O Relink Lists This option opens the Relink Lists To New Site dialog box so that
you can relink your lists to a new SharePoint site location. This dialog box, shown
here, works in much the same way as the Linked Table Manager for relinking
tables when the data source location has changed. You might need to use this
facility if you have moved your lists to a new Web site.

O Refresh List This option causes Access to refresh the list from the SharePoint
site.

Chapter 22

1198 Chapter 22 Working with Windows SharePoint Services
O Delete List This option deletes the selected list from the SharePoint site. Access
displays a message asking you to confi rm the deletion. If you accidentally delete a
list by mistake, you can recover it in the Recycle Bin.

Note
When you open a database that has tables linked to Windows SharePoint Services lists

and if you’re not currently logged on to your SharePoint site, you’ll see a standard Web

site logon dialog box where you must enter your user name and password and click OK.

Creating a New Windows SharePoint Services List from
Within Access
Access 2007 also includes a powerful new feature that lets you dynamically create new
lists on a Windows SharePoint Services site. With only one click on a Ribbon button
and a few wizard options to set, you’re essentially creating a new table as a list directly
in Windows SharePoint Services. We’ll continue using our Contacts database and our
existing SharePoint site to demonstrate this functionality. If you have any objects open
in this database, close them so that you see only the Navigation Pane. On the Create
tab, in the Tables group, click the SharePoint Lists button. Access displays a menu of six
options, as shown in Figure 22-37.

Figure 22-37 You can create new lists on a SharePoint site from within Access.

Note
When you open a database that has tables linked to Windows SharePoint Services lists

and if you’re not currently logged on to your SharePoint site, you’ll see a standard Web

site logon dialog box where you must enter your user name and password and click OK.

 Using Windows SharePoint Services from Access 1199

Ch
ap

te
r 2

2

Using an Existing List Template
The fi rst four options—Contacts, Tasks, Issues, and Events—create a new list on the
SharePoint site and a table in Access that links to that list using a built-in template.
These fi rst four options are commonly used list styles on a SharePoint site. The Custom
option, discussed in the next section, creates a new list on the SharePoint site with only
three visible columns—ID, Title, and Attachments. The Existing SharePoint List option
opens the Get External Data – SharePoint Site wizard to import or link to a Windows
SharePoint Services list.

Let’s step through creating a new Events list on the SharePoint site so that we can coor-
dinate vacation scheduling with our sales force in Paris. Click the Events option on the
SharePoint Lists menu, as shown in Figure 22-37. Access opens the Create New List
wizard, shown in Figure 22-38. Under Specify A SharePoint Site, enter a valid address
to a SharePoint site or subdirectory on that site. Enter a valid Windows SharePoint Ser-
vices address in the text box or select a previously visited Windows SharePoint Services
address from the list box.

Figure 22-38 To create a new list, specify a name for the list and the location of the SharePoint site.

Under Specify A Name For This List, give this new list a name. Keep in mind that the
name you use is exactly how it appears to users on the SharePoint site. We decided to
name our new list Vacation Calendar. Under Description you can optionally enter some
information to describe the use of this list. We entered a description of “Sales force
vacation calendar,” which you can see in Figure 22-38. This description appears on the
SharePoint site next to the name of the list. Leave the Open The List When Finished

Chapter 22

1200 Chapter 22 Working with Windows SharePoint Services
check box selected so that Access immediately displays the new table in Datasheet view
after you create the list. Click OK to create the new list.

Access sends commands to the SharePoint site to create the new list and then creates a
new table linked to the Vacation Calendar list. Access also opens the new table in Data-
sheet view, as shown in Figure 22-39. This new table has 21 fi elds, such as Location,
Start Time, End Time, and Description, which you can use to describe an event.

Figure 22-39 Access created a new list on a SharePoint site and a table linked to the list.

If you use Internet Explorer to navigate to the address you specifi ed for the list, you
should now see the new Vacation Calendar list on the SharePoint site. This type of list
is perfectly suited for display in a Calendar view. As you can see in Figure 22-40, the
default view for the Vacation Calendar list is Calendar. The Vacation Calendar list also
has two other views—All Events and Current Events—that display the records in a more
traditional Datasheet view. At the moment, the Calendar view is empty because no
records have been created in the list.

Switch back to Access, and let’s add a new record to the table to see how easily we can
interact with the Calendar view on the SharePoint site. Our sales manager, John, is
going to be on vacation from October 30 through November 3. You can enter this data
directly into the table’s Datasheet view in Access, or you could build a data entry form.
As you learned in Part 3 of this book, you have a lot more control over how data is
entered if you use a form instead of entering data directly into a table datasheet, but for
this simple exercise we entered John’s vacation schedule into the table’s Datasheet view,
as shown in Figure 22-41. (If you’re following along with this example, select a start and
end time within the current month.)

 Using Windows SharePoint Services from Access 1201

Ch
ap

te
r 2

2

t
Figure 22-40 By default, the new Vacation Calendar list is displayed in Calendar view.

Figure 22-41 Enter a vacation record into the table to see it displayed on the SharePoint site.

Chapter 22

1202 Chapter 22 Working with Windows SharePoint Services
After you move from the record or save it by clicking the Save button in the Records
group on the Home tab, Access saves the information on the Windows SharePoint
Services site. Go to the Windows SharePoint Services site using your browser, click
the Refresh button, and navigate to the appropriate month and year to see the changes
refl ected in the Calendar view, as shown in Figure 22-42. John’s vacation schedule can
now be seen by any users of our Windows SharePoint Services site.

Figure 22-42 John’s vacation schedule now appears as a block of time in the Calendar view.

If you click on the block of time in the Calendar view, Windows SharePoint Services
displays a single-list view showing the details of John’s record that we entered in
Access, as shown in Figure 22-43.

 Using Windows SharePoint Services from Access 1203

Ch
ap

te
r 2

2

Figure 22-43 The single-list view shows the details of John’s schedule.

Creating a Custom List
You can also create a new custom list on a SharePoint site through Access 2007. When
you choose this option, Windows SharePoint Services does not use one of its built-in
templates for the list structure. In Access, if you have any database objects open, close
them now so that only the Navigation Pane is visible. On the Create tab, click the
 SharePoint Lists button in the Tables group, as shown in Figure 22-44.

Next, click the Custom option. Access opens the Create New List wizard, as shown
in Figure 22-45. Enter a valid Windows SharePoint Services address in the text box
or select a previously visited Windows SharePoint Services address from the list box.
Under Specify A Name For This List, we entered Chapter Status. In the Description
box we entered “Status of chapters for Microsoft Press,” as you can see in Figure 22-45.
Leave the Open The List When Finished check box selected and then click OK to create
the new list.

Chapter 22

1204 Chapter 22 Working with Windows SharePoint Services
Figure 22-44 Click the Custom option to create a custom list on the SharePoint site.

Figure 22-45 Enter a name for the custom list and the location of the SharePoint site.

Access instructs Windows SharePoint Services to create a new default list, creates
a table linked to the list, and opens the new list in Datasheet view, as shown in

 Using Windows SharePoint Services from Access 1205

Ch
ap

te
r 2

2

Figure 22-46. A Windows SharePoint Services custom list by default contains only ID,
Title, and Attachments columns.

Figure 22-46 By default, the new list includes three columns.

 If you go to the SharePoint site in your browser, you can see the new custom list, as
shown in Figure 22-47. The only view created so far is the All Items view, and the list is
empty. Windows SharePoint Services displays the description of the list that we entered
in the wizard beneath the list name. In this view, the Attachment column is to the left of
the Title column, and the ID column is hidden.

Figure 22-47 The new custom list shows up in the browser window.

Chapter 22

1206 Chapter 22 Working with Windows SharePoint Services
 Go back to Access, and let’s take a closer look at the table that Windows SharePoint
Services created. Right-click the Chapter Status linked table in the Navigation Pane and
click Design View on the shortcut menu. Access displays a warning message that Chap-
ter Status is a linked table and that you cannot change any of its properties. Click Yes in
the message box to open the table in Design view, as shown in Figure 22-48.

SharePoint List group for linked
Windows SharePoint Services lists

Figure 22-48 Access displays all the hidden columns of the list in the table’s Design view.

You’ll immediately notice that instead of seeing only three fi elds as you did in Datasheet
view, Access displays 14 fi elds in Design view. These extra fi elds are hidden columns
that Windows SharePoint Services uses to maintain the list. You can also see in Figure
22-48 a new group on the Design contextual tab under Table Tools called SharePoint
List. Access displays this group only when you are working with tables that are linked
to Windows SharePoint Services lists. In the SharePoint List group, you can do the
 following:

O Open Default View This option sends a command to the Windows SharePoint
Services browser and opens the default view for that list.

O Refresh List This option causes Access to refresh the list from the SharePoint
site. If any column properties have changed, Access closes the table.

 Migrating an Access Database to a Windows SharePoint Services Site 1207

Ch
ap

te
r 2

2

O Modify Columns And Settings This option opens the SharePoint site to a page
where you can modify the design of the list. Similar to modifying a table in
an Access database, you can rename columns, change data types, change the
sequence of columns, delete columns, or add new columns. Just as with other
linked tables, to make changes to the source table, you must make them in the
source data store, in this case on the SharePoint site.

O Alert Me This option opens a page on the SharePoint site where you can set
options to be notifi ed via e-mail if any data is added to this list, if data is modifi ed,
or even if data is deleted.

O Modify Workfl ow This option takes you to the Workfl ow page for this list where
you can modify existing workfl ow rules or add new workfl ow rules.

O Permissions This option opens a page on the SharePoint site where you can view
and change the users and their permission levels.

After you create a custom list, you can use these commands to modify your list accord-
ing to your specifi c needs. Close the Design view for this table now.

Migrating an Access Database to a
Windows SharePoint Services Site

You’ll learn in Part 7 of this book that you can use an SQL server as a data source for an
Access project fi le. You can also use a Windows SharePoint Services site as a data source
for your Access 2007 database. You can either publish or move your Access 2007 data-
base when migrating to a SharePoint site. When you publish your database, you are sim-
ply copying your database to the Windows SharePoint server so that others can open
and use it. Any changes you make to the data in the local copy are not refl ected in the
copy on the SharePoint site. If you change queries, forms, reports, macros, or modules,
you must republish your database to make the copy on the server current.

When you move your database, Access makes a backup copy of your database, uploads
all the tables into Windows SharePoint Services lists, and replaces all the tables with
a link to the appropriate list so that any data editing you perform in the local copy is
refl ected in the copy on the SharePoint site. You can set form and report properties so
that Access creates a view of the SharePoint list that points to the form or report in the
moved database. If you change queries, forms, reports, macros, or modules in your local
copy, you must republish your database to make the copy on the server current.

Similar to the process of upsizing an Access database to SQL Server, Access 2007
includes a Move To SharePoint Site Wizard that walks you through the process of
moving your tables and data to Windows SharePoint Services lists. By moving your
database, you can share the data with many users and take advantage of the Windows
SharePoint Services security, version control, and Recycle Bin. Users can update and
view the data either through links to the lists in an Access 2007 database or by using
their browser.

Chapter 22

1208 Chapter 22 Working with Windows SharePoint Services
When you move an Access 2007 database to a SharePoint site, Access places an entire
copy of the database in a document library on the site. Users can open the database
from the SharePoint site and download a copy to their local computer to work with the
data. By having a copy of your database objects on a SharePoint site, users can always
have the latest copy of the queries, forms, reports, macros, and modules.

Note
Before we began the next steps in this chapter, we deleted all the existing lists we previ-

ously created on our SharePoint site.

Publishing Your Database to a Windows SharePoint Services Site
Publishing a database to a SharePoint site is somewhat similar to copying a database to
a fi le server where users can obtain a copy of the data, work with it, and send changes
back to the server. When you open a published database on the SharePoint site, Access
downloads a cached copy of the fi le for you to use. Any changes you make to the data or
objects are not refl ected in the database on the SharePoint site unless you republish the
changes.

Close the current Contacts database if you haven’t already done so; we’ll use another
new Contacts database template that comes with Access for an example of publishing a
database. Open Access if you closed it, and click the Contacts database template icon in
the middle of the Getting Started screen. Browse to a location in the right task pane to
save this fi le and name it Contacts. Beneath the fi le path, you can see an option to cre-
ate and link your database to a SharePoint site, as shown in Figure 22-49. If you select
this check box and then click Download, Access downloads the database template to
your computer and then prompts you for the address of your SharePoint site. After you
provide the appropriate address, Access creates a new list for each table in the sample
database on the SharePoint site and then creates a link to each list in the database. You
also have the option to move a copy of the entire database up to the SharePoint site.
(We discuss moving a database in the following sections.)

To continue our publishing example, clear the Create And Link Your Database To A
SharePoint site check box, and then click the Download button to download the data-
base to your local computer. After Access opens the database, close the open Contact
List form so that only the Navigation Pane is visible. Click the Navigation Pane menu,
click Object Type under Navigate To Category, and then click All Access Objects to dis-
play a list of all objects.

This Contacts database includes only one table—Contacts—with no records. To publish
the database, click the Microsoft Offi ce Button, point to the Publish option, and then
click Document Management Server, as shown in Figure 22-50.

Note
Before we began the next steps in this chapter, we deleted all the existing lists we previ-

ously created on our SharePoint site.

 Migrating an Access Database to a Windows SharePoint Services Site 1209

Ch
ap

te
r 2

2

Figure 22-49 The right task pane on the Getting Started screen includes an option to create links
to a SharePoint site when you create the database.

Figure 22-50 Click Document Management Server to begin publishing your database.

Chapter 22

1210 Chapter 22 Working with Windows SharePoint Services
Note
You can publish an Access database to a SharePoint site only if the database is in the

Access 2007 .accdb fi le format.

Access opens the Publish To Web Server dialog box, as shown in Figure 22-51. You
need to specify the address to the workspace on the SharePoint site in the File Name
box. (If you’re working in a corporate environment, you might need to ask your network
administrator for this information.) We entered the address to the InsideOut workspace
on our SharePoint site. Click Publish. You should see a standard Windows logon dialog
box to verify your credentials on the SharePoint site. Enter your user name and pass-
word and click OK to continue.

Figure 22-51 Enter the address to your SharePoint site in the Publish To Web Server dialog box.

Access then shows the contents of the InsideOut workspace on our SharePoint site and
enters the name of the fi le, Contacts, in the File Name text box. In our case, we selected
the Shared Documents library under Document Libraries, as shown in Figure 22-52.
Click the Publish button to begin publishing your database to the SharePoint site.

During the publishing process, Access sets a property in the database to note that it
has been published. After the process is complete, Access opens the Contacts database
again and displays the Contact List form, as shown in Figure 22-53. You’ll notice that
there is no link to the Contacts table in this database, and no Online With SharePoint
message appears on the status bar. Note, however, that Access knows that you have
published this database, and it provides you with a handy button on the Message Bar
that enables you to republish any changes.

Note
You can publish an Access database to a SharePoint site only if the database is in the

Access 2007 .accdb fi le format.

 Migrating an Access Database to a Windows SharePoint Services Site 1211

Ch
ap

te
r 2

2

Figure 22-52 Select the Shared Documents library to publish the Contacts database.

Figure 22-53 The published database does not have active links to any list on the SharePoint site.

Chapter 22

1212 Chapter 22 Working with Windows SharePoint Services
Moving Your Database to a Windows SharePoint Services Site
To show you the process of moving an Access 2007 database to a Windows SharePoint
Services site, we’ll use the Issues Sample database on the companion CD. (You previ-
ously used this sample in Chapter 2, “Exploring the New Look of Access 2007.”) This
database already has data in the two tables—Contacts and Issues—so you can see how
Access moves data to a SharePoint site. Begin by opening the Issues Sample database
(IssuesSample.accdb), and then close the Issue List form so that only the Navigation
Pane is visible. Next, on the External Data tab, click the Move To SharePoint button in
the SharePoint Lists group, as shown in Figure 22-54.

Figure 22-54 The Move To SharePoint button facilitates the process of moving your database to a
SharePoint site.

Note
You can move an Access database to a SharePoint site only if the database is in the

Access 2007 .accdb fi le format.

Note
You can move an Access database to a SharePoint site only if the database is in the

Access 2007 .accdb fi le format.

 Migrating an Access Database to a Windows SharePoint Services Site 1213

Ch
ap

te
r 2

2

Access opens the Move To SharePoint Site Wizard, as shown in Figure 22-55. Enter the
address for your SharePoint site in the What SharePoint Site Do You Want To Use? text
box. If you select the Save A Copy Of My Database To The SharePoint Site And Create
Shortcuts To My Access Forms And Reports check box, Access uploads an entire copy
of your database into a document library on that SharePoint site. If you clear this check
box, Access creates only new lists for the tables, moves the data to those lists, and cre-
ates linked local tables in the Access database.

Figure 22-55 On the fi rst page of the wizard, enter the address of your SharePoint site and decide
whether you want to upload a copy of the database.

Click the Browse button to browse for a document library location in which to save your
database. If you’re not currently logged on to your SharePoint site, you’ll see a standard
Windows logon dialog box, as shown in Figure 22-56. Enter your user name and pass-
word and then click OK to proceed.

Note
The Offi ce Live Web site we used to demonstrate migrating a database authenticates

users using a Windows Live ID—an e-mail address.

Note
The Offi ce Live Web site we used to demonstrate migrating a database authenticates

users using a Windows Live ID—an e-mail address.

Chapter 22

1214 Chapter 22 Working with Windows SharePoint Services
Figure 22-56 You might need to log on to your SharePoint site before proceeding.

After you log on to your SharePoint site, Access displays a Location dialog box showing
the various document libraries, sites, and workspaces on the site, as shown in Figure
22-57. For our example, we chose to upload a copy of the database into the Shared Doc-
uments library in the InsideOut workspace, as shown in Figure 22-58.

Figure 22-57 Select the document library where you want to save the database.

After you navigate to the correct folder in which to upload your database, click OK to
continue. The Move To SharePoint Site Wizard now displays the folder where Access
will save the database, as shown in Figure 22-59. Verify that the information is correct,
and click Next to begin the process of moving your database.

 Migrating an Access Database to a Windows SharePoint Services Site 1215

Ch
ap

te
r 2

2

Figure 22-58 After selecting the document library in the workspace, click OK to save the database
in that location.

Figure 22-59 The wizard displays the location on the SharePoint site where the migrated database
will be saved.

Chapter 22

1216 Chapter 22 Working with Windows SharePoint Services
Access displays several progress screens as it creates new lists for the two tables, cop-
ies the data to the new lists, and moves a copy of the entire database to the InsideOut
folder on our SharePoint site.

Note
If the data in a table that you’re moving to Windows SharePoint Services closely matches

one of the built-in Windows SharePoint Services templates, Access uses that. Otherwise,

Access instructs Windows SharePoint Services to build a custom list.

After Access completes the migration process, the fi nal page of the wizard confi rms
that the move was successful. You can select the Show Details check box to fi nd out the
actions taken and any error that occurred during the migration process. As you can
see in Figure 22-60, Access successfully created two new lists on the SharePoint site—
 Contacts and Issues. Access always creates a backup of your database before begin-
ning the migration process, and you can see the name and location of the database on
this page of the wizard. You can also see the full address path to the location of your
database on the SharePoint site. Finally, Access informs you that it created a log table
of issues it encountered when moving the tables to the SharePoint site. Click Finish to
close the wizard.

Figure 22-60 Select the Show Details check box to see any issues Access encountered during the
migration process.

Note
If the data in a table that you’re moving to Windows SharePoint Services closely matches

one of the built-in Windows SharePoint Services templates, Access uses that. Otherwise,

Access instructs Windows SharePoint Services to build a custom list.

 Migrating an Access Database to a Windows SharePoint Services Site 1217

Ch
ap

te
r 2

2

After you close the wizard, Access opens your new database and displays the startup
form, Issue List, as shown in Figure 22-61. You can see in the Navigation Pane that
Access created links to the new Contacts and Issues lists on the SharePoint site as well
as the User Information List. The status bar notifi es you that you are currently online
with the SharePoint site. You’ll also notice that the Message Bar displays a Publish
Changes message, and Access created a new local table called Move To SharePoint
Site Issues.

Figure 22-61 The database on your computer is now linked to the SharePoint site.

Close the Issue List form and then open the Move To SharePoint Site Issues table to see
what problems Access encountered when moving your database. In Figure 22-62, we
collapsed the Navigation Pane and expanded the column widths of the fi rst two fi elds
so that you can read them. Windows SharePoint Services Version 3 does not support
referential integrity so Access created a log entry in this table for the three relationships
that had referential integrity defi ned. Windows SharePoint Services Version 3 also does
not support validation rules, so the Opened Date and Due Date fi elds will not have their
validation rules enforced in the Windows SharePoint Services lists.

Chapter 22

1218 Chapter 22 Working with Windows SharePoint Services
Figure 22-62 Access creates a log table for any problems it encounters when moving your tables
to Windows SharePoint Services lists.

When you migrate an Access 2007 database to a SharePoint site, you need to be aware
that Windows SharePoint Services does not support certain data types. You also
need to be aware of the following issues when migrating an Access 2007 database to
 Windows SharePoint Services:

O Windows SharePoint Services does not support dates prior to 1900. You will not
be able to move any data that contains dates prior to 1900. If you have a date/time
fi eld with some dates earlier than 1900, Access exports the column but Windows
SharePoint Services leaves blanks in those records for that column.

O Windows SharePoint Services converts any new line characters in text fi elds to
either a memo fi eld or a Multiple Lines of Text fi eld.

O Windows SharePoint Services does not support referential integrity, so any rela-
tionships that have this enforced are ignored when you move the table to a list.

O Windows SharePoint Services does not support cascading updates and cascading
deletes, so these will not be applied to the Windows SharePoint Services lists. You
will need to write VBA code to delete and update related records. You’ll learn how
to do this in Chapter 20.

O Windows SharePoint Services ignores any relationship where the primary key is
not an integer or the relationship does not relate to the ID column.

 Migrating an Access Database to a Windows SharePoint Services Site 1219

Ch
ap

te
r 2

2

O Windows SharePoint Services does not support default values for fi elds that are
dynamic—such as Date(), which changes each day—and ignores these when mov-
ing your tables to lists. Windows SharePoint Services accepts only static default
values such as numbers, text, and standard dates, which do not change.

O Windows SharePoint Services supports automatic numbering of fi elds only in a
list for the ID column.

O Windows SharePoint Services does support any multi-fi eld indexes in lists, and
ignores these indexes when you move your data to a list.

O Windows SharePoint Services supports unique indexes only for the ID column,
and ignores any other indexes when you move your data to a list.

O Windows SharePoint Services does not support data validation rules, and ignores
these when you move your data to a list.

O Windows SharePoint Services converts any ReplicationID fi elds to Single Line of
Text data types.

O Windows SharePoint Services converts any decimal fi elds to Number data types.

When you export a table to a new SharePoint list, you might not see the primary key

data in the default view. If your primary key is an AutoNumber or Number data type,

Windows SharePoint Services moves this data into a hidden _ID column in the new list.

Windows SharePoint Services defaults to not displaying any hidden _ID columns in the

default view. You’ll need to modify the view in order to display this hidden column.

In Figure 22-63, you can see the Issues Sample database uploaded to the Shared
Documents library in the InsideOut folder. You can also see that Access created new
Contacts and Issues lists on the SharePoint site. Now that you have migrated the data
to lists, other users who have the appropriate permissions can view, edit, and delete
records through either the views on the SharePoint site or by opening the Access data-
base in the Shared Documents library. If some of your users do not have Access 2007
installed, they can still view, edit, and delete records by using their browser.

Republish a Database to a Windows SharePoint Services Site
Regardless of whether you publish or move a database to a Windows SharePoint Ser-
vices site, you might occasionally need to republish your database. In Figure 22-53 on
page 1211, you might have noticed a Publish To SharePoint Site button on the Mes-
sage Bar after publishing a copy of the database to Windows SharePoint Services. Any
changes you make to the data or database objects in the local copy of the Contacts data-
base will not appear on the SharePoint site unless you republish these changes.

SIDE OUT Finding the Primary Key Data in a Windows SharePoint
Services List

When you export a table to a new SharePoint list, you might not see the primary key

data in the default view. If your primary key is an AutoNumber or Number data type,

Windows SharePoint Services moves this data into a hidden _ID column in the new list.

Windows SharePoint Services defaults to not displaying any hidden _ID columns in the

default view. You’ll need to modify the view in order to display this hidden column.

Chapter 22

1220 Chapter 22 Working with Windows SharePoint Services
Figure 22-63 The Issues Sample database has now been migrated to the SharePoint site.

In Figure 22-61 in the previous section, you can see the same Publish To SharePoint Site
button, but in a database that you moved to Windows SharePoint Services. When you
move a database, Access 2007 modifi es the local copy, replacing the tables with links
to the SharePoint lists. Any changes you make to data using the local copy will appear
in the shared lists on the SharePoint site. However, any changes you make to queries,
forms, reports, macros, or modules must be republished to appear in the shared copy
on the server.

In this case, we’ll work with the worst-case example, the published Contacts database.
We’ll add some records and make a change to one of the database objects to show you
how this process works. If you followed along and created a Contacts database and pub-
lished it, reopen the database now. Add a couple of records to the Contacts table using
the Contact List form, as shown in Figure 22-64.

After you enter the records, switch to Design view on the Contact List form by right-
clicking the form’s tab and clicking Design View on the shortcut menu. Change the cap-
tion of the label in the Form Header section to Conrad Systems Development Contact
List, as shown in Figure 22-65. Close the form and save the changes you made.

 Migrating an Access Database to a Windows SharePoint Services Site 1221

Ch
ap

te
r 2

2

Figure 22-64 Add some records to the Contacts table for this example.

To republish these changes to the SharePoint site, click the Publish To SharePoint Site
button on the Message Bar. (If you accidentally closed the Message Bar, you can reopen
it by clicking the Database Tools tab, and then selecting the Message Bar check box in
the Show/Hide group.) If you are prompted for your logon information by the SharePoint
site, enter your user name and password and click OK to continue. Access remembers the
specifi c folder in which you saved the database, as shown in Figure 22-66. If the correct
folder is not showing, locate the proper document library and then click Publish.

Access prompts you that a Contacts database fi le already exists in the same location
and asks if you want to overwrite the existing fi le. Click Yes to confi rm the overwrite
and Access republishes the revised database to the SharePoint site. After the repub-
lishing procedure is complete, Access reopens the database and shows the Contact
List form.

Note
Use this same procedure for a database that you have moved to a SharePoint site, but

you need to republish your database only when you have made a change to a query,

form, report, macro, or module in your local copy of the database.

Note
Use this same procedure for a database that you have moved to a SharePoint site, but

you need to republish your database only when you have made a change to a query,

form, report, macro, or module in your local copy of the database.

Chapter 22

1222 Chapter 22 Working with Windows SharePoint Services
Figure 22-65 Change the label caption in the Form Header section.

Figure 22-66 Navigate to the folder on the SharePoint site to republish the database changes.

 Migrating an Access Database to a Windows SharePoint Services Site 1223

Ch
ap

te
r 2

2

Opening the Database from Windows SharePoint Services
Users with appropriate permissions can open a database directly from a Windows
SharePoint Services document library using their browser. In this example, we’ll open
the Contacts database we republished in the previous section. If your local copy of the
Contacts database is still open, close it now.

In Figure 22-67 you can see that we navigated to the Shared Documents library in
the InsideOut folder on our test SharePoint site. You can double-click directly on the
name of the Contacts database to open it in Access 2007. Alternatively, if you click the
arrow next to the name of the Contacts database (you must point to this database to
see the arrow), Windows SharePoint Services displays a list of options; click the Edit In
Microsoft Offi ce Access option to view this database using Access 2007. However, if you
choose this option, Access downloads a copy to a temporary folder on your computer
and opens it as read-only. This option works when all you want to do is edit data in a
database that has been moved to a SharePoint site. But if the database has simply been
published, you won’t be able to do anything except browse the data. (We’ll show you
how to modify the data in a read-only database in just a moment.)

Figure 22-67 When you open a published Access 2007 database using Edit In Microsoft Offi ce
Access, your browser downloads and opens a read-only copy of the database.

Chapter 22

1224 Chapter 22 Working with Windows SharePoint Services
In this case, you’re opening a published database, so double-click the database name to
open it. Windows Internet Explorer displays a File Download dialog box with a warn-
ing message that some fi les can be harmful to your computer, as shown in Figure 22-68.

Figure 22-68 Internet Explorer asks if you want to open the database or save a copy for editing.

If you click Open, Internet Explorer downloads a copy of the database to a temporary
folder on your local hard drive and then calls Access to open the fi le. If you choose this
option, Access opens the database in read-only mode. (You cannot make any design
changes to the objects or change any of the data in the tables if the database is read-
only.) If the database had links to Windows SharePoint Services lists, you could change
the data in any linked tables. If you only want to view data in the database, the Open
option should work just fi ne for you. If you click Save, the Windows Save As dialog box
opens, as shown in Figure 22-69. You can select a folder on your hard drive and save
a copy of the database. In this case, Access does not open the database in read-only
mode, so you can make changes to the data and objects. If you click Cancel, Windows
SharePoint Services stops the download process.

TROUBLESHOOTING
Why can’t I make any changes to my published database?
If you select the Edit In Microsoft Offi ce Access option for a published Access 2007 data-

base, your database opens in read-only mode. You can only view data in this situation.

If you moved the database instead of publishing it, you’ll be able to edit the data and

database objects.

TROUBLESHOOTING

 Migrating an Access Database to a Windows SharePoint Services Site 1225

Ch
ap

te
r 2

2
Figure 22-69 Select a folder to save a local copy of the database.

Either change the name of the database or save it in a different location than the Access
2007 Inside Out folder so as not to overwrite the existing Conrad Systems Contacts
database—Contacts.accdb. Click the Save button in the File Download dialog box, navi-
gate to a folder in which to save the database, and then click the Save button in the Save
As dialog box to download a copy of the database from the SharePoint site. If necessary,
click Close to close the Download Complete dialog box. Access opens the database and
displays the Contact List form with our two records in the Contacts table, as shown in
Figure 22-70. You can now view, edit, and delete records and make design-level changes
to the database objects. Remember that in order to have the information refl ected in the
database on the SharePoint site, you will need to republish the database by clicking the
Publish To SharePoint Site button on the Message Bar. Close this database after you are
fi nished.

Note
If you save a copy of the database to an untrusted location, Access 2007 disables any

harmful content in the database, including all Visual Basic code and certain macro

actions. To avoid this, you should download the database to a trusted location.

Note
If you save a copy of the database to an untrusted location, Access 2007 disables any

harmful content in the database, including all Visual Basic code and certain macro

actions. To avoid this, you should download the database to a trusted location.

Chapter 22

1226 Chapter 22 Working with Windows SharePoint Services
Figure 22-70 Use the Save option to download a local copy of the database for editing.

Working Offl ine
Occasionally, you might need to work with data stored in lists on a SharePoint site
when you are disconnected. If your Windows SharePoint Services lists are stored on
an internal server not accessible from the Internet, this could pose a problem if you
need to view, edit, or delete records while away from your local intranet. Access 2007
and Windows SharePoint Services Version 3 allow you to work offl ine with data from
the lists and then later synchronize your offl ine changes with the server after you
 reconnect.

Earlier in this chapter, you saw us move the Issues Sample database, which linked to
lists on our test SharePoint site. You’ll now see how we can take the data offl ine, make
some changes, and later resolve any confl icts that might occur with data still on the
server. In Access, open the Issues Sample database you migrated earlier in this chapter.
(You might need to log on to the SharePoint site when reopening this database.) In Fig-
ure 22-71, you can see the links to the Contacts and Issues lists as well as to the User
Information List table. The status bar indicates that we are online with our SharePoint
site, and the Message Bar displays the Publish Changes message. Remember from ear-
lier in this chapter that we can make changes to the data in the tables because we have
links to the list in this database.

 Migrating an Access Database to a Windows SharePoint Services Site 1227

Ch
ap

te
r 2

2

Figure 22-71 Reopen the Issues Sample database and verify that you are working online with the
SharePoint site.

Disconnect from the SharePoint site by closing the Issue List form and then on the
External Data tab of the Ribbon, in the SharePoint Lists group, clicking the Work
Offl ine button, as shown in Figure 22-72. Access downloads a copy of all the data
currently on the server and temporarily disconnects the active links to the Windows
 SharePoint Services lists. You might see Access display some progress screens for each
list depending on how much data it needs to download.

Access changes the icon for the linked lists to give you a visual cue that your links are
now disconnected from the SharePoint site. Access also changes the status bar message
to Offl ine With SharePoint to indicate that you are now working offl ine, as shown in
Figure 22-73. Now that you have a local copy of all the data, you can analyze the data
with queries, view and edit data through forms, and run reports while disconnected
from the server. You’ll also probably see a performance increase because you are now
working only with data stored locally in the database.

Open the Issue List form, and let’s make some changes to a couple of the records.
Change the status of the issue records with IDs of 1 and 4 from Active to Resolved, as
shown in Figure 22-74. Also, add a new record to the Issues table using the Issue List
form. In Figure 22-74, you can see that we added a record concerning Chapter 22. You
might notice that Access has used a negative number for the ID value instead of a posi-
tive value. Access uses negative numbers for ID values when you are working offl ine.

Chapter 22

1228 Chapter 22 Working with Windows SharePoint Services
Figure 22-72 Click the Work Offl ine button to disconnect from the SharePoint site.

Links are disconnected from the
Windows SharePoint Services site

Status bar message indicates
you are working offline

Figure 22-73 Your database is now disconnected from the Windows SharePoint Services lists, but
you can still edit the data.

 Migrating an Access Database to a Windows SharePoint Services Site 1229

Ch
ap

te
r 2

2

Figure 22-74 You can edit and add records while working offl ine.

After you make the changes to the records, close the Issue List form and then open the
Issues table in Datasheet view. In Figure 22-75, you can see that Access fl ags all records
edited or added while offl ine with a pencil icon in the record selector. When you recon-
nect to the network, Access looks for this fl ag to synchronize changes with the server.
If you want to discard all changes you made to the records while offl ine, you can click
the arrow to the right of the Discard Changes button in the SharePoint Lists group on
the External Data tab and then click either Discard All Changes or Discard All Changes
And Refresh. The latter option not only ignores all changes you made while you had the
database offl ine but also refreshes the data from the SharePoint site.

Figure 22-75 Access displays a pencil icon next to records that you changed while offl ine.

Chapter 22

1230 Chapter 22 Working with Windows SharePoint Services
Synchronizing Changes After Working Offl ine
While you are disconnected from the server, it is possible that someone else might edit
the same records you changed. As a result, you now have a confl ict between your local
copy of the data and the server data. Let’s assume that while you were away from the
offi ce, someone else changed the status of the same two records from Active to Closed,
but you changed them from Active to Resolved. In Figure 22-76, you can see within
the browser window on the SharePoint site that the records with IDs of 1 and 4 were
edited. (Someone else could also make changes through links from another database
as well.)

Figure 22-76 The data on the SharePoint site changed while you were offl ine.

To reconnect to the SharePoint site and synchronize the data, click the Work Online
button in the SharePoint Lists group on the External Data tab, as shown in Figure
22-77. If you click the Synchronize button, Access attempts to resolve any data confl icts,
updates any data that has been changed between the local copy and the server copy,
but keeps the links disconnected from the server.

 Migrating an Access Database to a Windows SharePoint Services Site 1231

Ch
ap

te
r 2

2

Figure 22-77 Click the Work Online button to reestablish links to the Windows SharePoint
Services lists.

Access now attempts to reconnect the links to the lists on the SharePoint site, but it
fi nds some data confl icts in the Issues table. If any confl icts exist between data in
the local copy of the database and the data in the Windows SharePoint Services lists,
Access displays the Resolve Confl icts dialog box, as shown in Figure 22-78. In this case,
Access correctly spots that two records have data confl icts. The Resolve Confl icts dialog
box has Previous and Next buttons in the upper-right corner. You can use these buttons
to move back and forth between the records that have data confl icts. (These buttons
appear dimmed if only one confl ict is found in a table.) Access displays the number of
confl icts it fi nds near the top of the dialog box. In our case Access shows a message of
“Details – 1 of 2,” meaning two records have data confl icts.

Figure 22-78 Access displays the Resolve Confl icts dialog box whenever data confl icts occur.

Chapter 22

1232 Chapter 22 Working with Windows SharePoint Services
The Resolve Confl icts dialog box shows who changed the data on the server and the
date and time it was changed. In the middle of the dialog box Access displays all the
fi elds in the list, and highlights what the other user changed in the record on the
 SharePoint site as well as the changes you made to the same record. In our example, you
can see that the Status fi eld was changed to Closed on the server and we changed it to
Resolved in our local copy of the data.

If you want to keep the changes that the other user made, click the Discard My Changes
button. If you want to keep the changes you made to the record, click the Retry My
Changes button. For each record confl ict, you need to decide whether you want to keep
your changes or discard them. If you want to discard all your data changes, click the
Discard All My Changes button at the bottom of the dialog box. If you want to keep all
your record changes, click the Retry All My Changes button. If you have additional data
confl icts in other tables, you’ll need to resolve those confl icts as well. (If two people
from two locations try to resolve confl icts at the same time, the last user’s changes are
saved.) As you might recall, we added one new record to the Issues table. Access had no
problems adding this record to the Windows SharePoint Services Issues list because
there were no data confl icts. We want to keep the changes we made, so click the Retry
All My Changes button. After the data confl icts are resolved, Access relinks your tables
to the Windows SharePoint Services lists and changes the status bar message to indi-
cate that you are back online. In Figure 22-79 you can see Access has completed the
relinking process and opened the Issue List form.

Figure 22-79 Access relinks the tables when you go back online.

 Migrating an Access Database to a Windows SharePoint Services Site 1233

Ch
ap

te
r 2

2

Our record changes were accepted and uploaded to the SharePoint site and now show
up in both our local copy of the database, in any database linked to the lists on the
server, and in the lists on the server. In Figure 22-80 you can see all the updated data in
the Issues list on the SharePoint site.

Figure 22-80 The Issues list on the SharePoint site now includes all the changes we made while
working offl ine.

You should now have a good grasp of working within the user interface of a Windows
SharePoint Services Version 3 site. You have also learned how to leverage the collabora-
tive benefi ts of Windows SharePoint Services with Access 2007.

CHAPTER 23

Using XML

Exploring XML . 1236

Using XML in Microsoft Access. 1245

Modifying Table Templates . 1260

Customizing the Ribbon with XML 1266

Today’s modern companies are increasing productivity and cutting costs by fi nding
ways to share more and more information online. When data can be shared in a uni-

versal format, it doesn’t matter whether an employee is down the hall, across the street,
or thousands of miles away. The online sharing of information also makes it easier for
companies to expand into global markets. Customers half a world away can explore a
company’s products and services and place orders online. Companies can tap into ven-
dors worldwide to fi nd the best products at the best price.

The World Wide Web has certainly been an enabling technology for increasing pro-
ductivity and expanding markets. As explained in Chapter 21, “Publishing Data on
the Web,” the Web works because of the universal acceptance of protocol and language
standards. Hypertext Markup Language (HTML) enables a Web page to be displayed
on any computer and in any browser anywhere in the world. As an adjunct to HTML,
Extensible Markup Language (XML) defi nes a standard and universal way to share data
fi les or documents. Microsoft Windows SharePoint Services leverage both these tech-
nologies to provide an enhanced Web-based data and information sharing mechanism
to help companies increase productivity.

This chapter explores XML in more detail and shows you how you can take advantage
of these technologies to share information more readily from your Microsoft Offi ce
Access 2007 applications.

Note
The XML examples in this chapter are based on the tables and data in the Housing Reser-

vations application (Housing.accdb) and on various XML documents (fi les) located in the

WebChapters\XML folder on the companion CD. The Ribbon examples are based on the

tables and forms in the Conrad Systems Contacts application (Contacts.accdb).

Note
The XML examples in this chapter are based on the tables and data in the Housing Reser-

vations application (Housing.accdb) and on various XML documents (fi les) located in the

WebChapters\XML folder on the companion CD. The Ribbon examples are based on the

tables and forms in the Conrad Systems Contacts application (Contacts.accdb).
 1235

Chapter 23

1236 Chapter 23 Using XML
Exploring XML
The current XML standard is based on an ISO standard, but the most commonly used
version is the one maintained and published by W3C (World Wide Web Consortium).
Because a fi le in XML format contains not only the data but also a description of the
structure of the data, XML-enabled receiving systems know exactly how to process the
data from the information included in the fi le.

An XML document can contain data from a single table or from an entire database.
An XML document can also have supporting fi les that describe details about the table
schema (for example, fi eld properties and indexes) or that describe how the recipient
should lay out (format) the data for display (for example, fonts and column sizes).

Like HTML, XML uses tags to identify descriptive elements. Examples include the
name of a table or the name of a fi eld in an XML data fi le, the names of table properties
or index properties in an XML schema fi le, and the size and color of a border or the
name of a style sheet template in an XML layout fi le. However, where most browsers are
forgiving of errors in HTML, such as a missing end tag in a table row, most software
that can process XML insists that the tags in an XML fi le be very precise and follow
strict rules. An XML document or set of documents that contain precise XML are said
to be well formed.

Well-Formed XML
Although you will create most XML documents using a program such as Offi ce Access
2007 that always creates well-formed XML, you might occasionally need to view and
edit XML fi les that you receive from outside sources. You should understand the follow-
ing rules that apply to well-formed XML:

O Each XML document must have a unique root element that surrounds the entire
document.

O Any start tag must have an end tag. Unlike HTML that supports stand-alone tags
(such as
), XML requires all tags to have explicit ends. However, some tags
within XML are self-contained. For example, you code an object defi nition tag
within a schema fi le like this (the /> characters at the end of the string defi ne the
end of the tag):

<od:object-type attributes />

O Tags cannot overlap. For example, you cannot start the defi nition of one table fi eld
and then start the defi nition of a second table fi eld without ending the fi rst one.

O When you need to include certain characters that are reserved for XML syntax
(such as <, &, >, ", ') within the data portion of an element, you must use a sub-
stitute character sequence. For example, you indicate a single quote within data
using the special sequence &apos.

O All tags in XML are case-sensitive. For example, </tblfacilities> is an invalid end
tag for the begin tag <TBLFacilities>.

 Exploring XML 1237

Ch
ap

te
r 2

3

As you examine the XML examples in this chapter, you should not encounter any XML
that is not well formed.

Understanding XML File Types
XML documents can be made up of a single fi le if necessary. However, when you want
to send more than the table name, fi eld names, and data content, you can generate
additional fi les that help the recipient understand data properties and format the data
as you intended. The fi ve types of fi les that can make up a set of XML documents about
one table or group of tables are as follows:

O Data document (.xml) contains the names of tables and fi elds and the data in
the fi elds.

O Schema document (.xsd) contains additional information about the properties of
the tables (such as indexes defi ned on the table) and properties of the fi elds (such
as data type or length).

O Presentation (layout) document (.xsl) specifi es the layout of the data, including
fonts and column and row spacing.

O Presentation layout extension (.xsx) document specifi es additional properties
used by the designer.

O Web package (.htm) is a version of the information contained in the data, schema,
and presentation documents compiled into HTML format ready for display in a
browser.

When you create XML documents to display on your own Web site, you most likely
will use all fi ve fi le types to completely describe the data and format it for presentation.
When you are sending a data fi le to another organization or business application, you
usually send only the data and schema documents—the essential information that the
recipient needs to understand your data.

Note
Although you can embed schema and presentation information inside a data document,

you should normally send the information as separate fi les. Not all applications that can

process XML can handle a combined fi le that contains the data and the schema or the

data and the schema and the presentation specifi cation. In general, it’s a good idea to

keep the data values, the data defi nition, and the layout specifi cations separate.

One of the best ways to understand XML fi les is to study some examples. So, let’s look
at the fi les Access 2007 creates when you ask it to export a small table such as the
 tblFacilities table in the Housing Reservations application as XML. You can learn how
to create these documents from Access in “Exporting Access Tables and Queries” on
page 1246.

Note
Although you can embed schema and presentation information inside a data document,

you should normally send the information as separate fi les. Not all applications that can

process XML can handle a combined fi le that contains the data and the schema or the

data and the schema and the presentation specifi cation. In general, it’s a good idea to

keep the data values, the data defi nition, and the layout specifi cations separate.

Chapter 23

1238 Chapter 23 Using XML
The XML Data Document (.xml)
The data document contains very basic information about your table and the fi elds
within the table as well as the data from the table. The data document for the tblFacili-
ties table (tblFacilities.xml) is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<dataroot xmlns:od="urn:schemas-microsoft-com:offi cedata"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="tblFacilities.xsd"
 generated="2007-01-21T12:56:27">
<tblFacilities>
<FacilityID>1</FacilityID>
<FacilityName>Main Campus Housing A</FacilityName>
<FacilityAddress>2345 Main Street</FacilityAddress>
<FacilityCity>Chicago</FacilityCity>
<FacilityStateOrProvince>IL</FacilityStateOrProvince>
<FacilityPostalCode>60637</FacilityPostalCode>
</tblFacilities>
<tblFacilities>
<FacilityID>2</FacilityID>
<FacilityName>Main Campus Housing B</FacilityName>
<FacilityAddress>2348 Main Street</FacilityAddress>
<FacilityCity>Chicago</FacilityCity>
<FacilityStateOrProvince>IL</FacilityStateOrProvince>
<FacilityPostalCode>60637</FacilityPostalCode>
</tblFacilities>
<tblFacilities>
<FacilityID>3</FacilityID>
<FacilityName>South Campus Housing C</FacilityName>
<FacilityAddress>4567 Central Ave.</FacilityAddress>
<FacilityCity>Chicago</FacilityCity>
<FacilityStateOrProvince>IL</FacilityStateOrProvince>
<FacilityPostalCode>60637</FacilityPostalCode>
</tblFacilities>
<tblFacilities>
<FacilityID>4</FacilityID>
<FacilityName>North Satellite Housing D</FacilityName>
<FacilityAddress>5678 N. Willow Drive</FacilityAddress>
<FacilityCity>Chicago</FacilityCity>
<FacilityStateOrProvince>IL</FacilityStateOrProvince>
<FacilityPostalCode>60636</FacilityPostalCode>
</tblFacilities>
</dataroot>

The fi rst line is a comment tag that notes the version of the XML standard that Access
used to generate this fi le and states that the characters in the fi le comply with an 8-bit
character-set standard. The next line starts the required root element of the document
and identifi es that the schema defi nition can be found in the fi le tblFacilities.xsd. The
remaining lines, up to the </dataroot> end tag, identify the four rows in the table and
the six fi elds within each row, including the data content of each fi eld. Note that each
row starts with a <tblFacilities> tag and ends with a </tblFacilities> tag. Likewise, each
fi eld begins and ends with a tag that names the fi eld, and the data contents of each fi eld
appears between the begin and end fi eld tags.

 Exploring XML 1239

Ch
ap

te
r 2

3

You can see that this fi le primarily contains information about the data contents.
Except for the implied sequence of fi elds in each row and the sequence of rows within
the table, no information about the defi nition of the table or the fi elds is in this fi le.
Although this example fi le contains the data from only one table, it is possible to
include the data from multiple tables in one XML fi le.

The Schema File (.xsd)
To fi nd the structural defi nition of the table and fi elds, you must look in the companion
schema fi le. Understanding how to read a schema fi le can be useful if you attempt to
import an XML fi le sent to you but you don’t seem to be getting the results you expect.
The beginning of the schema fi le for the tblFacilities table (tblFacilites.xsd) is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:od="urn:schemas-micro-
soft-com:offi cedata">
<xsd:element name="dataroot">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="tblFacilities" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="generated" type="xsd:dateTime"/>
</xsd:complexType>
</xsd:element>

<xsd:element name="tblFacilities">
 <xsd:annotation>
 <xsd:appinfo>
 <od:index index-name="FacilityPostalCode" index-key="FacilityPostalCode "
 primary="no" unique="no" clustered="no" order="asc"/>
 <od:index index-name="PrimaryKey" index-key="FacilityID " primary="yes"
 unique="yes" clustered="no" order="asc"/>
 <od:tableProperty name="Orientation" type="2" value="0"/>
 <od:tableProperty name="OrderByOn" type="1" value="0"/>
 <od:tableProperty name="NameMap" type="11" value="
CswOVQAAAAByioucQ0Z3T40beJpq7gFyAAAAAPb4bxHZceJAAAAAAAAAAAB0AGIA
bABGAGEAYwBpAGwAaQB0AGkAZQBzAAAAAAAAAJ8VD08qACpMs5fBc7lh6boHAAAA
coqLnENGd0+NG3iaau4BckYAYQBjAGkAbABpAHQAeQBJAEQAAAAAAAAAXutJYWBV
kEKh+5avJU3lowcAAAByioucQ0Z3T40beJpq7gFyRgBhAGMAaQBsAGkAdAB5AE4A
YQBtAGUAAAAAAAAAmf/iHgqvp0KuAX5jWsirtgcAAAByioucQ0Z3T40beJpq7gFy
RgBhAGMAaQBsAGkAdAB5AEEAZABkAHIAZQBzAHMAAAAAAAAAbWoQcZlOwEa/hQ5v
XmRRvQcAAAByioucQ0Z3T40beJpq7gFyRgBhAGMAaQBsAGkAdAB5AEMAaQB0AHkA
AAAAAAAA+ri0bFFbYUKAk99BNF1kGAcAAAByioucQ0Z3T40beJpq7gFyRgBhAGMA
aQBsAGkAdAB5AFMAdABhAHQAZQBPAHIAUAByAG8AdgBpAG4AYwBlAAAAAAAAAOik
G2+R0v9Ij2tojSMOwTUAAAAAEeO/9Ndx4kAAAAAAAAAAAHQAbABrAHAAWgBpAHAA
cwAAAAAAAACkC3HuUea3S7cpPZBX0k4VBwAAAHKKi5xDRndPjRt4mmruAXJGAGEA
YwBpAGwAaQB0AHkAUABvAHMAdABhAGwAQwBvAGQAZQAAAA==
"/>
 <od:tableProperty name="DefaultView" type="2" value="2"/>
 <od:tableProperty name="Description" type="10"
 value="Table for Housing Facility records"/>
 <od:tableProperty name="SubdatasheetName" type="10" value="[None]"/>
 <od:tableProperty name="GUID" type="9" value="coqLnENGd0+NG3iaau4Bcg=="/>

Chapter 23

1240 Chapter 23 Using XML
 <od:tableProperty name="Filter" type="12"
 value="((tblFacilities.FacilityID=1))"/>
</xsd:appinfo>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>

The fi rst line is a comment like the one found in the companion XML data fi le. The sec-
ond line defi nes the beginning of the root element—the schema. The next eight lines,
beginning with <xsd:element name="dataroot"> and ending with </xsd:element>, link
this schema to the dataroot object defi ned in the tblFacilities XML fi le.

The tag <xsd:element name="tblFacilities"> begins the defi nition of the table. The infor-
mation following the <xsd:appinfo> tag defi nes application-specifi c information about
the structure of the table—in this case, the two indexes defi ned on the table. Notice that
even though a desktop database (.accdb) doesn’t use a clustered property, the schema
defi nition includes this property for compatibility with SQL Server.

Following the heading information, you can fi nd segments that defi ne each of the six
fi elds in the tblFacilities table. The defi nition of the fi rst fi eld, FacilityID, is as follows:

<xsd:element name="FacilityID" minOccurs="0" od:jetType="longinteger"
 od:sqlSType="int" type="xsd:int">
 <xsd:annotation>
 <xsd:appinfo>
 <od:fi eldProperty name="Required" type="1" value="0"/>
 <od:fi eldProperty name="ColumnWidth" type="3" value="-1"/>
 <od:fi eldProperty name="ColumnOrder" type="3" value="1"/>
 <od:fi eldProperty name="ColumnHidden" type="1" value="0"/>
 <od:fi eldProperty name="Description" type="10" value="Unique Facility ID"/>
 <od:fi eldProperty name="DecimalPlaces" type="2" value="255"/>
<od:fi eldProperty name="DisplayControl" type="3" value="109"/>
<od:fi eldProperty name="Caption" type="12" value="ID"/>
 <od:fi eldProperty name="GUID" type="9" value="nxUPTyoAKkyzl8FzuWHpug==
"/>
</xsd:appinfo>
</xsd:annotation>
</xsd:element>

The tag beginning with <xsd:element name="FacilityID" starts the defi nition of the
FacilityID fi eld. The tag specifi es a data type for both the Access desktop database
engine (notice the reference is to the Microsoft JET database engine) as well as for SQL
Server.

The remaining fi ve fi elds are all text fi elds. The start tag for each fi eld defi nes the JET
data type (text) and the SQL Server data type (nvarchar) inside the tag. Each fi eld start
tag is then followed by tags that defi ne the simple data type as a string as well as restric-
tions on the maximum length of each fi eld. The last several lines in the schema defi ni-
tion are end tags that close up the last fi eld, the sequence of fi elds started just before the
fi rst fi eld defi nition, the complex type tag just before that, the element tag that started
the table defi nition, and fi nally the end tag for the entire schema.

 Exploring XML 1241

Ch
ap

te
r 2

3

You can see that it’s not too diffi cult to fi gure out what the schema is describing as long
as you can sort out the pairs of begin and end tags. However, you probably wouldn’t
want to attempt to build such a schema fi le from scratch.

The Presentation (Layout) Document (.xsl)
As noted earlier, you can optionally include a presentation document (also called a
style sheet) to describe how the table defi ned by the .xsd fi le and the data within the fi le
included in the .xml fi le should be displayed. If you ask Access to also create a presenta-
tion document (tblFacilities.xsl) for the tblFacilities table, its contents will be as follows:

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:msxsl="urn:schemas-microsoft-com:xslt"
 xmlns:fx="#fx-functions" exclude-result-prefi xes="msxsl fx">
<xsl:output method="html" version="4.0" indent="yes"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"/>
<xsl:template match="//dataroot"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <html>
 <head>
 <META HTTP-EQUIV="Content-Type"
 CONTENT="text/html;charset=UTF-8"/>
 <title>tblFacilities</title>
 <style type="text/css">
 </style>
 </head>
 <body link="#0c0000" vlink="#050000">
 <table border="1" bgcolor="#ffffff" cellspacing="0"
 cellpadding="0" id="CTRL1">
 <colgroup>
 <col style="TEXT-ALIGN: right; WIDTH: 0.9375in"/>
 <col style="WIDTH: 0.9375in"/>
 <col style="WIDTH: 0.9375in"/>
 <col style="WIDTH: 0.9375in"/>
 <col style="WIDTH: 0.6979in"/>
 <col style="WIDTH: 0.9375in"/>
 </colgroup>
 <tbody>
 <tr>
 <td>
 <div align="center">
 ID
 </div>
 </td>
 <td>
 <div align="center">
 Name
 </div>
 </td>

Chapter 23

1242 Chapter 23 Using XML
 <td>
 <div align="center">
 Address
 </div>
 </td>
 <td>
 <div align="center">
 City
 </div>
 </td>
 <td>
 <div align="center">
 State
 </div>
 </td>
 <td>
 <div align="center">
 Postal Code
 </div>
 </td>
 </tr>
 </tbody>
 <tbody id="CTRL2">
 <xsl:for-each select="tblFacilities">
 <!-- Cache the current node incase the a fi eld is formatted -->
 <xsl:value-of select="fx:CacheCurrentNode(.)"/>
 <tr>
 <td>
 <xsl:value-of select="FacilityID"/>
 </td>
 <td>
 <xsl:value-of select="FacilityName"/>
 </td>
 <td>
 <xsl:value-of select="FacilityAddress"/>
 </td>
 <td>
 <xsl:value-of select="FacilityCity"/>
 </td>
 <td>
 <xsl:value-of select="FacilityStateOrProvince"/>
 </td>
 <td>
 <xsl:value-of select="FacilityPostalCode"/>
 </td>
 </tr>
 </xsl:for-each>
 </tbody>
 </table>
 </body>
 </html>
 </xsl:template>

 Exploring XML 1243

Ch
ap

te
r 2

3

 <msxsl:script language="VBScript" implements-prefi x="fx"
 xmlns:msxsl="urn:schemas-microsoft-com:xslt">
<![CDATA[
...
Standard data conversion VBScript functions included by Access
removed for brevity.
...
]]></msxsl:script>
</xsl:stylesheet>

Notice that the fi le begins with a comment and the required root element tag. The tag
following the root tag specifi es that the output format is HTML—ideal for a Web page.
The next tag (<xsl:template …>) identifi es the start of the template.

What follows is pure HTML—the tags you would expect to see in an HTML page to
defi ne a table layout and its headings. About two-thirds of the way into the listing, fol-
lowing the tags that defi ne the column headings (ID, Name, Address, City, State, and
Postal Code), you can fi nd an <xsl:for-each …> tag that identifi es the XML table that pro-
vides the data. This directive is followed by six blocks of <xsl:value-of …> directives, one
for each fi eld in the table.

Following the end of the template (</xsl:template> tag), Access includes a large amount
of code written in VBScript that defi nes a series of data transformation functions and
the VBScript equivalent of many Access built-in functions. The style sheet doesn’t need
most of these functions for a simple table like tblFacilities, but it might need them if you
have exported the result of a query to XML and that query uses functions in expres-
sions. As Access developers, we become spoiled by the broad range of Visual Basic func-
tions that we can use in queries, but many simply don’t exist in VBScript. So, Access
must include script that emulates these functions.

The script ends, as you would expect, with an </xsl:stylesheet> end tag to terminate the
stylesheet object.

The Presentation Layout Extension Package (.xsx)
Access 2007 also creates a presentation layout extension fi le that includes a few simple
directives that are used by any designer package (such as Microsoft Expression Web).
Your designer might modify this fi le if you choose to edit the XML fi le. Because we cre-
ated the sample fi les on a Western language system, the sample fi le contains a single
directive to the designer to lay out text from left to right.

The Web Package (.htm)
The fi nal fi le that you can optionally create when you export to XML is an HTML (.htm)
fi le containing the commands necessary to bring together the other four fi les and out-
put standard HTML that your browser can display. This fi le contains VBScript that
executes in the ONLOAD event of the Web page, and the script uses the Document

Chapter 23

1244 Chapter 23 Using XML
Object Model (DOM) to convert the XML information to HTML descriptive tags. The
Web package fi le (tblFacilities.htm) for the tblFacilities table is as follows:

<HTML xmlns:signature="urn:schemas-microsoft-com:offi ce:access">
<HEAD>
<META HTTP-EQUIV="Content-Type" CONTENT="text/html;charset=UTF-8"/>
</HEAD>
<BODY ONLOAD="ApplyTransform()">
</BODY>
<SCRIPT LANGUAGE="VBScript">
 Option Explicit
 Function ApplyTransform()
 Dim objData, objStyle
 Set objData = CreateDOM
 LoadDOM objData, "tblFacilities.xml"
 Set objStyle = CreateDOM
 LoadDOM objStyle, "tblFacilities.xsl"
 Document.Open "text/html","replace"
 Document.Write objData.TransformNode(objStyle)
 End Function
 Function CreateDOM()
 On Error Resume Next
 Dim tmpDOM
 Set tmpDOM = Nothing
 Set tmpDOM = CreateObject("MSXML2.DOMDocument.5.0")
 If tmpDOM Is Nothing Then
 Set tmpDOM = CreateObject("MSXML2.DOMDocument.4.0")
 End If
 If tmpDOM Is Nothing Then
 Set tmpDOM = CreateObject("MSXML.DOMDocument")
 End If
 Set CreateDOM = tmpDOM
 End Function
 Function LoadDOM(objDOM, strXMLFile)
 objDOM.Async = False
 objDOM.Load strXMLFile
 If (objDOM.ParseError.ErrorCode <> 0) Then
 MsgBox objDOM.ParseError.Reason
 End If
 End Function
</SCRIPT>
</HTML>

Notice that the script code doesn’t use the XSD fi le at all! It doesn’t need this fi le
because the data fi le (.xml) and the presentation fi le (.xsl) contain all the information
necessary to create the Web page. The Document.Write statement is the command that
actually writes the fi nal HTML to your browser to display the table. If you open the
tblFacilities.htm fi le in your browser, you’ll see the result shown in Figure 23-1.

 Using XML in Microsoft Access 1245

Ch
ap

te
r 2

3

Figure 23-1 The tblFacilities.htm fi le displayed in Windows Internet Explorer shows the data and the
fi elds in the tblFacilities table.

Note
Depending upon your browser settings, you might not be able to see the page because

you have your browser security options set to disable running scripts. If you’re using

Internet Explorer version 6 or 7, click the top of the browser window (where the warn-

ing message is displayed), click Allow Blocked Content, and then click Yes in the Security

Warning dialog box to view the page.

If you’re using Internet Explorer 7, you can click the Page button and then click View
Source to open in Notepad the fi nal HTML generated by the script. The fi nal HTML the
browser uses looks like the HTML you found in the presentation fi le (.xsl) with the data
merged from the data fi le (.xml).

For more information on the HTML and XML standards, you can visit the Web site of the
World Wide Web Consortium (W3C) at www.w3.org/.

Using XML in Microsoft Access
Access 2007 not only allows you to import and export data from multiple, related
tables, it also supports the exporting of forms and reports that look similar to the origi-
nal object in your Access application. The new table templates feature that you saw in
Chapter 4, “Creating Your Database and Tables,” and all the Ribbons you have been
working with in Access 2007 also depend on XML technology.

Exporting and Importing XML from the User Interface
From the Navigation Pane of any Access desktop database (.accdb) or project fi le (.adp),
you can export any table, query (view, function, or stored procedure in a project fi le),

Note
Depending upon your browser settings, you might not be able to see the page because

you have your browser security options set to disable running scripts. If you’re using

Internet Explorer version 6 or 7, click the top of the browser window (where the warn-

ing message is displayed), click Allow Blocked Content, and then click Yes in the Security

Warning dialog box to view the page.

Chapter 23

1246 Chapter 23 Using XML
form, or report by selecting the object in the Navigation Pane, clicking the More button
in the Export group on the External Data tab, and then clicking XML File. (You can
also right-click the object in the Navigation Pane, click Export on the shortcut menu,
and then click XML File.) You can also import any XML fi le as a table by clicking the
XML File button in the Import group on the External Data tab. The following sections
show you how to perform these actions.

 Exporting Access Tables and Queries
You can export an entire table and any related tables as well as the data extracted by a
query and any related data; or you can open a table or query datasheet, select several
rows, and export only the selected data. If you have previously applied a fi lter to your
table or query datasheet, you can also ask the XML export facility to apply that fi lter to
select the data to be exported.

Let’s take a look at exporting the tblFacilities table and one of its related tables in the
Housing Reservations database (Housing.accdb). Open the database and select the
tblFacilities table in the Navigation Pane. Click the More button in the Export group on
the External Data tab and then click XML File. Access shows you the Export – XML File
wizard, as shown in Figure 23-2. In the File Name box, enter the location where you
want to save the exported fi les and the name of the fi le. You can click the Browse button
to open the File Save dialog box and browse to the folder in which you want to save the
fi les. (In our example, we are saving to the \WebChapters\XML folder.)

Figure 23-2 Specify a destination folder and name for your exported XML document on the fi rst
page of the Export – XML File wizard.

 Using XML in Microsoft Access 1247

Ch
ap

te
r 2

3

In this exercise, you’ll export both the four records from the tblFacilities table as well
as the related records from the tblFacilityRooms table, so change the fi le name to
 tblFacilityAndRooms, as shown in Figure 23-2. Click OK, and Access shows you the
Export XML dialog box, as shown in Figure 23-3.

Figure 23-3 Access displays the Export XML dialog box when you export a table to an XML fi le.

Notice that the Export XML dialog box assumes that you want to export both the data
fi le (.xml) and the schema fi le (.xsd). If you also want to export the presentation fi le
(.xsl) and create an HTML fi le that loads the data using the style sheet, select the Pre-
sentation Of Your Data (XSL) check box. If you want to quickly export your data with
the default options, you can click OK to complete the export process. However, let’s fi rst
take a look at some of the options you can choose. Click the More Options button, and
Access shows you the expanded Export XML dialog box shown in Figure 23-4.

Figure 23-4 Click the More Options button shown in Figure 23-3 to display additional XML export
customizing options.

In the expanded dialog box, you can see three tabs corresponding to the three major
types of fi les you can choose to export. (The Presentation tab includes both the presen-
tation fi le and the companion HTML fi le.) If you left the Data (XML) check box selected
in the original dialog box, you’ll see the Export Data check box selected on the Data
tab. Notice that Access shows you the fi rst table that it fi nds related to the tblFacilities
table—tblFacilityRooms. Go ahead and select the check box next to that table to include
the related information in your XML fi les. You can also click the plus sign next to the

Chapter 23

1248 Chapter 23 Using XML
table name to see other related tables that you might want to include—in this case you
could expand the tree of relationships and choose tblReservations, tblReservation-
Requests, and even tblEmployees and tblDepartments.

In the upper right of the dialog box, you can select which records to export under
Records To Export. The default is to export all records in all tables that you select.
Because we previously applied a fi lter to tblFacilities in Datasheet view and then saved
the fi lter, you can also see an Apply Existing Filter option offered. Unfortunately, Access
doesn’t give you any clues about the saved fi lter, so you would need to remember the
last fi lter that you applied and saved with the table to take advantage of this option.
There’s also a dimmed option to export the current record, but you’ll see that option
available only when you have opened the table in Datasheet view, selected a record,
and then started an export to an XML fi le. (You can try this on your own by opening
 tblFacilities in Datasheet view, selecting one record, clicking the More button in the
Export group on the External Data tab, and then clicking XML File.)

Directly under the Records To Export section, you can see a dimmed check box labeled
Apply Existing Sort. As you might surmise, Access would show you this option if
you had previously sorted the data in the table in Datasheet view and saved the sort.
Directly under the sort option is a Transforms button. If you previously saved a presen-
tation fi le (.xsl) or created a presentation transform fi le (.xslt), you can click this but-
ton to specify the fi le. (Creating XSLT transformation fi les is beyond the scope of this
book.) The export facility applies the transformation to your XML fi le after it completes
the export.

In the Encoding box, you can choose options to export the text in UTF-8 (single-byte
character set) or UTF-16 (extended character set). You should choose UTF-16 only if
your data contains non-Latin characters. (English and most European languages use a
Latin character set.) Finally, you can change your mind about where you want to store
the resulting fi le and what name you want to give to the fi le by typing in the Export
Location box or by clicking the Browse button to navigate to a new location. Click the
Schema tab to see the options that you can specify for the schema fi le, as shown in
 Figure 23-5.

If you selected the Schema Of The Data (XSD) check box in the initial Export XML
dialog box (Figure 23-3), you’ll see the Export Schema check box selected here. As
you can see, you have the options to include the primary key and index defi nitions in
your schema fi le and to export all the table and fi eld properties. You can also choose
to embed the schema inside the XML data document fi le, but choosing Create Sepa-
rate Schema Document (the default) gives you more fl exibility. Finally, you can specify
an alternate location for the schema fi le, but you should normally store it in the same
location as the data document. On the last tab, Presentation, you can specify options
for your presentation fi le (.xsl), as shown in Figure 23-6. (We have selected the Export
 Presentation check box on this tab.)

 Using XML in Microsoft Access 1249

Ch
ap

te
r 2

3

Figure 23-5 You can select options to export the table defi nition on the Schema tab of the Export
XML dialog box.

Figure 23-6 Select the Export Presentation check box on the Presentation tab in the Export XML
dialog box to create an HTML fi le.

Notice that you have the option to create a standard HTML fi le (.htm) by selecting
 Client (HTML) or an Active Server Page fi le (.asp) by selecting Server (ASP). You can
open an HTML fi le directly in your browser, but you must publish an Active Server Page
to a Web server that supports dynamic pages and then request it from the server to be
able to open it. Remember, however, that you’re publishing your data as static XML, so
neither the HTML nor the Active Server Page will fetch current data from your database
or allow you to update the data in the XML fi le. Also, even though you have selected
multiple tables on the Data tab, the Web pages will display data only from the fi rst
table. (This is a limitation of the export XML facility in Access 2007.)

Chapter 23

1250 Chapter 23 Using XML
As you’ll see later when you ask to export a form or report to XML, Access makes the
Include Report Images options available to allow you to include any graphics that you
have used in the design of your form or report in the resulting Web page. (Yes, this
option applies to forms, too!)

Click OK to complete the export. The last page of the Export – XML File wizard asks
you whether you want to save the export steps for future use. You don’t need to save
these steps, so click Close to close the wizard. When you open the resulting tblFacility-
AndRooms.htm fi le in your browser, it should look exactly like Figure 23-1, but if you
open the XML fi le, you’ll see that Access included the data for both tables. You can fi nd
the sample fi les saved on the companion CD as tblFacilityAndRoomsXmpl.htm, .xml,
.xsd, and .xsl.

If you’re running Microsoft Windows XP Professional or Windows Vista and have installed

and started Internet Information Services, you can export your data as an Active Server

Page to your server folders (usually C:\Inetpub\wwwroot) by selecting the Server (ASP)

option under Run From on the Presentation tab. Be sure to export the XML, XSD, and

XSL fi les to the same Web folder as the Active Server Page. You can then view the result-

ing Active Server Page by opening your browser and asking it to display this address:

http://localhost/tblFacilityAndRooms.asp

Exporting Access Forms and Reports
A useful feature in Access is the ability to create Web pages from your Access forms
and reports. Unlike when you export the data from a table or query to create a simple
formatted Web page, you can export the data behind a form or report and create a spe-
cial presentation fi le that emulates the look of the original object in Access. To do this,
Access creates a special version of the XSL fi le using an extension to the language called
ReportML. This language extension includes special tags to support form and report
formatting, and you can open these fi les only in a browser that supports the version
of VBScript and the Document Object Model (DOM) that understands them (such as
Internet Explorer version 6 and later).

You might fi nd this feature useful to produce Web reports that look similar to the
design of the original object. To update the data periodically, all you need do is replace
the XML fi le containing the data used by the Web page. The one drawback to this pro-
cess is you can export only forms and reports that do not include subforms or subre-
ports. Although Access will let you export a form that has one or more subforms, it will
export and format only the data shown in the outer form.

Let’s take a look at a simple form in the Housing Reservations application
(Housing.accdb) that exports nicely as XML. Open the database, and select the

SIDE OUT Exporting to ASP

If you’re running Microsoft Windows XP Professional or Windows Vista and have installed

and started Internet Information Services, you can export your data as an Active Server

Page to your server folders (usually C:\Inetpub\wwwroot) by selecting the Server (ASP)

option under Run From on the Presentation tab. Be sure to export the XML, XSD, and

XSL fi les to the same Web folder as the Active Server Page. You can then view the result-

ing Active Server Page by opening your browser and asking it to display this address:

http://localhost/tblFacilityAndRooms.asp

 Using XML in Microsoft Access 1251

Ch
ap

te
r 2

3

 frmDepartments form in the Navigation Pane. Click the More button in the Export
group on the External Data tab, and then click XML File to start the process.

On the fi rst page of the Export – XML File wizard (shown previously in Figure 23-2),
you can type a location and name for the export fi le. You can also click the Browse
button to browse for a new location. For this example, select the \WebChapters\XML
folder as you did in the previous example. You can keep the default name Access pro-
vided—frmDepartments.xml—for the fi le name and then click OK to continue. In the
initial Export XML dialog box (shown in Figure 23-3), you’ll see the option to export
the data selected. Because you want to see the data formatted similar to the form, also
make sure that the Schema Of The Data (XSD) and Presentation Of Your Data (XSL)
check boxes are selected, and then click the More Options button to look at the options
you can customize. Figure 23-7 shows you the options on the Data tab.

Figure 23-7 The Data tab options when exporting a form as XML are the same as when exporting
a table.

Notice that Access gives you the option to include additional related tables, but keep
in mind that you’ll see only the fi rst table in the resulting Web page. If you opened the
form in Form view fi rst, Access would also offer you the option to export the current
record only.

The options on the Schema tab are exactly as you saw earlier when exporting a table
(Figure 23-5). Click the Presentation tab to see additional options related to exporting a
form, as shown in Figure 23-8.

Chapter 23

1252 Chapter 23 Using XML
Figure 23-8 The Presentation tab of the Export – XML dialog box lets you set options to include
images when you export a form as XML.

Notice that Access now gives you the option to export any images. We created the
original form using the Form Wizard and chose the Trek format, which applies a light
orange pattern bitmap to the form background. If you want the resulting Web page to
include the background, you should leave the Put Images In option selected. Click OK
to export the form and its data. Click Close on the last page of the Export – XML File
wizard, and don’t save the export steps. When you open the HTM fi le, it should look
like Figure 23-9.

Notice that the ReportML style specifi cation does a fairly good job of copying the fonts
and styles from the original form. However, it also displays all labels, text boxes, combo
boxes, and list boxes that you designed on the form, including a hidden label. When
you open the form in the application, that label is revealed only when you’re creating a
new department. Also, the form background is the background of the Web page, but it
doesn’t display behind the actual form area. (The screen illustration printed in this
book might not make that obvious—open the sample fi le to see the difference.) Finally,
the page includes all the records strung back-to-back. You can fi nd this set of fi les
saved in the WebChapters\XML subfolder on the companion CD as frmDepartments-
Xmpl.htm, .xml, .xsd, and .xsl.

We think Access does a better job of exporting reports than forms (as long as they don’t
have subreports) into an HTML/XML result that looks very much like the original. You
can try this yourself by selecting the rptDepartments report in the Navigation Pane
and following the same export steps that you did for the frmDepartments form. Your
end result displayed in a Web page should look like Figure 23-10. You can fi nd this set
of fi les saved in the WebChapters\XML subfolder on the companion CD as rptDepart-
mentsXmpl.htm, .xml, .xsd, and .xsl.

 Using XML in Microsoft Access 1253

Ch
ap

te
r 2

3

Figure 23-9 The frmDepartments form exported as XML is shown here displayed in a Web page.

Figure 23-10 The rptDepartments report in the Housing Reservations database is exported as XML
and displayed in a Web page.

Chapter 23

1254 Chapter 23 Using XML
The result looks remarkably like the original. To make it look perfectly the same, you
would need to dig into the presentation fi le and fi x the display specifi cations for the
phone numbers and the birth date.

Importing XML Files
As you learned in Chapter 6, “Importing and Linking Data,” you can import or link
many types of database fi les and text and spreadsheet fi les into your Access database.
In Access 2007, you can also import XML fi les, but you cannot link to them. Access
2007 also supports XML fi les that contain multiple tables. When you import XML that
includes multiple tables, Access creates one table in your database for each table it fi nds
in the fi le.

To begin importing an XML fi le, click the XML File button in the Import group on the
External Data tab. Access opens the Get External Data – XML File wizard, as shown in
Figure 23-11.

Figure 23-11 Select the location and name of the XML fi le to import on the fi rst page of the Get
External Data – XML File wizard.

On the fi rst page of the wizard you need to type the location and name of the XML fi le
you want to import. You can click the Browse button to choose a different location than
the default folder that Access chooses. In this case, let’s choose the sample XML fi le you
previously created that includes data from both the tblFacilities table and the tblRooms
table (tblFacilityAndRoomsXmpl.xml). Click OK to start the process, and Access dis-
plays the Import XML dialog box, as shown in Figure 23-12.

 Using XML in Microsoft Access 1255

Ch
ap

te
r 2

3

Note
If you ask Access to import an XSD fi le, Access creates a table with the specifi ed data

structure but does not import the data. Remember, the data is in the XML fi le; the XSD

fi le contains only the schema defi nition.

Figure 23-12 The Import XML dialog box displays options for importing XML fi les.

When you fi rst see this dialog box, Access shows you the tables it found in the XML fi le.
You can click the plus sign next to any table name to verify the fi eld names. You can
click the Transform button to specify any XSLT fi le that you need in order to convert
the data into a format that Access can use. This fi le originally came from Access, so you
don’t need to apply any transformation.

In the Import Options section, you can select options to import only the structure
(from the XSD fi le or embedded schema in the XML fi le) or the structure and the data
(the default) or to append the data to existing tables of the same name. In this case, you
know that the Housing Reservations database already contains these tables, so attempt-
ing to append the data will result in duplicate primary key value errors. So, leave the
default Structure And Data option selected, and click OK. On the last page of the Get
External Data – XML File wizard, you can choose to save the export steps you just per-
formed for future use. You don’t need to save these steps, so click Close to close the
wizard.

Because the two tables already exist in the database, Access appends a number to the
names of the tables it is importing from the XML fi le to avoid duplicate names. You can
see the two new tables (tblFacilities1 and tblFacilityRooms1) in the Navigation Pane
and one of them (tblFacilities1) opened in Design view in Figure 23-13. Notice that
the new table correctly includes the primary key defi nition as well as all the other fi eld
properties. Remember that when you created this XML fi le earlier, we had you select
the Export All Table And Field Properties option on the Schema tab in the Export XML

Note
If you ask Access to import an XSD fi le, Access creates a table with the specifi ed data

structure but does not import the data. Remember, the data is in the XML fi le; the XSD

fi le contains only the schema defi nition.

Chapter 23

1256 Chapter 23 Using XML
dialog box. If you had not selected that option, Access would not be able to create any of
these fi eld properties.

Figure 23-13 The two tables imported into Access from an XML fi le contain all the correct data and
fi eld properties.

Importing and Exporting XML in Visual Basic
Importing and exporting XML from the user interface works well for simple one-time
tasks, but what if you need to automate the process to make it easy for users of your
application to work with XML data? You took a brief look at the example frmXML-
Example form in Chapter 21. Now let’s look behind the form to understand the code
that automates importing and exporting XML data.

Access 2007 provides two methods of the Application object—ImportXML and
ExportXML—that enable you to deal with XML fi les in Visual Basic code. The syntax for
the ImportXML command is as follows:

[Application.]ImportXML <data source fi le> [, <import option>]

where <data source fi le> is the path and fi le name of the fi le you want to import and
<import option> is acAppendData, acStructureAndData (the default), or acStructure-
Only. Notice that the three options match the options you saw in the Import XML
dialog box in Figure 23-12. If the table(s) in the fi le you want to import already exist,
Access appends a numeric digit to the table name(s).

The syntax for the ExportXML command is as follows:

[Application.]ExportXML <object type>, <object name>, [<data fi le>],
 [<schema fi le>], [<presentation fi le>], [<image path>], [<encoding>],
 [<options>], [<fi lter>], [<additional data object>]

 Using XML in Microsoft Access 1257

Ch
ap

te
r 2

3

<object type> is acExportForm, acExportFunction, acExportQuery, acExportReport,
acExportServerView, acExportStoredProcedure, or acExportTable.

<object name> is the name of the object that you want to export.

<data fi le> is the path and fi le name of the XML fi le you want to create. If the fi le already
exists, ExportXML overwrites it.

<schema fi le> is the path and fi le name of the XSD fi le you want to create. If the fi le
already exists, ExportXML overwrites it.

<presentation fi le> is the path and fi le name of the XSL fi le you want to create. If the fi le
already exists, ExportXML overwrites it.

Note that although all the export fi le names (data, schema, and presentation) are
optional, you must specify at least one of them.

<image path> is the folder path where you want to store any images when exporting a
form or report.

<encoding> is acUTF16 or acUTF8 (the default).

<options> are one or more options that you can add together using a plus sign operator
(+). The options are as follows:

Option Intrinsic Constant Description

acEmbedSchema Embeds the schema within the XML data fi le.
When you include the option, ExportXML
ignores any <schema fi le> specifi cation.

acExcludePrimaryKeyAndIndexes Does not include the primary key or index
defi nitions in the schema data.

acExportAllTableAndFieldProperties Includes the primary key and all fi eld property
defi nitions in the schema data.

acLiveReportSource When <object type> is acExportFunction,
acExportServerView, or acExportStoredProcedure,
creates a link to your SQL Server database.

acPersistReportML When the <object type> is acExportForm or
acExportReport, includes ReportML code in the
presentation fi le.

acRunFromServer Creates an Active Server Page fi le instead of an
HTML fi le when you ask for a <data fi le> and
<presentation fi le>.

<fi lter> is a criteria string to fi lter the records to be exported.

<additional data object> is an object of the AdditionalData data type that you can create
by executing the CreateAdditionalData method of the Application object. You specify
an additional table name by executing the Add method of the object and supplying the
table name as a string.

Chapter 23

1258 Chapter 23 Using XML
In the Housing Reservations database (Housing.accdb), the frmXMLExample form
demonstrates how you might import an XML fi le and load it into a form for editing and
then export the fi le when you have fi nished making changes. Figure 23-14 shows you
the form opened in Form view.

Figure 23-14 The frmXMLExample sample form allows you to import XML data, edit the data, and
then export the data when you have fi nished making your changes.

The form is designed to initially point to a sample XML fi le that you can fi nd on the
companion CD in the WebChapters\XML subfolder—xmlDepartments.xml. You can
click the Browse button to point to any XML fi le, but you should not use any of the
other sample XML fi les that you fi nd in the subfolder because these are all named the
same as objects that already exist in the database. Also, the code depends on the name
of the fi le matching the name of the table defi ned inside the fi le. Click the Load XML
button to import the fi le and display the data in the Access Temp XML Table window,
as shown in Figure 23-15.

Figure 23-15 After you click the Load XML button, an XML fi le is loaded into a window in the form
so that you can edit the data.

The data is actually a copy of the data you can fi nd in the tblDepartments table. You
can type in any fi eld to change the values, just as you can in a subform datasheet that’s

 Using XML in Microsoft Access 1259

Ch
ap

te
r 2

3

bound to a live table in your database. To save your changes, click the Save And Close
XML button to export the changed data back to the original XML fi le. When you load
the XML fi le again, you should see your changes.

To understand how this works, you need to examine the code behind the Load and
Save command buttons. Here’s the code from the Load procedure:

Private Sub cmdLoadXML_Click()
' New table name created from imported XML document
Dim strTableName As String
 ' Turn off screen updates
 Application.Echo False, "Importing XML..."
 ' Turn on error handling
 On Error GoTo cmdLoadXML_Err
 ' Get the table name to be from the XML document name
 ' Note, this will work only if you name the fi le
 ' the same name as the table inside the XML fi le.
 strTableName = Mid(Me.txtXMLDocument, InStrRev(Me.txtXMLDocument, "\") + 1)
 strTableName = Left(strTableName, Len(strTableName) - 4)
 ' Change error handling to skip if the next gets an error
 On Error Resume Next
 ' Delete the old XML table, if it exists
 DoCmd.DeleteObject acTable, strTableName
 ' Turn error handling back on
 On Error GoTo cmdLoadXML_Err
 ' Import the XML document
 Application.ImportXML Me.txtXMLDocument, acStructureAndData
 ' Set the subform Source Object property to the table just imported.
 Me.subXML.SourceObject = "Table." & strTableName
 ' Enable the SaveXML button to let them save the XML
 Me.cmdSaveXML.Enabled = True
 ' Indicate XML is loaded
 intXMLLoaded = True
 ' Turn screen updating back on.
 Application.Echo True
 ' Exit the routine
 Exit Sub
' Error-handling routine
cmdLoadXML_Err:
 ' Turn screen updating back on.
 Application.Echo True
 ' Tell the user the problem
 MsgBox "An error has occurred importing the XML: " & Err.Description
 ' Exit the routine
 Exit Sub
End Sub

As noted earlier, this code depends on the table name inside the XML fi le to match the
name of the fi le. (You could also open the XML fi le or the XSD fi le as text and scan for
the table name tag.) The ImportXML command is very straightforward. The code takes
advantage of the fact that you can specify a table in the SourceObject property of a sub-
form control to display the imported table.

Chapter 23

1260 Chapter 23 Using XML
The code behind the Save button is as follows:

Private Sub cmdSaveXML_Click()
Dim strTableName As String
 ' Get the table name to be from the XML document name
 ' Note, this will work only if you name the fi le
 ' the same name as the table inside
 strTableName = Mid(Me.txtXMLDocument, InStrRev(Me.txtXMLDocument, "\") + 1)
 strTableName = Left(strTableName, Len(strTableName) - 4)
 ' Export the table back out to the XML document
 Application.ExportXML acExportTable, strTableName, _
 Me.txtXMLDocument, _
 Left(Me.txtXMLDocument, Len(Me.txtXMLDocument) - 4) & ".xsd"
 ' Clean up by resetting the Source Object of the subform to "".
 Me.subXML.SourceObject = ""
 ' Delete the XML table
 DoCmd.DeleteObject acTable, strTableName
 ' Point the focus off the cmdSaveXML button
 Me.cmdLoadXML.SetFocus
 ' Disable the cmdSaveXML button
 Me.cmdSaveXML.Enabled = False
 ' Turn off XML Loaded fl ag
 intXMLLoaded = False
End Sub

Notice that the ExportXML command also rewrites the schema fi le, but that’s probably
not necessary. The code also clears the subform by setting its SourceObject property to
an empty string. It must do this so that it can delete the temporary table object—if the
object were still open in the subform control, Access wouldn’t allow the DeleteObject
command.

As you can see, Access 2007 provides extensive features to work with XML fi les in your
database applications. You not only can import and export XML fi les and export some
forms and reports from the user interface but also can import and export XML from
Visual Basic procedures.

Modifying Table Templates
In Chapter 4, you learned how to get a jump-start on creating a new table by using one
of the fi ve table templates available in Access 2007—Contacts, Tasks, Issues, Events, and
Assets. You started creating your contacts table in that chapter by using the Contacts
table template as a base, and then you modifi ed the resulting table to meet your specifi c
needs. To defi ne these table templates, Access uses special documents coded in XML
that describe the table and fi eld properties. Access reads this schema information when

 Modifying Table Templates 1261

Ch
ap

te
r 2

3

you click one of the fi ve template gallery buttons on the Ribbon and builds your table
based on these properties. In the following sections, we’ll show you how to modify the
templates so that they generate tables that more closely match what you want.

Adding a New Field to a Table Template
The fi ve template fi les have .accfl extensions and are located in the Program Files\
Microsoft Offi ce\Templates\1033\Access folder on your C drive in a default 2007
 Microsoft Offi ce system installation. You can open the .accfl fi les using Notepad or an
XML reader. For our tests, we used Notepad to edit the XML.

Note
You can download Microsoft Visual Basic 2005 Express Edition from Microsoft to help

you create and edit XML fi les: http://msdn.microsoft.com/vstudio/express/vb/.

CAUTION!
If you want to follow along in this section to modify these template fi les, be sure to make

a backup copy and place it in a different folder. If you leave the backup copy in the same

folder as the template, Access creates duplicates of every fi eld for that template.

When you used the built-in template to build your contacts table in Chapter 4, you
might remember that Access did not automatically create a middle initial fi eld—you had
to manually add this fi eld to the table design. Wouldn’t it be nice if Access added this
fi eld every time you used the Contacts table template? By changing the XML schema
information in the Contacts.accfl fi le, you can have Access create a middle initial fi eld
for you. Before you begin, let’s take a look at the original fi elds that Access creates with
this template. Create a blank new database, called ModifyTableTemplate, and save it in
a trusted location. Next, close the default new Table1 that Access creates for new data-
bases. Now click the Table Templates button in the Tables group on the Create tab, and
then click Contacts. Access creates a new table called Table1 with 18 fi elds to describe
a contact. Switch to Design view, and save the table as OriginalContacts when Access
prompts you for a name. As you can see in Figure 23-16, Access did not create a middle
initial fi eld for you.

Note
You can download Microsoft Visual Basic 2005 Express Edition from Microsoft to help

you create and edit XML fi les: http://msdn.microsoft.com/vstudio/express/vb/ //

C U O !

Chapter 23

1262 Chapter 23 Using XML
Figure 23-16 The original Contacts.accfl fi le includes schema information for 18 fi elds.

Close the database, and now let’s change the schema information to create a new mid-
dle initial fi eld. Open the Contacts.accfl fi le with Notepad or an XML editor, and scroll
down until you come to the following area that describes the First Name fi eld:

</xsd:element>
 <xsd:element name="First_x0020_Name" minOccurs="0" od:jetType="text"
 od:sqlSType="nvarchar">
 <xsd:annotation>
 <xsd:appinfo>
 <od:fi eldProperty name="ColumnWidth" type="3" value="-1"/>
 <od:fi eldProperty name="ColumnOrder" type="3" value="0"/>
 <od:fi eldProperty name="ColumnHidden" type="1" value="0"/>
 <od:fi eldProperty name="Required" type="1" value="0"/>
 <od:fi eldProperty name="AllowZeroLength" type="1" value="0"/>
 <od:fi eldProperty name="DisplayControl" type="3" value="109"/>
 <od:fi eldProperty name="IMEMode" type="2" value="0"/>
 <od:fi eldProperty name="IMESentenceMode" type="2" value="0"/>
 <od:fi eldProperty name="UnicodeCompression" type="1" value="1"/>
 <od:fi eldProperty name="TextAlign" type="2" value="0"/>
 <od:fi eldProperty name="AggregateType" type="4" value="-1"/>
 <od:fi eldProperty name="WSSFieldID" type="10" value="FirstName"/>
 <od:fi eldProperty name="GUID" type="9" value="8LewvB2Zg02/47ANPW8KHA=="/>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="50"/>
 </xsd:restriction>
 </xsd:simpleType>

 Modifying Table Templates 1263

Ch
ap

te
r 2

3

You might have noticed that the name assigned to the First Name fi eld includes a strange

x0020 specifi cation in the middle. Names coded in HTML or XML cannot embed spaces

or special characters, so you must enter special codes if you want to include a space in

the generated name. The hexadecimal code for a space in the ASCII character set is 20

(decimal 32), so the _x0020_ embedded within the name instructs XML to use an actual

space in the name. If you scan down further in the .accfl fi le, you’ll fi nd that the character

/ is embedded in State/Province using the code _x002F_ (decimal 47). You can fi nd the

ASCII decimal codes for special characters in Access Help by searching for ASCII charac-
ter chart.

You could type similar XML to create another fi eld, but the First Name fi eld has most
of the same properties that we want to set for the middle initial fi eld. To make the task
easier, let’s make a copy of this code and change what we need. Highlight and copy
all the previous code to the Clipboard, place your insertion point just after the </xsd:
simpleType> line, press Enter, and then paste the code back into the fi le. You now have
a duplicate entry of the First Name fi eld.

In this second copy of the XML code, you need to change the fi eld name and the maxi-
mum length. Look for the following line of code that has the fi eld name:

<xsd:element name="First_x0020_Name" minOccurs="0" od:jetType="text"
od:sqlSType="nvarchar">

Change the element name to ="MiddleInitial" (without any spaces) in order to have
Access name the new fi eld MiddleInitial. You’ll also need to make the same change in
this line of code:

<od:fi eldProperty name="WSSFieldID" type="10" value="FirstName"/>

Change the value to ="MiddleInitial" to complete changing the fi eld name. To change
the length of the fi eld (a middle initial should be restricted to one character), fi nd the
following lines of code:

<xsd:restriction base="xsd:string">
 <xsd:maxLength value="50"/>
</xsd:restriction>

Change the value 50 to 1, and then save and close the Contacts.accfl fi le.

Note
Although the table templates clearly specify the MaxLength property for text fi elds, the

initial release of Access 2007 fails to apply this property. As a result, all text fi elds in tem-

plates are created with the maximum length of 255. You should change this property of

any text fi eld that you add to a template in anticipation of fi xing this problem in future

updates to the product.

SIDE OUT Forming Field Names with Spaces in XML

You might have noticed that the name assigned to the First Name fi eld includes a strange

x0020 specifi cation in the middle. Names coded in HTML or XML cannot embed spaces

or special characters, so you must enter special codes if you want to include a space in

the generated name. The hexadecimal code for a space in the ASCII character set is 20

(decimal 32), so the _x0020_ embedded within the name instructs XML to use an actual

space in the name. If you scan down further in the .accfl fi le, you’ll fi nd that the character

/ is embedded in State/Province using the code _x002F_ (decimal 47). You can fi nd the

ASCII decimal codes for special characters in Access Help by searching for ASCII charac-
ter chart.

Note
Although the table templates clearly specify the MaxLength property for text fi elds, the

initial release of Access 2007 fails to apply this property. As a result, all text fi elds in tem-

plates are created with the maximum length of 255. You should change this property of

any text fi eld that you add to a template in anticipation of fi xing this problem in future

updates to the product.

Chapter 23

1264 Chapter 23 Using XML
Open the ModifyTableTemplate.accdb database you created earlier, click the Table Tem-
plates button in the Tables group on the Create tab, and then click Contacts. Access
creates another table called Table1 and opens it in Datasheet view. Switch to Design
view, and name the table ContactsInitial. In Figure 23-17, you can see Access creates the
MiddleInitial fi eld and places it after the First Name fi eld. Each time you use the Con-
tacts table template from this point, Access creates this additional fi eld.

Figure 23-17 Access creates the MiddleInitial fi eld because you added XML schema information.

Modifying a Field in a Table Template
You can also modify the existing fi eld properties by changing the XML in the .accfl
fi les. You’ve noticed by now that all the fi eld names for the fi ve table templates include
spaces—Last Name, First Name, and so on. We recommend you do not include spaces
in your fi eld names unless you plan to migrate the database to Windows SharePoint
Services (version 3). You could take the time to change all the fi eld names whenever you
need to use the table template commands, but if you change the XML schema informa-
tion, Access can do the work for you each time.

Close the ModifyTableTemplate.accdb database you’ve been working on if you still have
it open. Open the Contacts.accfl fi le in Notepad or an XML editor. For this example,
let’s change the properties only for the First Name fi eld so that Access does not create a
space when it builds this fi eld.

If you look through the XML code near the beginning of the fi le, you’ll notice there is
property information for all the indexes in the table. Look for the index called First
Name shown next.

 Modifying Table Templates 1265

Ch
ap

te
r 2

3

<od:index index-name="First Name" index-key="First_x0020_Name " primary="no"
unique="no" clustered="no" order="asc"/>

In the XML schema, the First Name fi eld is always referenced as “First_x0020_Name.”
If you eliminate the extra characters between the two words in each instance, Access
creates the fi eld with the name FirstName. It could be tedious to manually search
through all the XML for each instance of First_x0020_Name. To make your job easier,
you can use the Replace command in Notepad, and enter First_x0020_Name in the
Find What box and FirstName in the Replace With box. Click Find Next, and then
click Replace for each instance of First_x0020_Name that Notepad highlights. (Note
you could also change the index name from First Name to FirstName if you prefer.) You
should fi nd two instances you’ll need to change. Save and close the template fi le when
you’re fi nished.

Open your ModifyTableTemplate.accdb database again, and let’s see the results. Click
the Table Templates button in the Tables group on the Create tab, and then click Con-
tacts. Access creates another table called Table1 and opens it in Datasheet view. Switch
to Design view, and name the table ContactsRevised. In Figure 23-18, you can see
Access created the FirstName fi eld with no spaces in the fi eld name. Each time you use
the Contacts table template from this point, Access creates the FirstName fi eld with no
spaces. If you like, you can open the template fi le again and remove all the spaces and
special characters in the other fi eld names. By examining the XML in the fi ve .accfl fi les,
you can create additional fi elds and modify existing fi eld properties in any of the table
templates to tailor them more to your needs.

Figure 23-18 The FirstName fi eld now has no spaces when you use the revised table template.

Chapter 23

1266 Chapter 23 Using XML
Customizing the Ribbon with XML
So far in this chapter you’ve learned about XML fi le types, how to import and export
Access objects and data using XML, and how to modify table templates by changing
the schema in the template fi les. Access 2007 and most applications in the 2007 Offi ce
release use XML in another important user interface element—Ribbons. Throughout
this book you’ve seen how to use the Ribbon commands on the four main tabs—Home,
Create, External Data, and Database Tools—as well as on the many contextual tabs. You
even might have noticed the custom Ribbons we created in the Conrad Systems Con-
tacts (Contacts.accdb) and Housing Reservations (Housing.accdb) sample databases
when you opened any of the forms and reports used by the application. In the following
sections, you’ll learn what steps are necessary to create a simple custom Ribbon for a
form. You’ll see how to create XML for this Ribbon that displays existing groups from
the four main Ribbon tabs. You’ll also create a new data entry form and assign your new
Ribbon to this form to test the new commands.

Creating a USysRibbons Table
When you open an Access 2007 database, Access looks for a local table called USysRib-
bons during the startup process to see whether it needs to load any custom Ribbons.
If Access does not fi nd this table, it proceeds with loading all built-in Ribbons. You can
also load custom Ribbons into your application by writing Visual Basic code to load the
XML stored in a different table or defi ned within your code. We’ll discuss how to do
this in Chapter 24, “The Finishing Touches.”

Access does not create a local table called USysRibbons when you create a new blank
database or use one of the database templates—you need to create this table yourself.
For Access to use the USysRibbons table, the table must contain the two fi elds listed in
Table 23-1. The RibbonName fi eld is a unique name used to identify the name of the
Ribbon. The RibbonXml fi eld contains the XML used to defi ne the custom Ribbon. The
XML must be well-formed XML in order for Access to interpret the code and apply it to
the Ribbon. Note that you can have additional fi elds in this table if you want (such as a
fi eld that documents what’s on your custom Ribbon), but Access looks for only the two
fi elds listed in Table 23-1 when loading your Ribbons.

Table 23-1 USysRibbons Table Fields

Field Name Data Type

RibbonName Text

RibbonXml Memo

By default, Access does not display in the Navigation Pane any local tables that start
with the prefi x USys because it considers these to be system tables. Depending upon
what settings you have confi gured in the Navigation Options dialog box, you might not
be able to see any system tables. For example, if you create and save a new table with
the name USysRibbons, you might not see this new table in the Navigation Pane.

 Customizing the Ribbon with XML 1267

Ch
ap

te
r 2

3

In the Conrad Systems Contacts database, we have included this table to load the cus-
tom Ribbons we use in the application. Open the Contacts.accdb database, and click
OK in the opening message box. Click the menu at the top of the Navigation Pane, click
Object Type under Navigate To Category, and then click Tables under Filter By Group to
display a list of tables available in this database. If you scroll through the list of tables,
you’ll notice you do not see a table called USysRibbons. To see this table in the Naviga-
tion Pane, right-click the menu at the top of the Navigation Pane, and click Navigation
Options. In the Display Options section in the Navigation Options dialog box, select
the Show System Objects check box to display all system objects in the database, as
shown in Figure 23-19.

Figure 23-19 Select the Show System Objects check box to display the USysRibbons table.

Click OK to close the Navigation Options dialog box, and then review the list of tables
in the Navigation Pane. You’ll notice you can now see six tables that start with the pre-
fi x MSys and the USysRibbons table. Right-click the USysRibbons table in the Naviga-
tion Pane and click Design View on the shortcut menu to see this table in Design view.
In Figure 23-20, you can see the table has one additional fi eld—ID—with a data type
of AutoNumber. Remember that Access needs to have only the RibbonName and Rib-
bonXml fi elds and will ignore any other fi elds. We added the ID fi eld and used it as the
primary key for the table to make sure our entries are unique.

CAUTION!
Do not attempt to modify or delete the system tables with the MSys prefi x. Access

uses these tables internally to manage the various objects and other elements of your

 database.

C U O !

Chapter 23

1268 Chapter 23 Using XML
Figure 23-20 Access looks for a table called USysRibbons during startup to load custom Ribbons.

Switch to Datasheet view by clicking the arrow in the Views group on the Design tab
and clicking Datasheet View from the list of available views. You’ll notice that there
are three records in the USysRibbons table, as shown in Figure 23-21. Each of the
records in this table denotes a specifi c custom Ribbon. You can see the names of each
of the Ribbons in the RibbonName fi eld—rbnForms, rbnPrintPreview, and rbnCSD.
The rbnForms Ribbon is used by most of the data entry forms in the Conrad Systems
 Contacts database, the rbnPrintPreview Ribbon is used by the reports, and the rbnCSD
Ribbon is displayed for the frmMain, frmCodeLists, and frmReports forms.

Figure 23-21 The Conrad Systems Contacts database includes three custom Ribbons.

In the RibbonXml fi eld, you can see the XML for each of these three custom Ribbons.
The well-formed XML in these fi elds, however, is not particularly easy to read in table
Datasheet view. You can place your insertion point in the fi eld and use the arrow keys
to read the XML, you can press Shift+F2 to open the Zoom box, or you can expand
the height of the individual rows. However, a much easier way to view and modify the
XML is to create a form bound to this table. In the Conrad Systems Contacts database

 Customizing the Ribbon with XML 1269

Ch
ap

te
r 2

3

(and the Housing Reservations database as well), we created a form to add and edit
the records in this table. Click the menu at the top of the Navigation Pane, click Object
Type under Navigate To Category, and then click Forms under Filter By Group to
display a list of forms available in the this database. Find the form called zfrmChange-
RibbonXML, and open it in Form view, as shown in Figure 23-22. If you use the record
navigation buttons, you can see the XML for each of the three custom Ribbons. (You’ll
study the three existing Ribbons in more detail in Chapter 24, so don’t be concerned
about understanding the XML at this point.) We used the Form Wizard to create this
form, but you could just as easily create one from scratch if you’d like. Creating a form
to work with your USysRibbons table is not a requirement, but you’ll have an easier
time viewing and modifying your XML by using a large text box on a form for the
 RibbonXml fi eld.

Note
Now that you understand how to change your settings in the Navigation Options dialog

box to view system objects like the USysRibbons table in the Navigation Pane, we recom-

mend you change your settings back to not display system objects. Right-click the menu

at the top of the Navigation Pane, and click Navigation Options. In the Display Options

section in the Navigation Options dialog box, clear the Show System Objects check box,

and click OK. You’ll be using our zfrmChangeRibbonXML form in the remaining sections

to work with the data in the USysRibbons table, so you don’t need to see this table in the

Navigation Pane.

Figure 23-22 You’ll have an easier time editing your XML for the USysRibbons table if you use
a form.

Note
Now that you understand how to change your settings in the Navigation Options dialog

box to view system objects like the USysRibbons table in the Navigation Pane, we recom-

mend you change your settings back to not display system objects. Right-click the menu t
at the top of the Navigation Pane, and click Navigation Options. In the Display Options

section in the Navigation Options dialog box, clear the Show System Objects check box,

and click OK. You’ll be using our zfrmChangeRibbonXML form in the remaining sections

to work with the data in the USysRibbons table, so you don’t need to see this table in the

Navigation Pane.

Chapter 23

1270 Chapter 23 Using XML
Creating a Test Form
Most of the forms and reports in the Conrad Systems Contacts database each already
have a custom Ribbon applied. In the next section, we’ll walk you through creating
XML for a new form Ribbon. Before we build the XML, let’s fi rst create a new data entry
form based on the tblContacts table. We’ll use this new form to test the XML without
disturbing any of the existing database objects. First, close the zfrmChangeRibbonXML
form if you still have it open. Next, click the menu at the top of the Navigation Pane,
click Object Type under Navigate To Category, and then click Tables under Filter By
Group. Finally, select the tblContacts table in the Navigation Pane, and click the Form
button in the Forms group on the Create tab. Access creates a new columnar form
based on the table and opens it in Form view, as shown in Figure 23-23. Click the Save
button on the Quick Access Toolbar, name the form frmRibbonTest, and then close the
form.

Figure 23-23 Create a test form on the tblContacts table to use for your Ribbon testing.

Building the Ribbon XML
To create a custom Ribbon for a form or report, you must fi rst create the XML in a text
editor such as Notepad or Notepad 2007 or in Visual Basic 2005 Express Edition.
We used the Notepad text editor to create our XML. To create well-formed XML for
Ribbons, you need to use the Microsoft Offi ce system XML Schema Reference, which
contains the schema information that Access 2007 needs to validate the Ribbon cus-
tomizations. You might also want to download the Microsoft Offi ce system Document

 Customizing the Ribbon with XML 1271

Ch
ap

te
r 2

3

Lists of Control IDs, which contains a complete list of the control IDs of the built-in
tabs, groups, buttons, and other commands. Each button, group, and tab is assigned
a unique control ID in the Ribbon schema fi le. You can use these controls IDs to place
existing built-in Ribbon elements onto your custom Ribbons.

Note
If you use an editor such as Notepad 2007 or a tool such as Visual Basic 2005 Express

Edition, you can use Microsoft IntelliSense to assist with constructing your XML. You can

download the free XML Notepad 2007 editor from Microsoft at

www.microsoft.com/downloads/details.aspx?familyid=
72D6AA49-787D-4118-BA5F-4F30FE913628&displaylang=en.

You can download Visual Basic 2005 Express Edition from Microsoft at

http://msdn.microsoft.com/vstudio/express/vb/.

You can download the Microsoft Offi ce system XML Schema Reference for Ribbons from

Microsoft at

www.microsoft.com/downloads/details.aspx?familyid=
15805380-f2c0-4b80-9ad1-2cb0c300aef9&displaylang=en.

You can download the Microsoft Offi ce system Document Lists of Control IDs from

Microsoft at

www.microsoft.com/downloads/details.aspx?familyid=
4329d9e9-4d11-46a5-898d-23e4f331e9ae&displaylang=en.

Hiding Existing Ribbon Elements
Open Notepad (or an XML editor) to begin building your XML. We’ll create a custom
Ribbon for our test form that includes two groups from the Home tab and hides all the
built-in main tabs. As we proceed, you’ll test each step to see the Ribbon take shape.
The XML for Ribbons needs to start with the following line:

<customUI xmlns="http://schemas.microsoft.com/offi ce/2006/01/customui">

The fi rst line tells Access which schema fi le to use when building this specifi c Ribbon.
The next line should be as follows:

<ribbon startFromScratch="true">

If you specify true, Access hides the four main tabs on the Ribbon when your custom
Ribbon is loaded. In addition, when you click the Microsoft Offi ce Button, Access shows
only the New, Open, Save As, Close Database, Access Options, and Exit Access options.
Also, the Quick Access Toolbar shows no options except the arrow—and you can select
only the options to place the Quick Access Toolbar above or below the Ribbon or mini-
mize the Ribbon. If you want to have a more controlled interface and show only your
custom Ribbons to users, you should set this XML attribute to True. If you set start-
FromScratch to False, Access does not hide any of the main Ribbon tabs, and it doesn’t

Note
If you use an editor such as Notepad 2007 or a tool such as Visual Basic 2005 Express

Edition, you can use Microsoft IntelliSense to assist with constructing your XML. You can

download the free XML Notepad 2007 editor from Microsoft at

www.microsoft.com/downloads/details.aspx?familyid=
72D6AA49-787D-4118-BA5F-4F30FE913628&displaylang=en.

You can download Visual Basic 2005 Express Edition from Microsoft at

http://msdn.microsoft.com/vstudio/express/vb///

You can download the Microsoft Offi ce system XML Schema Reference for Ribbons from

Microsoft at

www.microsoft.com/downloads/details.aspx?familyid=
15805380-f2c0-4b80-9ad1-2cb0c300aef9&displaylang=en.

You can download the Microsoft Offi ce system Document Lists of Control IDs from

Microsoft at

www.microsoft.com/downloads/details.aspx?familyid=
4329d9e9-4d11-46a5-898d-23e4f331e9ae&displaylang=en.

Chapter 23

1272 Chapter 23 Using XML
hide any options when you click the Microsoft Offi ce Button. Any new tabs that you
 create appear to the right of the Database Tools tab.

After these fi rst two lines, you can begin to build any tabs, groups, buttons, and other
Ribbon elements. For now, let’s complete this simple XML example with some end-
ing tags for ribbon and customUI. Your XML up to this point should look like the
 following:

<customUI xmlns="http://schemas.microsoft.com/offi ce/2006/01/customui">
 <ribbon startFromScratch="true">
 </ribbon>
</customUI>

Testing Your XML
As you build your XML, it’s a good idea to test it along the way to ensure that every-
thing is working properly. You’ll have an easier time debugging any issues in your XML
if you systematically test it after each major step. Highlight all the XML you’ve created
so far, and copy it to the Clipboard. Next, open the zfrmChangeRibbonXML form in
the Conrad Systems Contacts database in Form view, and navigate to a new record. In
the Ribbon Name text box, enter rbnTest for the name of this Ribbon. Finally, press the
Tab key to move to the Ribbon Xml text box, and paste in the XML content from the
 Clipboard. Your record in the form should look like Figure 23-24.

Figure 23-24 Create a new record in the USysRibbons table for your test Ribbon by using the
zfrmChangeRibbonXML form.

 Customizing the Ribbon with XML 1273

Ch
ap

te
r 2

3

Close the zfrmChangeRibbonXML form to save your changes to the USysRibbons table.
To display this Ribbon for your test form to see how it looks, you need to assign the
rbnTest Ribbon to the Ribbon Name property of the form. Before you do this, however,
you need to fi rst close the database and then reopen it. You’ll remember we mentioned
earlier that Access loads all the Ribbons found in the USysRibbons table during the
application startup process. Because you just added this new record to the table, Access
has not loaded this Ribbon into memory. If you opened the Property Sheet window for
your test form at this point, you will not see rbnTest as an available option on the Rib-
bon Name property. (Note that you can type rbnTest in the property line, but you still
won’t see this Ribbon displayed until you close and reopen the database.)

Close the database now and then reopen it to have Access load your new test Ribbon
into memory. After you reopen the database, open your test form—frmRibbonTest—in
Design view. Click the Property Sheet button in the Tools group on the Design tab to
open the property sheet for the form. On the Other or All tab of the property sheet, click
the arrow on the Ribbon Name property line, and then select rbnTest from the list of
four Ribbons. Click the Save button on the Quick Access Toolbar to save your changes
and then switch to Form view to see the result.

When you switch views, you’ll notice the entire Ribbon disappears, as shown in Figure
23-25. Access also hides all the options on the Quick Access Toolbar except for the
arrow to open the Customize Quick Access Toolbar menu. Click the Microsoft Offi ce
Button, and you’ll see that Access reduces the number of options, as we discussed previ-
ously. Because you specifi ed startFromScratch=True in your XML and did not specify
any other custom tabs, Access presents a very limited user interface. Unless you want
to provide any features such as fi ltering and sorting directly on your forms, you clearly
need to improve this custom Ribbon beyond the bare essentials.

Figure 23-25 The simple XML you created earlier completely hides the Ribbon.

Chapter 23

1274 Chapter 23 Using XML

If you create XML for a Ribbon that is not well formed, Access will not display your cus-

tom Ribbon. In this situation, Access displays the built-in four main Ribbon tabs because

it cannot interpret and display the appropriate customization elements. Access is not

forgiving in this case, because even a single line of XML that is not well formed causes

Access to revert to showing all the main tabs of the Ribbon. You will have a diffi cult time

debugging the XML and fi nding the cause of the problem because Access does not auto-

matically display errors when it encounters errors in your XML.

Fortunately, Access includes an option that you can enable to display errors in these

cases. Click the Microsoft Offi ce Button, click Access Options, click the Advanced cat-

egory, and then scroll down to the General area. If you select the Show Add-In User

Interface Errors check box (cleared by default) and then click OK, Access displays a dialog

box if it fi nds any problems in your XML. For example, if you select the Show Add-In User

Interface Errors check box and add an extra < at the beginning of the third line of the

XML you’ve been working with up to this point, Access displays the following error mes-

sage when you open your test form (after you close and reopen the database):

You can see in the error message text that Access found a problem on line 3 of your XML.

Selecting this option can help you debug your XML for Ribbons.

Creating Tabs
Creating an interface with no Ribbon showing, such as the one you just tested in the
previous section, might work for some applications, but what if you want to provide
your users with the same navigation and fi lter options for your forms that normally
appear on the Home tab? To add buttons and controls to your custom Ribbon, you fi rst
need to create a tab to hold these controls. The Access Ribbon schema uses a tabs tag to
denote a new tab to appear on the Ribbon.

Open Notepad (or an XML editor), and return to the XML fi le you were creating earlier.
To create a new tab, you fi rst need to use a tabs tag (<tabs>) followed by a line with the
following syntax:

<tab id=UniqueTabName label=LabelCaption

SIDE OUT Displaying Ribbon Errors

If you create XML for a Ribbon that is not well formed, Access will not display your cus-

tom Ribbon. In this situation, Access displays the built-in four main Ribbon tabs because

it cannot interpret and display the appropriate customization elements. Access is not

forgiving in this case, because even a single line of XML that is not well formed causes

Access to revert to showing all the main tabs of the Ribbon. You will have a diffi cult time

debugging the XML and fi nding the cause of the problem because Access does not auto-

matically display errors when it encounters errors in your XML.

Fortunately, Access includes an option that you can enable to display errors in these

cases. Click the Microsoft Offi ce Button, click Access Options, click the Advanced cat-

egory, and then scroll down to the General area. If you select the Show Add-In User

Interface Errors check box (cleared by default) and then click OK, Access displays a dialog

box if it fi nds any problems in your XML. For example, if you select the Show Add-In User

Interface Errors check box and add an extra < at the beginning of the third line of the

XML you’ve been working with up to this point, Access displays the following error mes-

sage when you open your test form (after you close and reopen the database):

You can see in the error message text that Access found a problem on line 3 of your XML.

Selecting this option can help you debug your XML for Ribbons.

 Customizing the Ribbon with XML 1275

Ch
ap

te
r 2

3

The UniqueTabName must be a unique name for the current Ribbon XML. The Label-
Caption attribute is optional, but if you don’t provide a caption for the tab, Access
displays a small, empty tab header. At the end of any XML for the tab, you also need to
provide an ending tab tag (</tab>) for each tab and an ending tabs tag (</tabs>) follow-
ing all the individual tab tags. For this example, we’ll create a new tab called tabTest
with a caption called Navigation. Add the following XML between the two ribbon tags
(<ribbon> and </ribbon>) to create this new tab:

 <tabs>
 <tab id="tabTest" label="Navigation">
 </tab>
 </tabs>

Your completed XML should now look like the following:

<customUI xmlns="http://schemas.microsoft.com/offi ce/2006/01/customui">
 <ribbon startFromScratch="true">
 <tabs>
 <tab id="tabTest" label="Navigation">
 </tab>
 </tabs>
 </ribbon>
</customUI>

Now let’s test this markup with our test form and see how it looks. Highlight all the
XML you’ve created so far, and copy it to the Clipboard. Next, open the zfrmChange-
RibbonXML form in the Conrad Systems Contacts database in Form view, and navigate
to the record that has rbnTest in the Ribbon Name text box. Press Tab to move to the
Ribbon XML text box, and paste the XML content from the Clipboard, overwriting the
previous XML. Next, close the zfrmChangeRibbonXML form to save your changes to
the USysRibbons table. Finally, close the database, reopen it, and then open the frmRib-
bonTest form in Form view. Access now displays the Ribbon at full height with a new
tab and caption of Navigation, as shown in Figure 23-26.

Figure 23-26 You can create custom tabs for your Ribbons.

Chapter 23

1276 Chapter 23 Using XML
Adding Built-In Groups to Tabs
Now that you have a new tab created in your markup, you can begin the process of add-
ing different controls to this tab. For this test form, it would help your users to navigate
through the contact records if they could use some of the built-in buttons and com-
mands found on the Home tab—specifi cally the Records, Sort & Filter, and Find groups.
You could write your own XML to create custom buttons that mimic the actions of each
of the individual buttons in those three groups; but to make things easier, you can use
the RibbonX architecture to copy buttons, commands, and options found in a built-in
group onto one of your custom tabs. (We’ll show you how to create individual custom
buttons on tabs in Chapter 24).

Open Notepad (or an XML editor), and return to the XML fi le you were creating earlier.
To use an existing built-in group on a custom tab, use the following syntax:

<group idMso=ControlID>

You can add this tag anywhere within a tab defi nition (delimited with <tab> </tab>
tags). You can use the idMso attribute to denote a built-in control ID—a built-in control
defi ned in the RibbonX architecture. Every button, group, and tab on the built-in Rib-
bon has an internal control ID that you can reference. In this case, you’re going to show
how to use the idMso attribute to refer to a specifi c group that you want to use on your
tab. To help identify the names of these groups, you can use the Microsoft Offi ce system
Document Lists of Control IDs Excel spreadsheet that contains a complete list of these
internal control IDs. For this example, you want to add the Records group on the Home
tab to your custom Navigation tab to help your users add, save, and delete records. The
control ID for the Records group is GroupRecords. At the end of any XML for a new
group, you also need to provide an ending group tag. Add the following XML between
the tab tags to create this new group:

 <group idMso="GroupRecords">
 </group>

Your completed XML up to this point should now look like the following:

<customUI xmlns="http://schemas.microsoft.com/offi ce/2006/01/customui">
 <ribbon startFromScratch="true">
 <tabs>
 <tab id="tabTest" label="Navigation">
 <group idMso="GroupRecords">
 </group>
 </tab>
 </tabs>
 </ribbon>
</customUI>

Now let’s test this XML with our test form to see how it looks. As you did previously,
highlight all the XML you’ve created so far, and copy it to the Clipboard. Next, open the
zfrmChangeRibbonXML form in the Conrad Systems Contacts database in Form view,
and navigate to the record that has rbnTest in the Ribbon Name text box. Press Tab

 Customizing the Ribbon with XML 1277

Ch
ap

te
r 2

3

to move to the Ribbon XML text box, and paste the XML content from the Clipboard,
overwriting the existing XML. Next, close the zfrmChangeRibbonXML form to save
your changes to the USysRibbons table. Finally, close the database, reopen it, and then
open the frmRibbonTest form in Form view. Access now displays all the buttons and
commands from the Records group on your custom Navigation tab, as shown in Figure
23-27. If you test some of the buttons, you’ll see that they all work just as they do on the
Home tab.

Figure 23-27 The built-in Records group now appears on your custom Ribbon.

You can also fi nd the control IDs for built-in controls listed in the Customize category in

the Access Options dialog box. Click the Microsoft Offi ce Button, click Access Options,

and then select the Customize category. In the list on the left, you can see the built-in

Access commands. If you rest your mouse pointer on one of these commands, Access

displays a ScreenTip that lists the internal control ID. To help you identify control groups,

Access displays an icon with a down arrow next to any group names. The internal control

ID for the Records group on the Home tab—GroupRecords—is within the parentheses

on the ScreenTip, as shown here.

SIDE OUT Finding Control IDs for Built-In Controls

You can also fi nd the control IDs for built-in controls listed in the Customize category in

the Access Options dialog box. Click the Microsoft Offi ce Button, click Access Options,

and then select the Customize category. In the list on the left, you can see the built-in

Access commands. If you rest your mouse pointer on one of these commands, Access

displays a ScreenTip that lists the internal control ID. To help you identify control groups,

Access displays an icon with a down arrow next to any group names. The internal control

ID for the Records group on the Home tab—GroupRecords—is within the parentheses

on the ScreenTip, as shown here.

Chapter 23

1278 Chapter 23 Using XML
Now that you’ve added the Records group to your tab, let’s fi nish the XML by adding
the Sort & Filter and Find groups to your custom Ribbon. Open Notepad (or an XML
editor), and return to the XML fi le you were creating earlier. The control ID for the Sort
& Filter group is GroupSortAndFilter, and the control ID for the Find group is Group-
FindAccess. Add the following XML after the group end tag and before the tab end tag:

 <group idMso="GroupSortAndFilter">
 </group>
 <group idMso="GroupFindAccess">
 </group>

Your fi nal XML should now look like the following:

<customUI xmlns="http://schemas.microsoft.com/offi ce/2006/01/customui">
 <ribbon startFromScratch="true">
 <tabs>
 <tab id="tabTest" label="Navigation">
 <group idMso="GroupRecords">
 </group>
 <group idMso="GroupSortAndFilter">
 </group>
 <group idMso="GroupFindAccess">
 </group>
 </tab>
 </tabs>
 </ribbon>
</customUI>

Now test your completed XML on your test form. As you did previously, highlight
all the XML you’ve created so far, and copy it to the Clipboard. Next, open the
 zfrmChangeRibbonXML form in the Conrad Systems Contacts database in Form view,
and paste the XML content from the Clipboard into the Ribbon XML text box on the
rbnTest record, overwriting the existing XML. Close the zfrmChangeRibbonXML form
to save your changes to the USysRibbons table. Close the database, and reopen it to
have Access load the new Ribbon changes. Finally, open the frmRibbonTest form in
Form view to see the results. Access now displays all the buttons and commands from
the Records, Sort & Filter, and Find groups on your custom Navigation tab, as shown
in Figure 23-28. With only a few lines of XML, you’ve created a custom Ribbon that you
can use in your application. You could assign this Ribbon to any of the forms in your
application. Also, because the XML is stored in a local table, you could easily import
this table into another database and reuse the Ribbon for those forms.

 Customizing the Ribbon with XML 1279

Ch
ap

te
r 2

3

Figure 23-28 The custom Ribbon you created now includes buttons and commands from three
built-in groups.

You should now have a good grasp of the technologies included in Access 2007 to
integrate with the Web. In Part 6 of this book, we’ll expand our discussion of RibbonX
architecture and show you the more advanced concepts of using Visual Basic with Rib-
bons. We’ll show you how to create your own custom buttons and load custom Ribbon
schemes. You’ll also learn about additional features you can use after you’ve fi nished
designing your database application.

PART 6

After Completing
Your Application

CHAPTER 24

The Finishing Touches. 1283

CHAPTER 25

Distributing Your Application 1319
 1281

CHAPTER 24

The Finishing Touches

You’re in the home stretch. You have almost all the forms and reports required for
the tasks you want to implement in your application, but you need some additional

forms to make it easier to navigate to different tasks. To add a professional touch, you
should design a custom Ribbon for your main navigation forms, another custom Rib-
bon for most data entry forms, and perhaps one for reports. You should take advantage
of built-in tools to check the effi ciency of your design, and you should make sure that
none of your forms and reports allow Layout view. Finally, you need to set the startup
properties of your database to let Microsoft Offi ce Access 2007 know how to get your
application rolling, and you need to perform a fi nal compile of your Visual Basic code to
achieve maximum performance.

Note
The Ribbon examples in this chapter are based on the custom Ribbons in Contacts.accdb,

Contacts.adp, and Housing.accdb on the companion CD included with this book. All

screen images in this chapter were taken on a Microsoft Windows Vista system with the

display theme set to Blue. Your results might look different if you are using a different

operating system or a different theme.

Creating Custom Ribbons
When your application is running, the user probably won’t want or need some of the
Offi ce Access 2007 design features. However, you might want to provide some addi-
tional buttons on your form Ribbon so that the user has direct access to commands
such as Save Record and Refresh All. For example, open the Conrad Systems Contacts
sample database (Contacts.accdb), open the frmContactsPlain form (which uses the
built-in Ribbon), and then open the frmContacts form. As you click each form window,
Access changes the Ribbon. You can see some useful differences between the two Rib-
bons, as shown in Figure 24-1.

Note
The Ribbon examples in this chapter are based on the custom Ribbons in Contacts.accdb,

Contacts.adp, and Housing.accdb on the companion CD included with this book. All

screen images in this chapter were taken on a Microsoft Windows Vista system with the

display theme set to Blue. Your results might look different if you are using a different

operating system or a different theme.

Creating Custom Ribbons . 1283

Fine-Tuning with Performance Analyzer 1302

Disabling Layout View . 1304

Defi ning Switchboard Forms . 1305

Controlling How Your Application Starts and Runs . . 1310

Performing a Final Visual Basic Compile 1316
 1283

Chapter 24

1284 Chapter 24 The Finishing Touches
Figure 24-1 The standard Ribbon (top) displays many commands and tabs your end users won’t
need, compared to the custom form Ribbon (bottom) from the Conrad Systems Contacts sample
database.

Buttons, groups, and tabs the user won’t need (such as the buttons in the Views and
Windows groups) aren’t available on the custom Ribbon. Also, Access disables all the
buttons on the Quick Access Toolbar for the frmContacts form, such as Undo, Save, and
Quick Print. (None of the forms in the Conrad Systems Contacts database are designed
to be printed.) However, the custom Ribbon does have a Close Form button added at
the left end of the Record Navigation tab, and we provided a custom Undo command
because Undo is no longer available on the Quick Access Toolbar. In the Conrad Sys-
tems Contacts application, all forms (except frmContactsPlain and a few other example
forms) have their Ribbon Name properties set to use the custom Ribbon.

The same is true of the built-in tabs. For example, you don’t want your users to be able
to create new database objects using the buttons on the Create tab or to be able to use
the tools available on the Database Tools tab. For most forms, you also don’t want the
user to be able to switch to PivotTable or PivotChart view using the View button. The
following sections show you how to build a custom main Ribbon and custom Ribbons
for forms and reports.

Loading Ribbon XML
In Chapter 23, “Using XML,” you learned the basic structure of Ribbon XML and how
to create a USysRibbons table to store the XML for each of your custom Ribbons. You
learned that Access searches for this table during startup and that if it fi nds this table
(and correct fi elds within the table), Access loads these custom Ribbons into memory.
In the Conrad Systems Contacts (Contacts.accdb) sample database, we created three
custom Ribbons for the application in the USysRibbons table—rbnCSD, rbnForms, and
rbnPrintPreview.

After you defi ne custom Ribbons in the USysRibbons table, you can specify that Access
load a specifi c custom Ribbon each time you open the database. To accomplish this,
click the Microsoft Offi ce Button, click Access Options, and then click the Current Data-
base category. In the Ribbon And Toolbar Options section, click the arrow on the Rib-
bon Name option, and then select your custom Ribbon from the list of loaded Ribbons,
as shown in Figure 24-2. (Note that you might need to close and reopen the database to

 Creating Custom Ribbons 1285

Ch
ap

te
r 2

4

see any new Ribbon you just created appear in the list.) Click OK to save your changes,
and close the Access Options dialog box. The next time you open your database, Access
applies that custom Ribbon.

Figure 24-2 In the Current Database category in the Access Options dialog box, you can select a
specifi c custom Ribbon to load each time you open the database.

Note
To prevent Access from automatically loading any custom Ribbons during the startup

procedure, press and hold the Shift key when you open the database.

When you create a USysRibbons table, Access takes care of the work of loading your
custom Ribbons. You can also load custom Ribbons into your application by using the
LoadCustomUI method. When you dynamically load your Ribbon customization using
the LoadCustomUI method, you can store your XML in a table with a different name, in
a different database, or in a Visual Basic module.

Syntax
Application.LoadCustomUI(CustomUIName, CustomUIXML)

Notes
CustomUIName is a string variable or literal containing the unique name of the custom
Ribbon to be associated with this XML, and CustomUIXML is a string variable or literal
that contains the well-formed XML that defi nes your custom Ribbon.

If you want to dynamically load custom Ribbons, you need to call the LoadCustomUI
method each time you open the database. In the Conrad Systems Contacts project fi le
(Contacts.adp), we use this method to load the same Ribbons you see in the Conrad
Systems Contacts database (Contacts.accdb). Close Contacts.accdb if you still have it

Note
To prevent Access from automatically loading any custom Ribbons during the startup

procedure, press and hold the Shift key when you open the database.

Chapter 24

1286 Chapter 24 The Finishing Touches
open, and then open the Contacts.adp fi le. After you establish a connection to your
SQL server, click OK in the opening message box. Next, click the menu at the top of the
Navigation Pane, click Object Type under Navigate To Category, and then click Tables
under Filter By Group to display a list of tables available in this project fi le. If you open
the ztblRibbons table in Datasheet view, you’ll notice we have the same custom Ribbons
in this table—rbnForms, rbnPrintPreview, and rbnCSD—as we have in the USysRibbons
table in the Contacts.accdb sample database.

Because all tables for an Access project fi le are stored in SQL Server, you cannot defi ne a

local USysRibbons table to have Access automatically load your custom Ribbons. Defi n-

ing a USysRibbons table on the SQL server doesn’t work because those tables don’t

become available until after Access has completed the initialization of the project fi le. For

more information about working with project fi les, see Part 7, “Designing an Access

 Project,” on the companion CD.

Close the ztblRibbons table, and let’s examine the Visual Basic code we use to load
these custom Ribbons. Click the menu at the top of the Navigation Pane, click Object
Type under Navigate To Category, and then click Modules under Filter By Group to
display a list of Visual Basic modules available in this project fi le. Right-click modRib-
bonCallbacks in the Navigation Pane, and click Design View on the shortcut menu to
open the Visual Basic Editor. The fi rst function in this module—LoadRibbons—and the
declarations above it use the LoadCustomUI method as follows:

' This serves as a cached copy of the RibbonUI.
' We can use this to then invalidate the Ribbon and refresh the controls
Public gobjRibbon1 As IRibbonUI
Public gobjRibbon2 As IRibbonUI

Public Function LoadRibbons() As Integer
' Code called by frmCopyright and frmSplash to verify custom Ribbon load
Dim rst As New ADODB.Recordset
 ' Set an error trap
 On Error GoTo LoadRibbon_Err
 ' Do nothing if gobjRibbon is set
 If Not (gobjRibbon1 Is Nothing) Then
 ' Set OK return
 LoadRibbons = True
 Else
 ' Try to load - open recordset on Ribbons
 rst.Open "SELECT * FROM ztblRibbons", CurrentProject.Connection, _
 adOpenKeyset, adLockOptimistic
 Do Until rst.EOF
 Application.LoadCustomUI rst!RibbonName, rst!RibbonXML
 rst.MoveNext

SIDE OUT Loading Ribbons into Access Data Projects

Because all tables for an Access project fi le are stored in SQL Server, you cannot defi ne a

local USysRibbons table to have Access automatically load your custom Ribbons. Defi n-

ing a USysRibbons table on the SQL server doesn’t work because those tables don’t

become available until after Access has completed the initialization of the project fi le. For

more information about working with project fi les, see Part 7, “Designing an Access

Project,” on the companion CD.

 Creating Custom Ribbons 1287

Ch
ap

te
r 2

4

 Loop
 ' Close out
 rst.Close
 Set rst = Nothing
 LoadRibbons = True
 End If
LoadRibbon_Exit:
 Exit Function
LoadRibbon_Err:
 ' Silently log error
 ErrorLog "LoadRibbons", Err, Error
 LoadRibbons = False
 Resume LoadRibbon_Exit
End Function

The fi rst line of code in the LoadRibbons function creates a new ADO recordset that the
code uses to fetch the records from the custom Ribbon defi nition table. Next, the code
instructs Access to go to the LoadRibbon_Err line if any errors occur. The If statement
checks to see whether Access has already loaded customization by verifying whether a
cached copy of the RibbonUI has been set. If the main custom Ribbon has been loaded,
Is Nothing returns a value of False to indicate Access already has loaded the Ribbon.
If the custom Ribbon isn’t loaded, the code following the Else line executes. To load
the custom Ribbons, the code opens an ADO recordset on the ztblRibbons table, loops
through each record in the recordset, and calls the LoadCustomUI method once for
each record. The code uses the RibbonName fi eld from the recordset to pass the name
to the LoadCustomUI method, and the RibbonXML fi eld contains the well-formed XML
that defi nes each of our custom Ribbons. After Access loads each Ribbon, the code
closes the recordset and sets it to Nothing. The last line before the End If statement
returns a value of True for the LoadRibbons function, indicating success. The last part
of the code has an exit procedure and our error handling code to handle the case if
Access encounters an error.

As you can see, you can use the LoadCustomUI method to load a custom Ribbon from a
different table, but you’re not limited to storing the XML in a table. You could also store
the XML directly within a code module and set it to a string variable.

Using Ribbon Attributes
The RibbonX architecture contains many controls and attributes you can use in
your applications. To help you understand some of the elements you can create with
 RibbonX, we’ll look at the custom Ribbons we created in the Conrad Systems Contacts
sample database. Open the Contacts.accdb sample database, and click OK in the open-
ing message box. Next, open the frmSplash form in Form view either by double-click-
ing the form in the Navigation Pane or by right-clicking it and clicking Open on the
shortcut menu. The frmSplash form is displayed for a few seconds and then opens the
frmSignOn form where you can sign in to the database. Select Jeff’s name from the User
Name combo box, and click the Sign On button to sign in to the database. (Neither of
the users has a password assigned.) Access opens the frmMain form and displays the
custom main Ribbon for this database, as shown in Figure 24-3. The main Ribbon in

Chapter 24

1288 Chapter 24 The Finishing Touches
this database, rbnCSD, has a tab called Conrad Systems Contacts and four groups—
News, Navigation, Exit, and About. The News group displays three labels, one of which
displays the name of the current user signed in to the database. (You’ll learn how to
dynamically change the Ribbon later in this chapter.) The remaining three groups dis-
play custom buttons that allow you to navigate to the various parts of the application.

Figure 24-3 The main Ribbon in the Conrad Systems Contacts database displays custom controls.

You can see in Figure 24-3 that all built-in Ribbon elements are hidden. As you recall
from Chapter 23, if you set the startFromScratch attribute to True, Access hides all four
built-in Ribbon tabs, displays limited options when you click the Microsoft Offi ce But-
ton, and displays a limited Quick Access Toolbar.

When you build a custom Ribbon defi nition, you can either defi ne an entire custom Rib-
bon or defi ne XML that modifi es one of the built-in Ribbons. In your XML, you defi ne
custom controls. You assign attributes to your controls to defi ne how they look and
where they are positioned, and you defi ne callbacks for your controls to defi ne how they
act. In Visual Basic terms, you can think of an attribute as a property of a control object
and a callback as a method or event of a control object. When an attribute of a control
is a callback, it is essentially the same as an event property of an Access control—you
assign to a callback attribute the name of a procedure that will handle the event. You
can also copy attributes of built-in controls by using an attribute name that is a Control
ID, and you can reference a control in another custom Ribbon using a Qualifi ed ID.

Let’s take a look at attributes you can assign to controls fi rst. Table 24-1 lists the Rib-
bonX attributes you can use in your XML customization.

Table 24-1 RibbonX Attributes

Attribute Value or Type Description

description String Defi nes the text shown in menu controls when
itemSize="large".

enabled True or False Returns the control’s enabled state. Disabled
controls (enabled = False) appear dimmed in
the Ribbon.

getDescription Callback Names the macro or procedure that can set the
description attribute of a control.

getEnabled Callback Defi nes the macro or procedure that can set the
enabled state of a control.

getImage Callback Names the macro or procedure that can set the
image attribute of a control.

getLabel Callback Defi nes the macro or procedure that can set the
label attribute of a control.

 Creating Custom Ribbons 1289

Ch
ap

te
r 2

4

Attribute Value or Type Description

getPressed Callback Names the procedure that can respond to the
current state of a toggle button or check box.

getSupertip Callback Names the procedure that can set the Enhanced
ScreenTip of a control.

getTooltip Callback Names the procedure that can set the ToolTip
of a control.

getVisible Callback Names the procedure that can set the visibility
state of a control

id String Provides the Unique ID for a user-defi ned
control.

idMso Control ID Provides the Control ID for a built-in Ribbon
element.

idQ Qualifi ed ID Provides the qualifi ed name of a control on
another Ribbon.

image String Defi nes the image displayed on the control.

imageMso Control ID Provides the icon of a built-in control.

insertAfterMso Control ID Positions a custom control after a built-in
control.

insertAfterQ Qualifi ed ID Positions a custom control after a control
defi ned by another Ribbon using a qualifi ed
name.

insertBeforeMso Control ID Positions a custom control before a built-in
control.

insertBeforeQ Qualifi ed ID Positions a custom control before a control
defi ned by another Ribbon using a qualifi ed
name.

label String Returns a control’s label text.

onAction Callback Defi nes the macro or procedure called when a
user clicks this control.

pressed True or False Returns the state of a toggle button or check
box control.

showLabel True or False Determines whether a control label is visible.

size Normal or Large Sets the image size of a custom control.

supertip String Defi nes the text to display an enhanced
ScreenTip when the user rests their mouse
pointer on the control.

tooltip String Defi nes the text to display as a ToolTip.

visible True or False Returns the visible status of a control.

Chapter 24

1290 Chapter 24 The Finishing Touches
In addition to attributes you can use in your XML customization, you can create many
types of controls using RibbonX. Table 24-2 lists the types of controls you can use in
a custom Ribbon defi nition and their associated attributes (properties) and callbacks
(event properties).

Table 24-2 RibbonX Controls

Control Name Attributes Callbacks

button description, enabled, id,
idMso, idQ, image, imageMso,
insertAfterMso, insertAfterQ,
insertBeforeMso, insertBeforeQ,
keytip, label, screentip,
showImage, showLabel, size,
supertip, tag, and visible

getDescription, getEnabled,
getImage, getKeytip, getLabel,
getScreentip, getShowImage,
getShowLabel, getSize,
getSupertip, getVisible, and
onAction

buttonGroup id, idQ, insertAfterMso,
insertAfterQ, insertBeforeMso,
insertBeforeQ, and visible

getVisible

checkBox description, enabled, id, idMso,
idQ, insertAfterMso, insertAfterQ,
insertBeforeMso, insertBeforeQ,
keytip, label, screentip, supertip,
tag, and visible

getDescription, getEnabled,
getKeytip, getLabel, getPressed,
getScreentip, getSupertip,
getVisible, and onAction

comboBox enabled, id, idMso, idQ, image,
imageMso, insertAfterMso,
insertAfterQ, insertBeforeMso,
insertBeforeQ, label, maxLength,
screentip, showItemImage,
showImage, showLabel,
sizeString, supertip, tag, and
visible

getEnabled, getImage,
getItemCount, getItemID,
getItemImage, getItemLabel,
getItemScreentip,
getItemSupertip, getKeytip,
getLabel, getScreentip,
getShowImage, getShowLabel,
getSize, getSupertip, getText,
getVisible, and onChange

dialogBox-
Launcher

None
Note that you must
create a button inside a
dialogBoxLauncher tag and then
use the attributes of that button
to specify attributes for the
dialogBoxLauncher.

None
Note that you must
create a button inside a
dailogBoxLauncher tag and
then use the callbacks of that
button to specify events for the
dialogBoxLauncher.

dropDown enabled, id, idMso, idQ, image,
imageMso, insertAfterMso,
insertAfterQ, insertBeforeMso,
insertBeforeQ, keytip, label,
screentip, showImage,
showItemLabel, showLabel,
supertip, tag, and visible

getEnabled, getImage,
getItemCount, getItemID,
getItemImage, getItemLabel,
getItemScreentip,
getItemSupertip, getKeytip,
getLabel, getScreentip,
getSelectedItemID,
getSelectedItemIndex,
getShowImage, getShowLabel,
getSize, getSupertip, getText,
getVisible, and onChange

 Creating Custom Ribbons 1291

Ch
ap

te
r 2

4

Control Name Attributes Callbacks

dynamicMenu description, enabled, id,
idMso, idQ, image, imageMso,
insertAfterMso, insertAfterQ,
insertBeforeMso, insertBeforeQ,
keytip, label, screentip,
showImage, showLabel, size,
supertip, tag, and visible

getDescription, getEnabled,
getContent, getImage,
getKeytip, getLabel,
getScreentip, getShowImage,
getShowLabel, getSize,
getSupertip, and getVisible

editBox enabled, id, idMso, idQ, image,
imageMso, insertAfterMso,
insertAfterQ, insertBeforeMso,
insertBeforeQ, keytip,
label, maxLength screentip,
showImage, showLabel,
sizeString, supertip, tag, and
visible

getEnabled, getImage,
getKeytip, getLabel,
getScreentip, getShowImage,
getShowLabel, getSupertip,
getText, getVisible, and
onChange

gallery columns, description, enabled,
id, idMso, idQ, image, imageMso,
insertAfterMso, insertAfterQ,
insertBeforeMso, insertBeforeQ,
itemHeight, itemWidth,
keytip, label, rows, screentip,
showImage, showItemImage,
showItemLabel, showLabel, size,
sizeString, supertip, tag, and
visible

getDescription, getEnabled,
getImage, getItemCount,
getItemHeight, getItemID,
getItemImage, getItemLabel,
getItemScreentip,
getItemSupertip,
getItemWidth, getKeytip,
getLabel, getScreentip,
getSelectedItemID,
getSelectedItemIndex,
getShowImage, getShowLabel,
getSize, getSupertip, getText,
getVisible, and onAction

group id, idMso, idQ, image, imageMso,
insertAfterMso, insertAfterQ,
insertBeforeMso, insertBeforeQ,
keytip, label, screentip, supertip,
and visible

getImage, getKeytip, getLabel,
getScreentip, getSupertip, and
getVisible

labelControl enabled, id, idMso, idQ,
insertAfterMso, insertAfterQ,
insertBeforeMso, insertBeforeQ,
label, screentip, showLabel,
supertip, tag, and visible

getEnabled, getLabel,
getScreentip, getShowLabel,
getSupertip, and getVisible

menu description, enabled, id,
idMso, idQ, image, imageMso,
insertAfterMso, insertAfterQ,
insertBeforeMso, insertBeforeQ,
itemSize, keytip, label, screentip,
showImage, showLabel, size,
supertip, tag, and visible

getDescription, getEnabled,
getImage, getKeytip, getLabel,
getScreentip, getShowImage,
getShowLabel, getSize,
getSupertip, and getVisible

menuSeparator id, idQ, insertAfterMso,
insertAfterQ, and insertBeforeQ

getTitle

Chapter 24

1292 Chapter 24 The Finishing Touches
Control Name Attributes Callbacks

separator id, idQ, insertAfterMso,
insertAfterQ, insertBeforeMso,
insertBeforeQ, and visible

getVisible

splitButton enabled, id, idMso, idQ,
insertAfterMso, insertAfterQ,
insertBeforeMso, insertBeforeQ,
keytip, label, screentip,
showLabel, size, supertip, tag,
and visible

getEnabled, getKeytip,
getShowLabel, getSize,
getSupertip, and getVisible

tab id, idMso, idQ, insertAfterMso,
insertAfterQ, insertBeforeMso,
insertBeforeQ, keytip, label, tag,
and visible

getKeytip, getLabel, and
getVisible

toggleButton description, enabled, id,
idMso, idQ, image, imageMso,
insertAfterMso, insertAfterQ,
insertBeforeMso, insertBeforeQ,
keytip, label, screentip,
showImage, showLabel, size,
supertip, tag, and visible

getDescription, getEnabled,
getImage, getKeytip, getLabel,
getPressed, getScreentip,
getShowImage, getShowLabel,
getSize, getSupertip, getVisible,
and onAction

Now that you know the attributes and callbacks available in the RibbonX architecture,
you can begin to study how we created the main Ribbon in the Conrad Systems Con-
tacts database. If you still have the frmMain form open, click the Exit button to close
it, and then click Yes to confi rm that you want to exit. Next, fi nd the zfrmChangeRib-
bonXML form in the Navigation Pane, and open it in Form view. Finally, move to the
third record in the table where the Ribbon Name text box displays rbnCSD. Listed next
is the XML customization for this Ribbon in the Ribbon XML text box. We’ve added
line numbers to this code listing so that you can follow along with the line-by-line
explanations in Table 24-3, which follows the listing.

1 <customUI xmlns="http://schemas.microsoft.com/offi ce/2006/01/customui"
2 onLoad="onRibbonLoad1">
3 <ribbon startFromScratch="true">
4 <tabs>
5 <tab id="tabCSD" label="Conrad Systems Contacts">
6 <group id="grpNews" label="News">
7 <labelControl id="lblWelcome" getLabel="onGetLabel"/>
8 <labelControl id="lblToday" getLabel="onGetLabel"/>
9 <labelControl id="lblPending" getLabel="onGetLabel"/>
10 </group>
11 <group id="grpNavigation" label="Navigation" visible="true">
12 <button id="cmdCompanies" label="Companies"
13 imageMso="MeetingsWorkspace" size="large"
14 onAction="onOpenCompanies"
15 supertip="Edit company information."/>
16 <button id="cmdContacts" label="Contacts" imageMso="NewContact"
17 size="large" onAction="onOpenContacts"

 Creating Custom Ribbons 1293

Ch
ap

te
r 2

4

18 supertip="Edit contact information."/>
19 <button id="cmdProducts" label="Products"
20 imageMso="FilePackageForCD" size="large"
21 onAction="onOpenProducts"
22 supertip="Edit product information."/>
23 <button id="cmdPendingEvents" label="Pending Events"
24 imageMso="SendCopyFlag" size="large"
25 onAction="onOpenPendingEvents"
26 supertip="View any pending events."/>
27 <button id="cmdInvoices" label="Invoices"
28 imageMso="CustomTableOfContentsGallery" size="large"
29 onAction="onOpenInvoices"
30 supertip="Edit invoice information."/>
31 <button id="cmdUsers" label="Users"
32 imageMso="FileDocumentEncrypt"
33 size="large" onAction="onOpenUsers"
34 supertip="Edit user information."/>
35 <splitButton id="sbCodeList" size="large">
36 <button id="cmdCodeLists" imageMso="NewTask"
37 onAction="onOpenCodeLists" label="Code Lists"/>
38 <menu id="sbMnuCodeLists">
39 <button id="cmdContactTypes" label="Contact Types"
40 imageMso="NewTask" onAction="onOpenContactTypes"/>
41 <button id="cmdEventTypes" label="Event Types"
42 imageMso="NewTask" onAction="onOpenEventTypes"/>
43 <button id="cmdProductCategories" label="Product Categories"
44 imageMso="NewTask" onAction="onOpenProductCategories"/>
45 <button id="cmdPersonTitles" label="Person Titles"
46 imageMso="NewTask" onAction="onOpenPersonTitles"/>
47 <button id="cmdPersonSuffi xes" label="Person Suffi xes"
48 imageMso="NewTask" onAction="onOpenPersonSuffi xes"/>
49 </menu>
50 </splitButton>
51 <splitButton id="sbReports" size="large">
52 <button id="cmdReports" imageMso="CreateReport"
53 onAction="onOpenReports" label="Reports"/>
54 <menu id="sbMnuReports" supertip="View reports.">
55 <button id="cmdCompanyReports" label="Company Reports"
56 imageMso="CreateReport" onAction="onOpenCompanyReports"/>
57 <button id="cmdContactReports" label="Contact Reports"
58 imageMso="CreateReport" onAction="onOpenContactReports"/>
59 <button id="cmdProductReports" label="Product Reports"
60 imageMso="CreateReport" onAction="onOpenProductReports"/>
61 </menu>
62 </splitButton>
63 </group>
64 <group id="grpExit" label="Exit">
65 <button id="cmdExitDatabase" label="Exit Database"
66 imageMso="PrintPreviewClose" size="large"
67 onAction="onCloseDatabase" supertip="Exit the database."/>
68 </group>
69 <group id="grpAbout" label="About">

Chapter 24

1294 Chapter 24 The Finishing Touches
70 <button id="cmdHelpAbout" label="About" size="large"
71 imageMso="Help" onAction="onOpenFormEdit" tag="frmAbout"
72 supertip="View the About form."/>
73 </group>
74 </tab>
75 </tabs>
76 </ribbon>
77 </customUI>

Table 24-3 Explanation of XML in the rbnCSD Ribbon

Line(s) Explanation

1 Tells Access which schema fi le to use when building this specifi c Ribbon.

2 Specifi es a procedure that processes the RibbonLoad event when Access fi rst
displays the Ribbon. In this event, you can save a pointer to the Ribbon to
enable your code to dynamically update it. (We’ll explain how to update the
Ribbon later in this chapter.)

3 Hides all built-in Ribbon elements.

4 Specifi es the beginning tag to create a new set of tabs.

5 Creates a new tab with a Control ID called tabCSD and displays Conrad
Systems Contacts in the tab caption.

6 Creates a new group with a Control ID called grpNews and displays News as
the group label.

7 Creates a new label control, lblWelcome, and specifi es the onGetLabel
procedure to respond to the getLabel event to dynamically update the text
displayed in the label.

8 Creates a new label control, lblToday, that also calls onGetLabel.

9 Creates a new label control, lblPending, that also calls onGetLabel.

10 Ends group tag for the grpNews group.

11 Creates a new group with a Control ID called grpNavigation and displays
Navigation as the group label.

12-15 Creates a new button, cmdCompanies, with a label of Companies. Instead of
specifying an image attribute, we used imageMSO to copy the image from the
built-in control named FilePackageForCD. The button size is set to large, and
the onAction attribute issues a callback to the onOpenCompanies procedure.
Finally, we designate text to display as a supertip.

16–18 Creates a new button, cmdContacts, with a label of Contacts, an image copied
from a built-in control, and a callback defi ned.

19–22 Creates a new button, cmdProducts, with a label of Products, an image copied
from a built-in control, and a callback defi ned.

23–26 Creates a new button, cmdPendingEvents, with a label of Pending Events, an
image copied from a built-in control, and a callback defi ned.

27–30 Creates a new button, cmdInvoices, with a label of Invoices, an image copied
from a built-in control, and a callback defi ned.

 Creating Custom Ribbons 1295

Ch
ap

te
r 2

4

Line(s) Explanation

31–34 Creates a new button, cmdUsers, with a label of Users, an image copied from a
built-in control, and a callback defi ned.

35 Creates a new split button, sbCodeList, with a large size.

36–37 Creates a new button, cmdCodeLists, with a label of Code Lists, an image
copied from a built-in control, and a callback defi ned. This button becomes
the top half of the split button. If you click the top half of the button, Access
calls the onAction procedure for this button.

38 Creates a new menu control, sbMnuCodeLists, for the bottom half of the split
button.

39–40 Creates a new button, cmdContactTypes, with a label of Contact Types, an
image copied from a built-in control, and a callback defi ned.

41–42 Creates a new button, cmdEventTypes, with a label of Event Types, an image
copied from a built-in control, and a callback defi ned.

43–44 Creates a new button, cmdProductCategories, with a label of Product
Categories, an image copied from a built-in control, and a callback defi ned.

45–46 Creates a new button, cmdPersonTitles, with a label of Person Titles, an image
copied from a built-in control, and a callback defi ned.

47–48 Creates a new button, cmdPersonSuffi xes, with a label of Person Suffi xes, an
image copied from a built-in control, and a callback defi ned.

49 Ends the menu tag for menu sbMnuCodeLists.

50 Ends the split button tag for sbCodeList.

51 Creates a new split button, sbReports, with a large size.

52–53 Creates a new button, cmdReports, with a label of Reports, an image copied
from a built-in control, and a callback defi ned. This button becomes the top
half of the split button. If you click the top half of the button, Access calls the
onAction procedure for this button.

54 Creates a new menu control, sbMnuReports, for the bottom half of the split
button with a supertip.

55–56 Creates a new button, cmdCompanyReports, with a label of Company Reports,
an image copied from a built-in control, and a callback defi ned.

57–58 Creates a new button, cmdContactReports, with a label of Contact Reports, an
image copied from a built-in control, and a callback defi ned.

59–60 Creates a new button, cmdProductReports, with a label of Product Reports, an
image copied from a built-in control, and a callback defi ned.

61 Defi nes the ending menu tag for menu sbMnuReports.

62 Defi nes the ending split button tag for sbReports.

63 Defi nes the ending group tag for the grpNavigation group.

64 Creates a new group with a Control ID called grpExit and displays Exit for the
group label.

Chapter 24

1296 Chapter 24 The Finishing Touches
Line(s) Explanation

65–67 Creates a new button, cmdExitDatabase, with a label of Exit Database, an
image copied from a built-in control, and a callback defi ned.

68 Ends the group tag for the grpExit group.

69 Creates a new group with a Control ID called grpAbout and displays About for
the group label.

70–72 Creates a new button, cmdHelpAbout, with a label of About, an image copied
from a built-in control, and a callback defi ned. A custom tag value is assigned
to this control using the tag attribute.

73 Defi nes the ending group tag for the grpAbout group.

74 Defi nes the ending tag for the tabCSD tab.

75 Defi nes the ending tabs tag.

76 Defi nes the ending ribbon tag.

77 Defi nes the ending customUI tag.

Creating VBA Callbacks
As you reviewed the XML customization for the rbnCSD Ribbon, you no doubt noticed
that most of the buttons used the onAction callback. When you use onAction, you spec-
ify a saved macro object (you cannot use an embedded macro on a form or report in
this case) or a Visual Basic for Applications (VBA) procedure to respond to the event—
the user clicking the button. (You can think of onAction for a button in a Ribbon as the
same as On Click for a command button on an Access form.) In the Conrad Systems
Contacts sample database (Contacts.accdb), we defi ned all the procedures to respond
to callback events for our custom Ribbons in the module modRibbonCallbacks. Let’s
take a look at some of these VBA procedures so that you can see how everything ties
together. Close any objects you have open at the moment, right-click modRibbonCall-
backs in the Navigation Pane (you might need to adjust your Navigation Pane display to
see the modules), and click Design View on the shortcut menu to open this module in
Design view.

Scroll down the procedures and functions in this module until you come to the
 onOpenCompanies procedure. This procedure responds to the On Click event of the
very fi rst button defi ned in our custom Ribbon—the cmdCompanies button. The proce-
dure is as follows:

Public Sub onOpenCompanies(control As IRibbonControl)
' User wants to open Companies
 ' Make sure frmMain is there
 If IsFormLoaded("frmMain") Then
 ' Yes - execute the Companies procedure
 Form_frmMain.cmdCompanies_Click
 End If
End Sub

 Creating Custom Ribbons 1297

Ch
ap

te
r 2

4

The idea is to duplicate what happens when the user clicks the Companies button
in the main switchboard form. That form (frmMain) already has code to process the
request, so why duplicate it? If you remember from Chapter 19, “Understanding Visual
Basic Fundamentals,” you can make any procedure in a form’s class module a method
of the form by declaring it Public. We did exactly that with the cmdCompanies_Click
procedure in the frmMain form so that this onAction procedure can call it and not
duplicate the code to open Companies. The procedure fi rst verifi es that the frmMain
form is open because a call to the public method will fail if the form is closed. If the
frmMain form is open, the procedure calls the cmdExit_Click procedure as a method of
the form. If you scroll through the other procedures in the modRibbonCallbacks mod-
ules, you’ll fi nd that most of them follow this same pattern—they run an existing com-
mand button Click event procedure on the frmMain form.

Dynamically Updating Ribbon Elements
When Access fi rst opens a custom Ribbon, it issues callbacks for all the controls in
order to set their attributes. Note that, other than for the custom Ribbon defi ned in the
Ribbon Name property in the Current Database category of Access Options, Access
opens a custom Ribbon when it is fi rst referenced in the Ribbon Name property of a
form or report that you open or that your application code opens. Executing the Load-
CustomUI method of the Application object loads the Ribbon defi nition into memory,
but it does not actually open the Ribbon.

After a Ribbon is loaded, the Ribbon is static, and Access does not update any elements.
If you want to update the Ribbon, such as change the text in a label control to display
the current user’s name, you must explicitly tell Access to reinitialize the entire Ribbon
or a control on the Ribbon. Fortunately, the RibbonX architecture allows you to save a
copy of a pointer to the Ribbon in a public variable so you that can update it at a later
time. In RibbonX terms, you invalidate a control (or the entire Ribbon) to force Access to
reload the object and issue any attribute setting callbacks. At the beginning of the XML
customization for rbnCSD, you’ll recall seeing this line of code:

<customUI xmlns="http://schemas.microsoft.com/offi ce/2006/01/customui"
 onLoad="onRibbonLoad1">

The fi rst procedure in the modRibbonCallbacks module is onRibbonLoad. In the pro-
cedure called by onRibbonLoad, you can save a pointer to the Ribbon that is being
opened. If you do not plan to ever update any of your Ribbon elements, you do not need
to add the onRibbonLoad attribute to the <customUI> element. Access calls the onLoad
callback only once during the process of opening the custom Ribbon for the fi rst time.
The following is the onRibbonLoad1 procedure that executes in the onLoad callback of
the rbnCSD custom Ribbon:

' This is the customUI onLoad event handler for main ribbon
Public Sub onRibbonLoad1(ribbon As IRibbonUI)
 ' Cache a copy of the Ribbon so we can refresh later at any time
 Set gobjRibbon1 = ribbon
End Sub

Chapter 24

1298 Chapter 24 The Finishing Touches
The IRibbonUI object is a parameter that you can use to save a pointer to the opened
custom Ribbon. The IRibbonUI class provides methods that you can use to invalidate
a single control in your customization or the entire Ribbon. Table 24-4 lists these
methods.

Table 24-4 IRibbonUI Methods

Method Description

Invalidate() Access reinitializes all custom controls.

InvalidateControl(string controlID) Access reinitializes one specifi c control.

After you signed in to the Conrad Systems Contacts database, you’ll recall seeing the
user name displayed in the News group. To update the display of the three labels in the
News group, we use the following onGetLabel procedure:

' This serves as a getLabel callback for the labels.
' We determine which Control ID was passed from the Ribbon
' and set the label appropriately.
Public Sub onGetLabel(control As IRibbonControl, ByRef label)
 Select Case control.Id
 Case "lblWelcome"
 ' Update welcome information
 label = GetWelcomeMessage()
 Case "lblToday"
 ' Update Time
 label = "Today is: " & FormatDateTime(Date, vbLongDate)
 Case "lblPending"
 ' Update Pending Events message
 label = GetPendingEventsNumber
 End Select
End Sub

We use a Select Case procedure to test the value of the label Control ID passed into the
onGetLabel procedure. For the lblWelcome label, we update the display by calling the
GetWelcomeMessage function to retrieve the name of the user currently signed in to the
database. For the lblToday label, we retrieve the current date from the Windows system
date and format it to display as Long Date. For the lblPending label, we retrieve the
number of pending events for the current user by calling the GetPendingEventsNumber
function.

You might be wondering, when does Access know to update these labels? On the
 frmSignOn form, you have to select a user name and provide a password. In the Click
event of the cmdSignOn command button, we have this code just before the form
close code:

 ' Refresh the data in the Ribbon
 gobjRibbon1.InvalidateControl "lblWelcome"
 gobjRibbon1.InvalidateControl "lblPending"

A few lines above this code, Access saves the user name to a public string variable,
gstrThisUser, which is referenced in the GetWelcomeMessage function and the

 Creating Custom Ribbons 1299

Ch
ap

te
r 2

4

 GetPendingEventsNumber function. We invalidate the lblWelcome control in the
 cmdSignOn procedure, which causes Access to refresh this specifi c control and change
the label’s text. We also invalidate the lblPending control so that the correct number of
pending events is displayed for the current user. After you’ve saved a pointer to the Rib-
bon, you can invalidate the controls or the entire Ribbon as often as you need.

Loading Images into Custom Controls
The easiest way to display images on a custom button in your Ribbon customization is
to use the imageMso attribute. As you’ll recall from Chapter 23, you can use the
 imageMso attribute to apply an existing icon from Access 2007 or from any 2007
 Microsoft Offi ce system applications that support Ribbons. All the custom command
buttons on the Ribbons in the Conrad Systems Contacts and Housing Reservations
sample databases reuse icons and images from other built-in controls.

You can also load images from an attachment fi eld stored in a table or use the Load-
Picture method to load image fi les stored in a folder. In the Housing Reservations
sample database (Housing.accdb), we store all the pictures for the employees in a table
called USysRibbonImages. (Note that you can name your table whatever you like, but
we chose to name our table with the USys prefi x so that it appears in the Navigation
Pane only if you have enabled your Navigation Options to display system objects.)
Open the Housing.accdb database now (close Contacts.accdb if you have it open), and
click OK in the opening message box. Next, open the frmSplash form in Form view.
After a few seconds, the frmSplash form closes, and then frmSignOn opens. Select
Jeff’s name from the User Name combo box, and enter password in the Password text
box. (All the passwords in this sample database are password.) Finally, click the Sign
On button to sign in to the database under Jeff’s name. Access opens the frmMain
form and displays a custom Ribbon with Jeff’s picture in the News group, as shown in
Figure 24-4.

Figure 24-4 You can load images from attachment fi elds onto custom controls in your Ribbons.

Access is placing the image on a button in the News group, cmdPicture, that has no
onAction attribute assigned to it. (We don’t want anything to happen if you click the
button, but we’re using the button to display our custom image.) If you were to sign on
as a different user, Access would update the picture because we invalidated the control
in the Click event of the cmdSignOn button on the frmSignOn form. To set the picture,
we use the getImage callback attribute of the custom cmdPicture control in our main
Ribbon. The getImage callback runs the GetButtonImage function in the modRibbon-
Callbacks module listed here:

Public Function GetButtonImage(control As IRibbonControl, ByRef image)
 ' This function displays a picture of the logged on user
 ' The command button in the Welcome group will update from

Chapter 24

1300 Chapter 24 The Finishing Touches
 ' a picture stored in an Attachment fi eld in the table USysRibbonImages.
 ' We have to load a hidden form in order to grab the picture
 Dim frmRibbonImages As Form
 Static rsForm As DAO.Recordset2
 Dim rsAttachments As DAO.Recordset2
 If frmRibbonImages Is Nothing Then
 ' Form is not opened, so open it
 DoCmd.OpenForm "zfrmUSysRibbonImages", WindowMode:=acHidden
 Set frmRibbonImages = Forms("zfrmUSysRibbonImages")
 Set rsForm = frmRibbonImages.Recordset
 End If
 ' Find the picture for the logged on user
 rsForm.FindFirst "UserID='" & gstrThisEmployee & "'"
 If rsForm.NoMatch Then
 ' User not found so set the image to nothing
 Set image = Nothing
 Else
 ' Found a match, so update the display on the Ribbon
 Set image = frmRibbonImages.RibbonImages.PictureDisp
 End If
End Function

To load an image from an attachment fi eld onto a custom Ribbon, you have to assign an
object that is in the correct format. The PictureDisp property of an Attachment control
bound to a picture in an attachment fi eld returns the correct object type. Using an open
form bound to the table that contains the attachment fi eld is a simple way to get what
we need. (You could also write a COM object in C#, but that’s far beyond the scope of
this book!) We created a special form, zfrmUSysRibbonImages, especially for this pur-
pose. The code opens this form in hidden mode so it never becomes visible on screen.
Next, the code searches the records in the table for a match to the public variable that
contains the name of the user signed in to the database—gstrThisEmployee. If no match
is found, Access sets the image to nothing. If a match is found, Access updates the
image on the custom button with the picture stored in the attachment fi eld.

Hiding Options on the Microsoft Offi ce Button
You’ve previously learned that if you set the startFromScratch attribute of your custom-
ization to True, Access hides some of the options available when your Ribbon is open
and you click the Microsoft Offi ce Button. You can selectively hide buttons and com-
mands by using the <offi cemenu> tags and setting the visible attribute for the built-in
controls to false. For example, if you want to hide the New, Open Database, and Save As
options, use the following XML example in a custom Ribbon that you load:

<customUI xmlns="http://schemas.microsoft.com/offi ce/2006/01/customui">
 <ribbon startFromScratch="true">
 <offi ceMenu>
 <button idMso="FileNewDatabase" visible="false"/>
 <button idMso="FileOpenDatabase" visible="false"/>
 <splitButton idMso="FileSaveAsMenuAccess" visible="false" />
 </offi ceMenu>
 </ribbon>
 </customUI>

 Creating Custom Ribbons 1301

Ch
ap

te
r 2

4

If you click the Microsoft Offi ce Button using this customization, you’ll see a very lim-
ited set of options available for your users, as shown in Figure 24-5.

Figure 24-5 You now have limited options available when you click the Microsoft Offi ce Button.

Setting Focus to a Tab
The RibbonX architecture does not provide a method to place the focus on a specifi c
tab, which is unfortunate. In the Conrad Systems Contacts and Housing Reservations
sample databases, we wanted to display our main Ribbon at all times. For the data
entry forms, we wanted to still see the main tab when the custom Ribbon for forms is
open but put the focus on the Navigation tab as a visual cue for the users of the applica-
tion. Instead, the Navigation tab opens to the right of the main tab but does not receive
focus. Fortunately, RibbonX does provide a TabSetFormReportExtensibility element
that you can use for these cases.

When you use the TabSetFormReportExtensibility element, Access places the content
into the current tabSet, moves the focus to this tab, and places a caption above the
tab. The tab caption matches the Caption property of the current form or report if this
property is set. If no caption is set, Access uses the current name of the object. In the
rbnForms custom Ribbon in both Conrad Systems Contacts and Housing Reservations,
we duplicated all the controls in the main Ribbon—rbnCSD or rbnProseware—and then
added the XML necessary to display the tab we wanted with groups and controls for
form navigation. The specifi c customization for these follows this format:

 <contextualTabs>
 <tabSet idMso="TabSetFormReportExtensibility">
 <tab id="tabRecNav" label="Record Navigation">
....(remaining XML customization here)....
 </tab>
 </tabSet>
</contextualTabs>

In essence we created our own contextual tab that appears next to the main Ribbon tab
but receives the focus when the data entry forms open, as shown in Figure 24-6.

Figure 24-6 Use the TabSetFormReportExtensibility element to set focus to a specifi c tab.

Chapter 24

1302 Chapter 24 The Finishing Touches
Quite frankly, we could write an entire book about Ribbon customization, but you
should have enough information at this point to get started building your own custom
Ribbons. For more information, visit the Microsoft Developer Network Web site at
http://msdn.microsoft.com/. In the remainder of this chapter, you’ll learn additional tech-
niques that you can use to customize your applications for your users.

Fine-Tuning with Performance Analyzer
Even the most experienced database designers (including us) don’t always take advan-
tage of all the techniques available to improve performance in an Access application.
Fortunately, Access provides Performance Analyzer to help you do a fi nal analysis after
you build most of your application. In this section, we’ll let Performance Analyzer ana-
lyze the Housing Reservations sample database (Housing.accdb). To start Performance
Analyzer, click the Analyze Performance button in the Analyze group on the Database
Tools tab. Access opens the dialog box shown in Figure 24-7.

Figure 24-7 You can select which objects to analyze from the eight tabs of Performance Analyzer.

You can select a specifi c category of objects to analyze—Current Database (which lets
you analyze table relationships), Tables, Queries, Forms, Reports, Macros, Modules,
or All Object Types. Within a category, you can select the check box next to an object
name to select it for analysis. You can click the Select All button to ask Performance
Analyzer to examine all objects or click Deselect All if you made a mistake and want
to start again. In this example, we chose the All Object Types tab, clicked Select All,
and then clicked sample tables, queries, forms, and reports that aren’t part of the
actual application (all the extra examples we built for the book) to deselect them. (In
the Housing Reservations database, select all tables that have names beginning with
“tbl” or “tlkp,” and select all queries, forms, and reports except those that have names
 beginning with the letter z or that have “Example,” “Xmpl,” or “USys” as part of the
object name.)

Click OK to run Performance Analyzer. Performance Analyzer opens a dialog box
that shows you its progress as it analyzes the objects you selected. When it is fi nished,
Performance Analyzer displays the results of its analysis, similar to those shown in
Figure 24-8.

 Fine-Tuning with Performance Analyzer 1303

Ch
ap

te
r 2

4

Figure 24-8 Performance Analyzer displays recommendations to improve your application.

You can scan the list of recommendations, suggestions, and ideas displayed by Perfor-
mance Analyzer. (Notice the key below the Analysis Results list.) Click any recommenda-
tion or suggestion that you like, and then click the Optimize button to have Performance
Analyzer implement the change on the spot. After Performance Analyzer implements a
change, you’ll see a check mark next to the item. If you like, you can click the Select All
button to highlight all the recommendations and suggestions and then click Optimize
to implement the fi xes.

Personally, we’d rather choose the ones we want one at a time. For example, the idea to
change the PostalCode fi eld from text to long integer won’t work if you’re storing Cana-
dian or European postal codes in your database. Also, we know that tblReservations is
already related to tblFacilities through the tblFacilityRooms table, so adding a direct
relationship between tblFacilties and tblReservations would be redundant.

Although you can implement recommendations and suggestions directly from Perfor-
mance Analyzer, you can’t do so with ideas. Most ideas are changes that could poten-
tially cause a lot of additional work. For example, changing a data type of a fi eld in a
table might improve performance slightly, but it might also cause problems in dozens of
queries, forms, and reports that you’ve already built using that table fi eld. Other ideas
are fi xes that Performance Analyzer isn’t certain will help; they depend on how you
designed your application. We recommend that you look at the recommendations and
suggestions and implement the ones that make the most sense for your application.

Chapter 24

1304 Chapter 24 The Finishing Touches
Disabling Layout View
You might have noticed as you built new forms and reports in your Access 2007 data-
bases that Access sets the new Allow Layout View property to Yes by default. This is a
handy feature while you’re building forms and reports because it allows you to align,
position, and resize controls while you view live data. When you’re ready to put your
application in production, however, you need to reset this new property to No for all
your forms and reports so that the users see your forms and reports as you intended.
You could open every form and report in Design view, change the property, and save
the form or report. But why do it the hard way? In the Access Options dialog box, you
can select an option that disables the ability to open forms and reports in Layout view.
Click the Microsoft Offi ce Button, click Access Options, and then click the Current
Database category. In the Application Options section, clear the Enable Layout View For
This Database check box, as shown in Figure 24-9.

Figure 24-9 You can disable the ability to view objects in Layout view in the Access Options
dialog box.

When you clear this option, Access does not show Layout View as an option in the
Views group on the Ribbon or on any shortcut menus.

 Defi ning Switchboard Forms 1305

Ch
ap

te
r 2

4

Defi ning Switchboard Forms
Usually the last forms that you build are the switchboard forms that give the user direct
access to the major tasks in your application.

Designing a Switchboard Form from Scratch
Your main switchboard form should be a simple form with a logo, a title, and perhaps
as many as eight command buttons. The command buttons can be used to open the
forms that you defi ned in the application. Figure 24-10 shows the main switchboard
form for the Conrad Systems Contacts database in Design view.

Figure 24-10 The main switchboard form for the Conrad Systems Contacts database has command
buttons to guide users through the application.

One feature worth mentioning here is the use of the ampersand (&) character when set-
ting each control’s Caption property. You can use the ampersand character to defi ne a
shortcut key for the control. In the Caption property for the Companies command but-
ton, for example, the ampersand precedes the letter C. The letter C becomes the short-
cut key, which means that you can choose the Companies button by pressing Alt+C
as well as by more traditional methods such as clicking the button with the mouse or
tabbing to the button and pressing the Spacebar or the Enter key. You must be careful,
however, not to duplicate another shortcut key letter. For example, the shortcut key for
the Contacts command button in this example is O, to avoid confl ict with the C access
key for the Companies command button.

Chapter 24

1306 Chapter 24 The Finishing Touches

If you select the Check For Keyboard Shortcut Errors check box in the Error Checking

section in the Object Designers category in the Access Options dialog box, Access dis-

plays a smart tag next to any command button or label that has a duplicate shortcut key

defi ned.

You can use a shortcut key to make it easier to select any control that has a caption.
For command buttons, the caption is part of the control itself. For most other controls,
the caption is in the attached label. For example, you can defi ne shortcut keys to select
option buttons or toggle buttons in an option group by including an ampersand in the
caption for each button in the group.

For each command button, you need a simple event procedure to handle the Click event
and to open the appropriate form. Here is the procedure for the Products button:

Private Sub cmdProducts_Click()
 ' Open the Product edit/create form
 DoCmd.OpenForm "frmProducts"
End Sub

If you have a custom Ribbon, you should set the Ribbon Name property of your switch-
board form to point to the name of the custom Ribbon. If you also have a custom Rib-
bon used for data entry forms, you should set the form’s Ribbon Name property to it. In
the Conrad Systems Contacts and Housing Reservations applications, a single custom
Ribbon is used for all data entry forms, and a different Ribbon is used for navigation
forms—such as frmCodeLists, frmProductReports, and frmSignOn.

Using the Switchboard Manager to Design
Switchboard Forms
If your application is reasonably complex, building all the individual switchboard
forms you need to provide the user with navigation through your application could take
a while. Access has a Switchboard Manager utility that helps you get a jump on build-
ing your switchboard forms. This utility uses a creative technique to handle all switch-
board forms by dynamically modifying a single form. It uses a driver table named
Switchboard Items to allow you to defi ne any number of switchboard forms with up to
eight command buttons each. Information in the table tells the code behind the switch-
board form how to modify the buttons displayed and what to do when the user clicks
each of the buttons.

SIDE OUT Let Access Show You Any Keyboard Shortcut Duplicates

If you select the Check For Keyboard Shortcut Errors check box in the Error Checking

section in the Object Designers category in the Access Options dialog box, Access dis-

plays a smart tag next to any command button or label that has a duplicate shortcut key

defi ned.

 Defi ning Switchboard Forms 1307

Ch
ap

te
r 2

4

Note
The Conrad Systems Contacts application (Contacts.accdb) has a SwitchboardSample

form that we created with the Switchboard Manager. Because we renamed the objects

and fi xed the embedded macros behind the SwitchboardSample form to use the Switch-

boardDriver table, you can’t use the Switchboard Manager to modify this form. You can

open the SwitchboardSample form to see how a form built by the Switchboard Man-

ager works, and you can follow along with the steps in this chapter to build your own

switchboard.

To start the Switchboard Manager, click the Switchboard Manager button in the Data-
base Tools group on the Database Tools tab. The utility checks to see whether you
already have a switchboard form and a Switchboard Items table in your database. If
you don’t have these, the Switchboard Manager displays the message box shown in Fig-
ure 24-11, which asks you whether you want to build them.

Figure 24-11 This message box appears if the Switchboard Manager does not fi nd a valid switch-
board form and Switchboard Items table in your database.

Click Yes to allow the Switchboard Manager to continue. After it builds a skeleton
switchboard form and a Switchboard Items table (or after it establishes that you already
have these objects in your database), it displays the main Switchboard Manager win-
dow. Unless your application is very simple, you won’t be able to provide all the naviga-
tion your users need on one switchboard with eight options—especially considering
that you should use one of the options to provide a way for the user to exit the applica-
tion. So, you should plan additional switchboards that the user can navigate to from
the main switchboard. One way to lay out the additional switchboards is to plan one
switchboard for each major subject or group of similar features in your database.

You should fi rst defi ne all the switchboards that you need (called pages in the Switch-
board Manager) because a page must be defi ned before you can create a button to navi-
gate to or from the page. To build an additional switchboard page, click the New button,
and enter a name for the new switchboard in the Create New dialog box, as shown in
Figure 24-12. Click OK to create the page.

Note
The Conrad Systems Contacts application (Contacts.accdb) has a SwitchboardSample

form that we created with the Switchboard Manager. Because we renamed the objects

and fi xed the embedded macros behind the SwitchboardSample form to use the Switch-

boardDriver table, you can’t use the Switchboard Manager to modify this form. You can

open the SwitchboardSample form to see how a form built by the Switchboard Man-

ager works, and you can follow along with the steps in this chapter to build your own

switchboard.

Chapter 24

1308 Chapter 24 The Finishing Touches
Figure 24-12 To add a switchboard page to the main switchboard form, click the New button, and
give your page a name.

After you create the additional switchboard pages that you need, you can select one in
the main Switchboard Manager window and click the Edit button to begin defi ning
actions on the page. You’ll see a window similar to the one shown in the background
in Figure 24-13. Use this window to create a new action, edit an existing action, or
change the order of actions. Figure 24-13 shows a new action being created. When you
create a new action, the Switchboard Manager places a button on the switchboard page
to execute that action. In the Text box, enter the caption that you want displayed next
to the button. (Note that if you enter an ampersand (&) before one of the letters in the
caption to make that letter the access key for the button, the switchboard form does not
recognize it as a keyboard shortcut.) Choose the action you want from the Command
drop-down list. The Switchboard Manager can create actions such as moving to another
switchboard page, opening a form in add or edit mode, opening a report, switching to
Design view, exiting the application, or running a macro or a Visual Basic procedure. If
you choose an action such as opening a form or report, the Edit Switchboard Item dia-
log box shows you a list of appropriate objects in the second drop-down list.

Figure 24-13 Click the New button to create a new action on a switchboard page.

On the main switchboard page, you should create actions to open other pages and an
action to exit the application. On each subsequent page, you should always provide at
least one action to move back through the switchboard-page tree or to go back to the
main switchboard page, as shown in Figure 24-14.

 Defi ning Switchboard Forms 1309

Ch
ap

te
r 2

4

Figure 24-14 Make sure you create an action to return to the main switchboard form from another
switchboard page.

On the SwitchboardSample form, we created buttons to open Companies, Contacts,
Products, Pending Events, and Invoices. We also created buttons to open pages to show
code lists that can be edited and the available reports. On the Code Lists page, we
added entries to open Contact Types, Event Types, Product Categories, Person Titles,
Person Suffi xes, and Users. We also added a button to return to the main menu. On the
Reports page, we added entries to open Company Reports, Contact Reports, and Prod-
uct Reports as well as a button to return to the main menu.

After you fi nish, the Switchboard Manager saves the main switchboard form with the
name Switchboard. You can rename this form if you want. If you want to rename the
Switchboard Items table, be sure to edit the embedded macro in the On Open property
of the Switchboard form so that it refers to the new name. You’ll also need to change
the record source of the form and edit the embedded macro in the On Click property of
both the Option1 command button and the OptionLabel1 text box control.

Figure 24-15 shows an example Switchboard form for the Conrad Systems Contacts
database (the SwitchboardSample form). We edited the form design to add the Con-
rad Systems logo. You can further customize the look of this form as long as you don’t
remove an option button or attached label or change the names of these controls.

We personally prefer to design our own switchboard forms so that we can add special-
ized code behind some of the command buttons. But you can see that the Switchboard
Manager is a handy way to quickly design a complex set of switchboard pages without a
lot of work.

Chapter 24

1310 Chapter 24 The Finishing Touches
Figure 24-15 The main switchboard form of our example shows options to other areas of the
application.

Controlling How Your Application Starts and Runs
Especially if you’re distributing your application for others to use, you probably want
your application to automatically start when the user opens your database. As noted in
the previous section, you should design switchboard forms to help the user navigate to
the various parts of your application. You should also set properties and write code to
ensure that your user can cleanly exit your application.

Setting Startup Properties for Your Database
At this point, you know how to build all the pieces you need to fully implement your
database application. But what if you want your application to start automatically
when you open your database? One way is to create a macro named AutoExec—Access
always runs this macro if it exists when you open the database (unless you hold down
the Shift key when you open the database). In the Conrad Systems Contacts database,
we use an AutoExec macro to fi rst determine whether the database is being run in a
trusted environment. You can also specify an opening form in the startup properties
for the database. You can set these properties by clicking the Microsoft Offi ce Button,
clicking Access Options, and then clicking the Current Database category, as shown in
Figure 24-16.

 Controlling How Your Application Starts and Runs 1311

Ch
ap

te
r 2

4

Figure 24-16 You can set startup properties for your database in the Current Database category of
the Access Options dialog box.

You can specify which form opens your database by selecting a form from the Display
Form list. You can also specify a custom title for the application, an icon for the appli-
cation, and a custom Ribbon to override the built-in Ribbon. If you always open the
database with its folder set to the current directory, you can simply enter the icon fi le
name, as shown in Figure 24-16. If you’re not sure which folder will be current when the
application opens, you should enter a fully qualifi ed fi le name location. Note that you
can also ask Access to display the icon you specify as the form and report icon instead
of the standard Access icons.

If you clear the Display Navigation Pane check box, Access hides the Navigation Pane
when your application starts. (As you’ll learn later, you can also write code that exe-
cutes in your startup form to ensure that the Navigation Pane is hidden.) You can also
hide the status bar if you want by clearing the Display Status Bar check box. We like to
use the SysCmd function to display information on the status bar, so we usually leave
the Display Status Bar check box selected. We recommend you always clear the Enable
Design Changes For Tables In Datasheet View (For This Database) check box. If you
leave this check box selected, your users can make design changes to your tables dis-
played in Datasheet view, as well as any forms that open in Datasheet view.

Chapter 24

1312 Chapter 24 The Finishing Touches
Finally, you can disable special keys—such as F11 to reveal the Navigation Pane, Ctrl+G
to open the Debug window, or Ctrl+Break to halt code execution—by clearing the Use
Access Special Keys check box. As you can see, you have many powerful options for
customizing how your application starts and how it operates.

Starting and Stopping Your Application
Although you can set startup properties asking Access to hide the Navigation Pane,
you might want to include code in the Load event of your startup form to make sure it
is hidden. All the sample databases provided with this book open the frmCopyright
form as the startup form. Note that the AutoExec macro in these sample databases fi rst
checks to see whether the database is running in a trusted location. If the database is
in a trusted location, the macro opens frmCopyright; otherwise, the macro opens the
fdlgNotTrusted form followed by the frmCopyrightNotTrusted form. The copyright
forms display information about the database. In the trusted version, code behind the
form checks connections to linked tables. In both the Conrad Systems Contacts and
Housing Reservations sample applications, the code behind the frmCopyright form
tells you to open the frmSplash form to actually start the application.

When the frmSplash form opens, code in the Load event uses the following procedure
to make sure the Navigation Pane is hidden:

 ' Select the Navigation Pane
 DoCmd.SelectObject acForm, "frmSplash", True
 ' .. and hide it
 RunCommand acCmdWindowHide

The procedure hides the Navigation Pane by selecting a known object in the Navigation
Pane to give the Navigation Pane the focus and then executing the WindowHide com-
mand. The splash form waits for a timer to expire (the Timer event procedure) and then
opens a form to sign on to the application. When you sign on successfully, the frmMain
form fi nally opens.

The frmMain form in the Conrad Systems Contacts application has no Close button
and no Control menu button. The database also has an AutoKeys macro defi ned that
intercepts any attempt to close a window using the Ctrl+F4 keys. (You’ll learn about
creating an AutoKeys macro in the next section.) So, you must click the Exit button on
the frmMain form to close the application. On the other hand, the frmMain form in the
Housing Reservations application does allow you to press Ctrl+F4 or click the Close
button to close the form and exit the application.

You should always write code to clean up any open forms, reset variables, and close
any open recordsets when the user asks to exit your application. Because the user can’t
close the frmMain form in Conrad Systems Contacts application except by clicking the
Exit button, you’ll fi nd such clean-up code in the command button’s Click event. In the
frmMain form in the Housing Reservations database, the clean-up code is in the form’s
Close event procedure. The code in both forms is similar, so here’s the exit code in the
Conrad Systems Contacts sample application.

 Controlling How Your Application Starts and Runs 1313

Ch
ap

te
r 2

4

Private Sub cmdExit_Click()
Dim intErr As Integer, frm As Form, intI As Integer
Dim strData As String, strDir As String
Dim lngOpen As Long, datBackup As Date
Dim strLowBkp As String, strBkp As String, intBkp As Integer
Dim db As DAO.Database, rst As DAO.Recordset
 If vbNo = MsgBox("Are you sure you want to exit?", _
 vbYesNo + vbQuestion + vbDefaultButton2, _
 gstrAppTitle) Then
 Exit Sub
 End If
 ' Trap any errors
 On Error Resume Next
 ' Make sure all forms are closed
 For intI = (Forms.Count - 1) To 0 Step -1
 Set frm = Forms(intI)
 ' Don't close myself!
 If frm.Name <> "frmMain" Then
 ' Use the form's "Cancel" routine
 frm.cmdCancel_Click
 DoEvents
 End If
 ' Note any error that occurred
 If Err <> 0 Then intErr = -1
 Next intI
 ' Log any error beyond here
 On Error GoTo frmMain_Error
 ' Skip backup check if there were errors
 If intErr = 0 Then
 Set db = CurrentDb
 ' Open ztblVersion to see if we need to do a backup
 Set rst = db.OpenRecordset("ztblVersion", dbOpenDynaset)
 rst.MoveFirst
 lngOpen = rst!OpenCount
 datBackup = rst!LastBackup
 rst.Close
 Set rst = Nothing
 ' If the user has opened 10 times
 ' or last backup was more than 2 weeks ago...
 If (lngOpen Mod 10 = 0) Or ((Date - datBackup) > 14) Then
 ' Ask if they want to backup...
 If vbYes = MsgBox("CSD highly recommends backing up " & _
 "your data to avoid " & _
 "any accidental data loss. Would you like to backup now?", _
 vbYesNo + vbQuestion, gstrAppTitle) Then
 ' Get the name of the data fi le
 strData = Mid(db.TableDefs("ztblVersion").Connect, 11)
 ' Get the name of its folder
 strDir = Left(strData, InStrRev(strData, "\"))
 ' See if the "BackupData" folder exists
 If Len(Dir(strDir & "BackupData", vbDirectory)) = 0 Then
 ' Nope, build it!

Chapter 24

1314 Chapter 24 The Finishing Touches
 MkDir strDir & "BackupData"
 End If
 ' Now fi nd any existing backups - keep only three
 strBkp = Dir(strDir & "BackupData\CSDBkp*.accdb")
 Do While Len(strBkp) > 0
 intBkp = intBkp + 1
 If (strBkp < strLowBkp) Or (Len(strLowBkp) = 0) Then
 ' Save the name of the oldest backup found
 strLowBkp = strBkp
 End If
 ' Get the next fi le
 strBkp = Dir
 Loop
 ' If more than two backup fi les
 If intBkp > 2 Then
 ' Delete the oldest one
 Kill strDir & "BackupData\" & strLowBkp
 End If
 ' Now, setup new backup name based on today's date
 strBkp = strDir & "BackupData\CSDBkp" & _
 Format(Date, "yymmdd") & ".accdb"
 ' Make sure the target fi le doesn't exist
 If Len(Dir(strBkp)) > 0 Then Kill strBkp
 ' Create the backup fi le using Compact
 DBEngine.CompactDatabase strData, strBkp
 ' Now update the backup date
 db.Execute "UPDATE ztblVersion SET LastBackup = #" & _
 Date & "#", dbFailOnError
 MsgBox "Backup created successfully!", vbInformation, gstrAppTitle
 End If
 ' See if error log has 20 or more entries
 If db.TableDefs("ErrorLog").RecordCount > 20 Then
 ' Don't ask if they've said not to...
 If Not (DLookup("DontSendError", "tblUsers", _
 "UserName = '" & gstrThisUser & "'")) Then
 DoCmd.OpenForm "fdlgErrorSend", WindowMode:=acDialog
 Else
 db.Execute "DELETE * FROM ErrorLog", dbFailOnError
 End If
 End If
 End If
 Set db = Nothing
 End If
 ' Restore original keyboard behavior
 ' Disabled in this sample
' Application.SetOption "Behavior Entering Field", gintEnterField
' Application.SetOption "Move After Enter", gintMoveEnter
' Application.SetOption "Arrow Key Behavior", gintArrowKey
 ' We're outta here!
frmMain_Exit:
 On Error GoTo 0
 DoCmd.Close acForm, Me.Name

 Controlling How Your Application Starts and Runs 1315

Ch
ap

te
r 2

4

 ' In a production application, would quit here
 DoCmd.SelectObject acForm, "frmMain", True
 Exit Sub
frmMain_Error:
 ErrorLog "frmMain", Err, Error
 Resume frmMain_Exit
End Sub

After confi rming that the user really wants to exit, the code looks at every open form.
All forms have a public cmdCancel_Click event procedure that this code can call to ask
the form to clear any pending edits and close itself. The DoEvents statement gives that
code a chance to complete before going on to the next form. Notice that the code skips
the form named frmMain (the form where this code is running).

If there were no errors closing all the forms, then the code opens a table that contains a
count of how many times this application has run and the date of the last backup. Every
tenth time the application has run or every two weeks since the last backup, the code
offers to create a backup of the application data. If the user confi rms creating a backup,
the code creates a Backup subfolder if it does not exist, deletes the oldest backup if
there are three or more in the folder, and then backs up the data using the Compact-
Database method of the DBEngine.

Next, the code checks to see whether more than 20 errors have been logged by code
running in the application. If so, it opens a dialog box that gives the user the option to
e-mail the error log, print out the error log, skip printing the error log this time, or turn
off the option to print the log. Because the error log option form opens in Dialog mode,
this code waits until that form closes. Finally, the code closes this form and selects an
object in the Navigation Pane to reveal that pane. If this weren’t a demonstration appli-
cation, the code would use the Quit method of the Application object to close and exit
Access.

This might seem like a lot of extra work, but taking care of details like this really gives
your application a professional polish.

Creating an AutoKeys Macro
As noted earlier, the Conrad Systems Contacts sample application (Contacts.accdb) has
an AutoKeys macro defi ned to intercept pressing Ctrl+F4. You can normally press this
key combination to close any window that has the focus, but the application is designed
so that you must close the frmMain form using the Exit button, not Ctrl+F4. You can
create an AutoKeys macro to defi ne most keystrokes that you want to intercept and
handle in some other way. You can defi ne something as simple as a StopMacro action
to effectively disable the keystrokes, create a series of macro actions that respond to
the keystrokes, or use the RunCode action to call complex Visual Basic code. Figure
24-17 shows you the AutoKeys macro in the Conrad Systems Contacts database open in
Design view.

Chapter 24

1316 Chapter 24 The Finishing Touches
Figure 24-17 The design of this AutoKeys macro intercepts the Ctrl+F4 key combination.

The critical part of a macro defi ned in an AutoKeys macro group is the macro name.
When the name is a special combination of characters that match a key name, the
macro executes whenever you press those keys. Table 24-5 shows you how to construct
macro names in an AutoKeys macro group to respond to specifi c keys.

Table 24-5 AutoKeys Macro Key Codes

AutoKeys Macro Name Key Intercepted

^letter or ^number Ctrl+[the named letter or number key]

{Fn} The named function key (F1–F12)

^{Fn} Ctrl+[the named function key]

+{Fn} Shift+[the named function key]

{Insert} Insert

^{Insert} Ctrl+Insert

+{Insert} Shift+Insert

{Delete} or {Del} Delete

^{Delete} or ^{Del} Ctrl+Delete

+{Delete} or +{Del} Shift+Delete

Keep in mind that you can also intercept any keystroke on a form in the KeyDown and
KeyPress events when you want to trap a particular key on only one form or control.

Performing a Final Visual Basic Compile
The very last task you should perform before placing your application in production is
to compile and save all your Visual Basic procedures. When you do this, Access stores
a compiled version of the code in your database. Access uses the compiled code when it
needs to execute a procedure you have written. If you don’t do this, Access has to load
and interpret your procedures the fi rst time you reference them—each and every time
you start your application. For example, if you have several procedures in a form mod-
ule, the form will open more slowly the fi rst time because Access has to also load and
compile the code.

 Performing a Final Visual Basic Compile 1317

Ch
ap

te
r 2

4

To compile and save all the Visual Basic procedures in your application, open any mod-
ule—either a module object or a module associated with a form or report. Choose Com-
pile project-name from the Debug menu, as shown in Figure 24-18. If your code compiles
successfully, be sure to save the result by choosing File, Save or by clicking the Save
button on the toolbar. (If you have errors in any of your code, the compiler halts on the
fi rst error it fi nds, displays the line of code, and displays an error message dialog box.)
After successfully compiling and saving your Visual Basic project, close your database
and compact it, as described in Chapter 5, “Modifying Your Table Design.”

Figure 24-18 Choose the Debug, Compile project-name command to compile all the Visual Basic
procedures in your database.

As you’ve seen in this book, you can quickly learn to build complex applications. You
can use the relational database management system in Access 2007 to store and man-
age your data locally or on a network, and you can access information in other popular
database formats or in any server-hosted or mainframe-hosted database that supports
the Open Database Connectivity (ODBC) standard. You can get started with macros to
become familiar with event-oriented programming and to prototype your application.
With a little practice, you’ll soon fi nd yourself writing Visual Basic event procedures
like a pro. In the fi nal chapter, you’ll learn how to set up your application so that you
can distribute it to others.

CHAPTER 25

Distributing Your Application

Although you can certainly use Microsoft Offi ce Access 2007 to create database
applications only for your personal use, most serious users of Offi ce Access 2007

eventually end up building applications to be used by others. If you have created a
stand-alone desktop database application and your users all have the same version of
Access installed on their computers, you can simply give them a copy of your database
fi le to run. However, most database applications become really useful when multiple
users share the data.

In Chapter 6, “Importing and Linking Data,” you learned about linking tables from
another database and using the Linked Table Manager. In Part 7, “Designing an Access
Project,” on the companion CD, you’ll learn about some of the advantages of using a
client/server architecture to allow multiple users running the same application to share
data. Both these topics help you understand how to design and secure a multi-user
application. However, they don’t provide you with the techniques you can employ in
your application design to ensure that your application installs and runs smoothly and
to ensure that your users can’t tamper with your code. In this chapter, you’ll learn

O How to split a desktop database to use shared data on a server and linked tables
on each client computer and how to create code that verifi es and corrects linked
table connection properties when your application starts

O The advantages of runtime mode and design considerations for using it

O How to create an execute-only version of your application so that users can’t tam-
per with your code

O Techniques for creating application shortcuts to simplify starting your application

O How to apply an encrypted database password to your database

O How to package your database and digitally sign it

O Tools you can use in Access 2007 Developer Extensions and Runtime to distrib-
ute your application to users who don’t have Access

Using Linked Tables in a Desktop Database 1320

Understanding Runtime Mode 1328

Creating an Execute-Only Database 1329

Creating an Application Shortcut 1331

Encrypting Your Database . 1334

Packaging and Signing Your Database 1336

Understanding the Access 2007 Developer
Extensions and Runtime . 1340
 1319

Chapter 25

1320 Chapter 25 Distributing Your Application
Using Linked Tables in a Desktop Database
Your fi rst foray into the world of shared applications will most likely involve copying
your completed database to a fi le server and instructing users to open the database
from the server. That’s basically not a good idea because Access doesn’t run on the
server—it runs on each user’s desktop. If you have several users sharing a database fi le,
the copy of Access running on each user computer has to load all your “code” defi ni-
tions—the queries, forms, reports, macros, and modules—over the network. If one user
applies a sort or fi lter to a form and then closes it, Access will try to save the changed
defi nition in the copy on the server, and it might run into locking or corruption prob-
lems if another user has the form open at the same time. Also, if your application needs
to keep information about how each user works with the application, it would be
more complicated to store this information in the database because all users share the
same fi le.

The solution is to create a data-only .accdb fi le on a server and use linked tables in a
desktop application that you install on multiple desktop computers and link to the data
server. When you separate the data tables into a shared fi le on a server, you’re actually
building a simple client/server application. The main advantage to splitting your data-
base over simply sharing a single desktop database is that your application needs to
retrieve only the data from the tables over the network. Because each user will have a
local copy of the queries, forms, reports, macros, and modules, Access running on each
user workstation will be able to load these parts of your application quickly from the
local hard drive. Using a local copy of the desktop application on each client computer
also makes it easy to create local tables that save settings for each user. For example,
the Conrad Systems Contacts application allows each user to set a preference to open
a search dialog box for companies, contacts, and invoices or to display all records
directly.

Taking Advantage of the Database Splitter Wizard
You could split out the tables in your application into a separate fi le and link them into
the database that contains all your queries, forms, reports, and modules “by hand”
by fi rst creating a new empty database (see Chapter 4, “Creating Your Database and
Tables”) and then importing all your tables into that database using the techniques
described in Chapter 6. You could then return to your original database and delete all
the tables. Finally, you could move the data database (the one containing the tables) to
a fi le server and then link these tables into your original code database (the one con-
taining all your queries, forms, reports, and modules), again using the techniques in
Chapter 6.

 Using Linked Tables in a Desktop Database 1321

Ch
ap

te
r 2

5

When you build a desktop database application, it’s all too easy to design forms and

reports that always display all records from your tables when the user opens them. It’s

also tempting to create combo boxes or list boxes that display all available values from a

lookup table. These issues have little to no impact when you’re the only user of the appli-

cation or you share your application with only a few other users. However, fetching all

rows by default can have serious performance implications when you have multiple users

who need to share a large amount of data over a network.

A successful client/server application fetches only the records required for the task at

hand. You can design an application so that it never (or almost never) opens a form to

edit data or a report to display data without fi rst asking the user to specify the records

needed for the task at hand. For example, the Conrad Systems Contacts application

opens a list of available companies, contacts, or invoices from which the user can choose

only the desired records. This application also offers a custom query by form search to

fi lter specifi c records based on the criteria the user enters.

You can also design the application so that it uses information about the current user to

fi lter records. For example, the Housing Reservations database always fi lters employee

and reservations data to display information only for the currently signed on employee.

When a department manager is signed on, the application shows data only for the cur-

rent manager’s department.

Even so, the two main sample applications aren’t perfect examples. Both applications use

a ZIP Code table that contains more than 50,000 records to help users enter valid address

data, and this huge table is the row source for several combo boxes. In the desktop

database version, each user has a local copy of the ZIP Code table, so the performance

impact is minimal. If you decide to split your database application into a client/server

architecture, you need to think about keeping any tables similar to this in the local data-

base on each user’s computer. You could certainly do this with a ZIP Code table because

the data is relatively static.

The bottom line is you should take a look at the way your desktop application fetches

data for the user. If it always fetches all records all the time, it’s probably not a good can-

didate for upsizing to a client/server application.

Fortunately, there’s an easier way to do this in one step using the Database Splitter
wizard. Open your original database, and on the Database Tools tab, in the Move Data
group, click Access Database. (You can try this with one of your own databases or a
backup copy of the Housing.accdb sample database.) The wizard displays the page
shown in Figure 25-1.

SIDE OUT Is Your Desktop Application Designed for Client/Server?

When you build a desktop database application, it’s all too easy to design forms and

reports that always display all records from your tables when the user opens them. It’s

also tempting to create combo boxes or list boxes that display all available values from a

lookup table. These issues have little to no impact when you’re the only user of the appli-

cation or you share your application with only a few other users. However, fetching all

rows by default can have serious performance implications when you have multiple users

who need to share a large amount of data over a network.

A successful client/server application fetches only the records required for the task at

hand. You can design an application so that it never (or almost never) opens a form to

edit data or a report to display data without fi rst asking the user to specify the records

needed for the task at hand. For example, the Conrad Systems Contacts application

opens a list of available companies, contacts, or invoices from which the user can choose

only the desired records. This application also offers a custom query by form search to

fi lter specifi c records based on the criteria the user enters.

You can also design the application so that it uses information about the current user to

fi lter records. For example, the Housing Reservations database always fi lters employee

and reservations data to display information only for the currently signed on employee.

When a department manager is signed on, the application shows data only for the cur-

rent manager’s department.

Even so, the two main sample applications aren’t perfect examples. Both applications use

a ZIP Code table that contains more than 50,000 records to help users enter valid address

data, and this huge table is the row source for several combo boxes. In the desktop

database version, each user has a local copy of the ZIP Code table, so the performance

impact is minimal. If you decide to split your database application into a client/server

architecture, you need to think about keeping any tables similar to this in the local data-

base on each user’s computer. You could certainly do this with a ZIP Code table because

the data is relatively static.

The bottom line is you should take a look at the way your desktop application fetches

data for the user. If it always fetches all records all the time, it’s probably not a good can-

didate for upsizing to a client/server application.

Chapter 25

1322 Chapter 25 Distributing Your Application
Figure 25-1 The Database Splitter wizard helps you move the tables into a separate database.

When you click the Split Database button, the wizard opens a second page where you
can defi ne the name and location of the back-end, or data-only, database. Be sure to
choose a location for this database on a network share that is available to all potential
users of your application. Click the Split button on that page, and the wizard exports all
your tables to the new data-only database, deletes the tables in your original database,
and creates links to the moved tables in your original database. You can now give each
user a copy of the code database—containing your queries, forms, reports, modules, and
linked table objects pointing to the new data-only database—to enable them to run the
application using a shared set of tables.

One disadvantage to using the Database Splitter wizard is that it splits out all tables
that it fi nds in your original desktop database. If you take a look at the desktop data-
base version of the Conrad Systems Contacts application (Contacts.accdb), you can
see that the application also uses some local tables (tables that remain in the code
database). For example, the ErrorLog table contains records about errors encountered
when the user runs the application. If the error was caused by a failure in the link to
the server, the code that writes the error record wouldn’t be able to write to this table if
the table was in the server database. The database also contains local copies of lookup
tables that aren’t likely to change frequently, such as the tlkpStates table that contains
U.S. state codes and names and the ztblYears table that provides a list of years for the
frmCalendar form. Access can fetch data from local tables faster than it can from ones
linked to a database on a server, so providing local copies of these tables improves
 performance.

Although splitting a database application makes it easier for multiple users to share
your application, this technique works well only for applications containing a moderate
amount of data (less than 200 MB is a good guideline) with no more than 20 simultane-
ous users. Remember that Access is fundamentally a desktop database system. All the
work—including solving complex queries—occurs on the client computer, even when
you have placed all the data on a network share. Each copy of Access on each client
computer uses the fi le sharing and locking mechanisms of the server operating system.

 Using Linked Tables in a Desktop Database 1323

Ch
ap

te
r 2

5

Access sends many low-level fi le read, write, and lock commands (perhaps thousands
to solve a single query) from each client computer to the fi le server rather than sending
a single SQL request that the server solves. When too many users share the same appli-
cation accessing large volumes of data, many simple tasks can start, taking minutes
instead of seconds to complete.

Creating Startup Code to Verify and Correct
Linked Table Connections
If you were careful when you created your linked tables, you used a Universal Naming
Convention (UNC) path name instead of a physical or logical drive letter. Unless the
network share name is different on various client computers, this should work well to
establish the links to the data fi le when the user opens your application. However, even
“the best-laid schemes o’ mice an’ men gang aft aglee.”1 (Or, if you prefer, Murphy’s law
is always in force.)

In Chapter 6, you learned how to use the Linked Table Manager to repair any broken
connections. However, you can’t expect your users to run this wizard if the linked table
connections are broken. You should include code that runs when your startup form
opens that verifi es and corrects the links if necessary. Also, you might over time make
changes to the structure of the data tables and issue an updated version of the client
desktop database that works with the newer version of the tables. Your startup code can
open and check a version table in the shared data database and warn the user if the ver-
sions don’t match.

You can fi nd sample code that accomplishes all these tasks in the desktop database
version of the Conrad Systems Contacts database (Contacts.accdb). Open the database,
and then open the modStartup module. Select the ReConnect function, where you’ll
fi nd the following code:

Public Function ReConnect()
Dim db As DAO.Database, tdf As DAO.TableDef
Dim rst As DAO.Recordset, rstV As DAO.Recordset
Dim strFile As String, varRet As Variant, frm As Form
Dim strPath As String, intI As Integer
' This is a slightly different version of reconnect code
' Called by frmSplash - the normal startup form for this application
 On Error Resume Next
 ' Point to the current database
 Set db = CurrentDb
 ' Turn on the hourglass - this may take a few secs.
 DoCmd.Hourglass True
 ' First, check linked table version
 Set rstV = db.OpenRecordset("ztblVersion")
 ' Got a failure - so try to reattach the tables
 If Err <> 0 Then GoTo Reattach
 ' Make sure we’re on the fi rst row
 rstV.MoveFirst

1 Burns, Robert. “To a Mouse, On Turning Her Up in Her Nest With the Plough.” 1785.

Chapter 25

1324 Chapter 25 Distributing Your Application
 ' Call the version checker
 If Not CheckVersion(rstV!Version) Then
 ' Tell caller that "reconnect" failed
 ReConnect = False
 ' Close the version recordset
 rstV.Close
 ' Clear the objects
 Set rstV = Nothing
 Set db = Nothing
 ' Done
 DoCmd.Hourglass False
 Exit Function
 End If
 ' Versions match - now verify all the other tables
 ' NOTE: We’re leaving rstV open at this point for better effi ciency
 ' in a shared database environment.
 ' JET will share the already established thread.
 ' Turn on the progress meter on the status bar
 varRet = SysCmd(acSysCmdInitMeter, "Verifying data tables...", _
 db.TableDefs.Count)
 ' Loop through all TableDefs
 For Each tdf In db.TableDefs
 ' Looking for attached tables
 If (tdf.Attributes And dbAttachedTable) Then
 ' Try to open the table
 Set rst = tdf.OpenRecordset()
 ' If got an error - then try to relink
 If Err <> 0 Then GoTo Reattach
 ' This one is OK - close it
 rst.Close
 ' And clear the object
 Set rst = Nothing
 End If
 ' Update the progress counter
 intI = intI + 1
 varRet = SysCmd(acSysCmdUpdateMeter, intI)
 Next tdf
 ' Got through them all - clear the progress meter
 varRet = SysCmd(acSysCmdClearStatus)
 ' Turn off the hourglass
 DoCmd.Hourglass False
 ' Set a good return
 ReConnect = True
 ' Edit the Version table
 rstV.Edit
 ' Update the open count - we check this on exit to recommend a backup
 rstV!OpenCount = rstV!OpenCount + 1
 ' Update the row
 rstV.Update
 ' Close and clear the objects
 rstV.Close
 Set rstV = Nothing

 Using Linked Tables in a Desktop Database 1325

Ch
ap

te
r 2

5

 Set db = Nothing
 ' DONE!
 Exit Function

Reattach:
 ' Clear the current error
 Err.Clear
 ' Set a new error trap
 On Error GoTo BadReconnect
 ' Turn off the hourglass for now
 DoCmd.Hourglass False
 ' ... and clear the status bar
 varRet = SysCmd(acSysCmdClearStatus)
 ' Tell the user about the problem - about to show an open fi le dialog
 MsgBox "There’s a temporary problem connecting to the CSD data." & _
 " Please locate the CSD data fi le in the following dialog.", _
 vbInformation, "CSD Contacts Manager"
 ' Establish a new ComDlg object
 With New ComDlg
 ' Set the title of the dialog
 .DialogTitle = "Locate CSD Contacts Data File"
 ' Set the default fi le name
 .FileName = "ContactsData.accdb"
 ' ... and start directory
 .Directory = CurrentProject.Path
 ' ... and fi le extension
 .Extension = "accdb"
 ' ... but show all accdb fi les just in case
 .Filter = "CSD File (*.accdb)|*.accdb"
 ' Default directory is where this fi le is located
 .Directory = CurrentProject.Path
 ' Tell the common dialog that the fi le and path must exist
 .ExistFlags = FileMustExist + PathMustExist
 If .ShowOpen Then
 strFile = .FileName
 Else
 Err.Raise 3999
 End If
 End With
 ' Open the "info" form telling what we’re doing
 DoCmd.OpenForm "frmReconnect"
 ' ... and be sure it has the focus
 Forms!frmReconnect.SetFocus
 ' Attempt to re-attach the Version table fi rst and check it
 Set tdf = db.TableDefs("ztblVersion")
 tdf.Connect = ";DATABASE=" & strFile
 tdf.RefreshLink
 ' OK, now check linked table version
 Set rst = db.OpenRecordset("ztblVersion")
 rst.MoveFirst
 ' Call the version checker
 If Not CheckVersion(rst!Version) Then

Chapter 25

1326 Chapter 25 Distributing Your Application
 ' Tell the caller that we failed
 ReConnect = False
 ' Close the version recordset
 rst.Close
 ' ... and clear the object
 Set rst = Nothing
 ' Bail
 Exit Function
 End If
 ' Passed version check - edit the version record
 rst.Edit
 ' Update the open count - we check this on exit to recommend a backup
 rst!OpenCount = rst!OpenCount + 1
 ' Write it back
 rst.Update
 ' Close the recordset
 rst.Close
 ' ... and clear the object
 Set rst = Nothing
 ' Now, reattach the other tables
 ' Strip out just the path name
 strPath = Left(strFile, InStrRev(strFile, "\") - 1)
 ' Call the generic re-attach function
 If AttachAgain(strPath) = 0 Then
 ' Oops - failed. Raise an error
 Err.Raise 3999
 End If
 ' Close the information form
 DoCmd.Close acForm, "frmReconnect"
 ' Clear the db object
 Set db = Nothing
 ' Return a positive result
 ReConnect = True
 ' ... and exit
Connect_Exit:
 Exit Function
BadReconnect:
 ' Oops
 MsgBox "Reconnect to data failed.", vbCritical, _
 "CSD Contacts Manager"
 ' Indicate failure
 ReConnect = False
 ' Close the info form if it is open
 If IsFormLoaded("frmReconnect") Then DoCmd.Close acForm, "frmReconnect"
 ' Clear the progress meter
 varRet = SysCmd(acSysCmdClearStatus)
 ' ... and bail
 Resume Connect_Exit
End Function

The code begins by attempting to open the linked ztblVersion table. If the open gener-
ates an error, the code immediately jumps to the Reattach label about halfway down
the listing. If the version-checking table opens successfully, the code next calls the

 Using Linked Tables in a Desktop Database 1327

Ch
ap

te
r 2

5

 CheckVersion function (not shown here) that compares the version value in the table
with a public constant saved in the modGlobals module. If the versions don’t match,
that function displays an appropriate error message and returns a False value to this
procedure. If the version check fails, this procedure returns a False value to the original
calling procedure (in the frmSplash form’s module) and exits.

If the versions do match, the code next loops through all the table defi nitions in the
database and attempts to open a recordset on each one to verify the link. Note that the
code leaves the recordset on the version-checking table open. If it didn’t do this, each
subsequent open and close would need to establish a new network connection to the
fi le server, and the checking of all tables would take minutes instead of seconds. Note
also that the code uses the SysCmd system function to display a progress meter on the
Access status bar.

If all linked tables open successfully, the procedure returns True to the calling proce-
dure and exits. If opening any of the tables fails, the code immediately jumps to the
Reattach label to attempt to fi x all the links.

The code beginning at the Reattach label clears all errors, sets an error trap, and then
displays a message informing the user that there’s a problem. After the user clicks OK
in the dialog box, the code creates a new instance of the ComDlg class module, sets
its properties to establish an initial directory and ask for the correct fi le type, and uses
the ShowOpen method of the class to display a Windows Open File dialog box. The
class module returns a True value if the user successfully locates the fi le, and the code
retrieves the class module’s FileName property to fi nd out the path and name of the fi le
chosen by the user. If the ShowOpen failed, the code raises an error to be logged by the
error-handling code at the end of the procedure.

Next, the code opens a form that is a dialog box informing the user that a reconnect is
in progress. The code attempts to fi x the link to the version-checking table using the
path and fi le the user selected. Notice that the code sets the Connect property of the
TableDef object and then uses the RefreshLink method to reestablish the connection. If
the table isn’t in the fi le the user selected, the RefreshLink method returns an error, and
the code after the BadReconnect label near the end of the procedure executes because
of the error trap.

After checking that the version of the code matches the version of the database, the
code calls the AttachAgain function (not shown here) and passes it the path and fi le
name. You can also fi nd this function in the modStartup module. The function loops
through all the TableDef objects, resets the Connect property for linked tables, and uses
RefreshLink to fi x the connection. Because this sample database also has some linked
Microsoft Excel worksheets, you’ll fi nd that code in the AttachAgain function checks
the type of linked table and sets up the Connect property appropriately.

If you’d like to see how this code works, you can open the Contacts.accdb fi le and then
use Windows Explorer to temporarily move the ContactsData.accdb, Fictitious Com-
panies.xlsx, and Fictitious Names.xlsx fi les to another folder. Open the frmSplash form,
and you should see the code prompt you to identify where you moved the Contacts-
Data.accdb fi le. The code in the AttachAgain procedure assumes that the two Excel fi les
are in the same folder as the ContactsData.accdb fi le.

Chapter 25

1328 Chapter 25 Distributing Your Application
You can study the other functions called by the Reconnect function in the modStartup
module on your own. We provided comments for every line of code to help you under-
stand how the code works.

Understanding Runtime Mode
When Access starts in runtime mode, it does not allow the user to access the Navigation
Pane or to use any of the built-in Ribbons. So, the user can only run your application,
not edit any of the objects. As you might expect, many keystrokes are also unavailable,
such as pressing F11 to show the Navigation Pane or pressing Ctrl+Break to halt Visual
Basic code execution. If you also download the Access 2007 Developer Extensions
and Runtime tools, you can distribute your database with the modules to execute in
runtime mode to users who do not have Access installed on their systems. For more
information about the new Access 2007 Developer Extensions and Runtime tools, see
http://msdn2.microsoft.com/en-us/offi ce/bb229700.aspx.

However, to execute successfully in runtime mode, your application must have the
 following:

O All features of the application must be implemented with forms and reports. The
user will not have access to the Navigation Pane to execute queries or to open
tables.

O The application must have a startup form or an AutoExec macro that opens a
startup form.

O All forms and reports must have custom Ribbons because runtime mode does not
provide the built-in Ribbon.

O You must implement error trapping in all your macros and Visual Basic proce-
dures. Any untrapped errors cause the application to exit.

O If you automate your application with Visual Basic or use macro actions that are
not trusted, you must ensure either that the user places your database in a trusted
location or that you digitally sign the database and instruct the user how to trust
the signature. For more about digitally signing a database, see “Packaging and
Signing Your Database” on page 1336.

O The application should execute the Quit method of the Application object to ter-
minate. If you simply close the fi nal form, the user will be left staring at an empty
Access workspace.

The primary sample databases, Conrad Systems Contacts (Contacts.accdb) and Hous-
ing Reservations (Housing.accdb), meet the preceding requirements except the startup
form is set to frmCopyright to display important information each time you open one
of the databases, and the Exit button on the main switchboard form merely closes the
form and attempts to return to the Navigation Pane.

 Creating an Execute-Only Database 1329

Ch
ap

te
r 2

5

If you would like to see what runtime mode looks like, you can test it using existing
databases. Open the Housing.accdb desktop database, click the Microsoft Offi ce
Button, click Access Options, and then click the Current Database category. In the
Application Options section, select frmSplash in the Display Form list, and then click
OK. Close the Housing.accdb database. The sample fi les include a shortcut, Housing
Runtime, that opens this database in runtime mode. This shortcut should work as long
as you installed the 2007 Microsoft Offi ce system in the default folder (C:\Program
Files\Microsoft Offi ce\Offi ce 12) and the sample fi les in the default folder (C:\Microsoft
Press\Access 2007 Inside Out). If necessary, you can change the shortcut by right-
 clicking the shortcut and selecting Properties on the shortcut menu. The target setting
in this shortcut is as follows:

"C:\Program Files\Microsoft Offi ce\Offi ce12\MSACCESS.EXE"
 "C:\Microsoft Press\Access 2007 Inside Out\Housing.accdb" /runtime

After you change the Display Form setting in the Access Options dialog box and cor-
rect any settings in the shortcut target, you can double-click the shortcut to start the
application in runtime mode. Click OK in the opening message box, and then sign on
as any employee of your choosing to see the main switchboard form. Try pressing F11
to see whether anything happens—the Navigation Pane should not appear. You can
move around in the application using the command buttons on the various switch-
board forms and the buttons on the custom Ribbons. When you click Exit on the main
switchboard, code in the form closes all open forms and then closes the switchboard.
You’ll be left looking at a blank Access workspace and a very limited set of options when
you click the Microsoft Offi ce Button. You can click Close Database from here to close
this limited copy of Access or click the Exit button. Be sure to open the Housing.accdb
fi le again, click Exit on the sign-on form, and then change Display Form in the Access
Options dialog box back to (none).

You can also test your application in runtime mode by changing the fi le extension on

your database. In Windows Explorer, right-click the Housing.accdb sample database

fi le, click Rename, and change the fi le name to Housing.accdr. Windows prompts you

that changing the fi le extension might make the fi le unusable. Click Yes in this message

box and then open the Housing.accdr database. You’ll see the limited Ribbon, Quick

Access Toolbar, and Microsoft Offi ce Button options as you did when using the runtime

 shortcut.

Creating an Execute-Only Database
Even if you have secured your database, you might still want to be sure that no one
can examine or change the Visual Basic procedures you created. After you have fully

SIDE OUT Change the File Extension to Test the Runtime Mode

You can also test your application in runtime mode by changing the fi le extension on

your database. In Windows Explorer, right-click the Housing.accdb sample database

fi le, click Rename, and change the fi le name to Housing.accdr. Windows prompts you

that changing the fi le extension might make the fi le unusable. Click Yes in this message

box and then open the Housing.accdr database. You’ll see the limited Ribbon, Quick

Access Toolbar, and Microsoft Offi ce Button options as you did when using the runtime

shortcut.

Chapter 25

1330 Chapter 25 Distributing Your Application
 compiled your Visual Basic project, Access no longer needs the original text of your
Visual Basic statements. You can create a special execute-only copy of your database by
using one of the utilities supplied with Access. An additional advantage of an execute-
only database is that it might be signifi cantly smaller than a copy that contains all the
code—particularly if you have written many Visual Basic procedures.

To create an execute-only copy of any completed database application, open the data-
base, and close any open objects. Click the Make ACCDE button in the Database Tools
group on the Database Tools tab. (Note that if you’re using an Access .adp project fi le,
this button says Make ADE.) The Save As dialog box asks you for a location and name
for your new database or project. It then makes sure the current database is fully com-
piled and saved, copies the database to a new fi le with the appropriate .accde or .ade
extension, removes the Visual Basic source code, and compacts the new fi le.

If you open an .accde fi le (you can fi nd a fi le called Contacts.accde on the companion
CD), you’ll fi nd that you can’t open any Visual Basic module—neither the module of any
form or report module nor any module object. You also won’t be able to open a form or
a report in Design view or Layout view. (This is an additional benefi t of an .accde fi le.)
Figure 25-2 shows the Modules list in the Contacts.accde database fi le. Notice that the
Design View button is disabled on the shortcut menu, indicating that you cannot view
the source code of an existing module and that the only way to run code is through the
database application’s interface. The Module and Class Module buttons in the Other
group on the Create tab are also disabled so that you cannot create new modules. You’ll
fi nd that the Design View option is also disabled for all forms and reports, and all the
commands in the Forms and Reports groups on the Create tab are unavailable.

Figure 25-2 You can’t edit any modules in the Contacts.accde database fi le.

 Creating an Application Shortcut 1331

Ch
ap

te
r 2

5

Creating an Application Shortcut
When you’re all done, you might need to create a way for users to easily start your appli-
cation. If your users all have a copy of Access, you could give them your database appli-
cation fi les and simply instruct them to open the appropriate fi le. But what if the user
doesn’t have Access, so you have to set them up to execute your application with the
runtime version of Access? What if you want to also defi ne certain utility functions that
the user might need to execute from time to time? The answer is to create a shortcut.

You use shortcuts all the time in Windows to start programs on your computer. When
you install an application on your computer, the setup program usually creates a short-
cut that it adds to your Start menu. Some setup programs also add a shortcut on your
desktop. The icon for a shortcut on your desktop has a small white box in the lower-left
corner with an arrow in it. You can right-click a shortcut and choose Properties from
the shortcut menu to see the defi nition of the shortcut.

To create a shortcut on your Windows desktop for your Access application, right-click
the desktop, click New, and then click Shortcut. You can also create a shortcut in a
folder by opening Windows Explorer, navigating to the folder you want, pressing the
Alt key to view the menu bar, clicking New on the File menu, and then clicking Short-
cut. In either case, Windows opens the Create Shortcut wizard to help you fi nd the
program you want the shortcut to open. Click the Browse button, and fi nd C:\Program
Files\Microsoft Offi ce\Offi ce12\MSACCESS.EXE. Click OK to select the fi le, and then
click the Next button. Give your shortcut a name, such as the name of the database you
plan to open with the shortcut, and then click Finish.

Right-click your new shortcut, and click Properties. You’ll see a dialog box similar to the
one shown in Figure 25-3.

At the top of the Shortcut tab is the icon the shortcut displays and the name of the
shortcut. You can click the General tab and enter a new name to rename your shortcut.
Target Type tells you that this shortcut starts an application. Target Location displays
the original location of the program that this shortcut starts. The Target box allows you
to specify the program or fi le that you want to run. Note that at this point your new
shortcut starts only the Access program—it doesn’t specify a fi le to open or any param-
eters. You can specify the database fi le name and enter any parameters used by the pro-
gram in the Target box.

Immediately following the name of the Access program in the Target box, enter a space
followed by the database you want to open (with its full path). If the path or fi le name
contains any blanks or special characters, you must enclose the fi le path in double
quotes. Follow the name of the database with the options you need to perform the task
you want. For example, to open the Housing.accdb sample database from the default
installation, the target setting in this shortcut is as follows:

"C:\Program Files\Microsoft Offi ce\Offi ce12\MSACCESS.EXE"
 "C:\Microsoft Press\Access 2007 Inside Out\Housing.accdb"

Chapter 25

1332 Chapter 25 Distributing Your Application
Figure 25-3 You can modify the Target setting for a Windows shortcut in the shortcut’s Properties
dialog box.

Note
You can also specify only the name of a database fi le in the Target box in a shortcut,

and Windows opens the program that can process this fi le (in this case, Access) when

you double-click the shortcut. However, Access won’t recognize any parameters that

you include after the fi le name. You must specifi cally ask to open the Access program

(MSACCESS.EXE) and add the fi le name and parameters.

Table 25-1 summarizes the shortcut command-line options you can use. When you
include multiple command-line options, separate each with a space.

Note
You can also specify only the name of a database fi le in the Target box in a shortcut,

and Windows opens the program that can process this fi le (in this case, Access) when

you double-click the shortcut. However, Access won’t recognize any parameters that

you include after the fi le name. You must specifi cally ask to open the Access program

(MSACCESS.EXE) and add the fi le name and parameters.

 Creating an Application Shortcut 1333

Ch
ap

te
r 2

5

Table 25-1 Access Shortcut Command-Line Options

Option Description

<database> Opens the specifi ed database. If the path or fi le name
contains blanks, you must enclose the string in double
quotes. Must be the fi rst option after the folder and fi le
location for MSACCESS.EXE.

/cmd <command string> Specifi es a program parameter that can be retrieved by a
Visual Basic procedure using the built-in Command function.
Must be the last option on the command line.

/compact [<target>] Compacts and repairs the specifi ed database but does not
open the database. If you omit the target fi le name, Access
compacts the database into the original fi le name and
location.

/convert <target> Converts the specifi ed version 11 or earlier database to
Access 2007 fi le format and stores it in the target fi le.

/excl Opens the specifi ed database with exclusive access. Only one
user at a time can use a database that is opened exclusively.

/profi le <userprofi le> Specifi es the name of a user profi le in the Windows registry.
You can use a profi le to override database engine settings
and specify a custom application title, icon, or splash screen.

/pwd <password> Specifi es the password for the user named in the /user
parameter. If the password contains the / or ; character, enter
the character twice. For example, if the password is #ab/
cd;de, enter #ab//cd;;de. This option applies to Access 2003
and earlier (.mdb) format databases that have user-level
security implemented.

/repair Repairs the specifi ed database but does not open the
database.

/ro Opens the specifi ed database in read-only mode.

/runtime Specifi es that Access will execute with runtime version
options.

/user <userid> Specifi es the logon user ID. This option applies to Access
2003 and earlier (.mdb) format databases that have user-
level security implemented.

/wrkgrp <workgroupfi le> Uses the specifi ed workgroup fi le. This option applies to
Access 2003 and earlier (.mdb) format databases that have
user-level security implemented.

/x macroname Runs the specifi ed macro after opening the specifi ed
database.

Chapter 25

1334 Chapter 25 Distributing Your Application
Using a command-line option, you can also create a shortcut to perform the mainte-
nance task of compacting your database. For example, to compact the Contacts.accdb
database and save the compacted version to a fi le named ContactsCompact.accdb in the
same folder, enter the following in the Target box:

"C:\Program Files\Microsoft Offi ce\OFFICE12\MSACCESS.EXE"
 "C:\Microsoft Press\Access 2007 Inside Out\Contacts.accdb" /compact
 "C:\Microsoft Press\Access 2007 Inside Out\ContactsCompact.accdb”

This previous text assumes you’ve installed the sample fi les in the default folders. In
the Start In box, specify the starting folder for the application. In the Shortcut Key box,
you can enter a single letter or number that the user can press with Ctrl+Alt+ to run
the shortcut. The shortcut key must be unique for all shortcuts on your system. In the
Run list, you can choose to start the application in a normal-size window (the default),
minimized as an icon on your taskbar, or maximized to fi ll your screen. In the Com-
ment box, you can enter text that appears when the user rests the mouse pointer on the
shortcut.

Click the Open File Location button to verify that the target you entered is valid. Click
the Change Icon button to select a different icon stored within the target program
(MSACCESS.EXE has 68 available icons) or to locate an icon fi le on your hard disk.
Click the Advanced button if you need to set up this shortcut to run under a specifi c
Windows user ID.

On the Compatibility tab of the Properties dialog box, you can fi nd an option to run
the program in compatibility mode as though it’s running on an older operating system
such as Windows 2000 or Windows XP. You can also force your display to 256 colors,
use 640×480 screen resolution, or disable Windows themes when this program runs.
On the Security tab, you can allow or deny permissions to use this shortcut for specifi c
Windows users or groups.

After you have completed the settings you want, click OK to save your changes to the
shortcut. You can now double-click the shortcut to run the program with the options
you specifi ed.

Encrypting Your Database
Access 2007 includes a new feature to encrypt your database with a password. You can
use this feature to prompt users for a password before opening the database. When you
encrypt the database, Access makes the data unreadable to tools that can read binary
data stored in the physical fi le.

To encrypt your database with a password, you must fi rst open your database in exclu-
sive mode. Click the Microsoft Offi ce Button, and then click Open. Select your database,
and then in the Open dialog box, click the arrow on the Open button, and then click
Open Exclusive, as shown in Figure 25-4.

 Encrypting Your Database 1335

Ch
ap

te
r 2

5

Figure 25-4 You must open your database in exclusive mode to encrypt the database with
a password.

After your database opens, click the Encrypt With Password button in the Database
Tools group on the Database Tools tab. Access opens the Set Database Password dialog
box, as shown in Figure 25-5. Enter your password in the Password text box, and then
reenter it in the Verify text box. Click OK, and Access checks to see whether the two
passwords match. If the passwords match, the next time you open the database, Access
prompts you for the database password.

If you want to remove the password later, you’ll need to open the database in exclusive
mode and then click the Decrypt Database button in the Database Tools group on the
Database Tools tab. In the Unset Database Password dialog box, type your password in
the Password text box, and then click OK. The next time you open the database, Access
does not prompt you for a password.

Figure 25-5 Enter your password in the Set Database Password dialog box.

Chapter 25

1336 Chapter 25 Distributing Your Application

Encrypting your database does provide a thin layer of security, but it’s not foolproof. If

you distribute this database to many users, each user has to know the password in order

to open and use the database. Because all users need to share one common password,

we don’t recommend encryption for multiple-user scenarios. If you’re creating this data-

base for your own personal use, encrypting might be an option to keep other people out

of your database. Just remember, however, a determined hacker could still gain access to

your database given enough time and determination.

Packaging and Signing Your Database
If you want to send a database to other users, you can certainly put it in a zip fi le and
e-mail it. However, unless the recipient really trusts that the e-mail came from you (it’s
easy to spoof a sending e-mail address), the recipient might not be willing to open your
fi le. Access 2007 provides a new tool that lets you compress your database fi le and
include it inside a fi le that is digitally signed.

So, what is “digitally signed?” If you’ve surfed the Web at all, you’ve probably encoun-
tered several digitally signed fi les. For example, when a Web site wants to download
and install an ActiveX control and you have security enabled in your browser, your
browser prompts you to decide whether to download and run the fi le. If the fi le is digi-
tally signed, you’ll see verifi ed information about the publisher that has been authen-
ticated over the Web by a commercial certifi cate authority such as VeriSign, GeoTrust,
or GoDaddy. In many cases, you can select an option to accept all signed fi les from a
specifi c trusted source (such as Microsoft) so that you won’t be prompted again if you
encounter another signed fi le from the same source.

The new tool in Access 2007 lets you package your database into a compressed Deploy-
ment fi le (.accdc) and then sign it with a digital certifi cate ready to send to your users.
When a user attempts to open your fi le, Access 2007 uses the digital certifi cate to verify
the source of the fi le and that all objects in the database have not been changed since
the database was signed. If the user trusts the digital certifi cate, Access 2007 opens and
extracts your database fi le ready for the user to run.

But there’s one catch. If you need to distribute this database to other users, you must
purchase a digital certifi cate from a commercial certifi cate authority, and they’re not
inexpensive. When you own a commercial certifi cate, you can use it to “sign” any fi le
that you publish (perhaps on your Web site) or send to others. The program that the
recipient uses to open the fi le can send the certifi cate information over the Web to the
validating authority. The validating authority verifi es the certifi cate and sends back
information about the publisher of the fi le. The recipient can decide to trust the infor-
mation to avoid being prompted in the future, decide to open the fi le anyway, or cancel
the open.

SIDE OUT How Useful Is Encryption?

Encrypting your database does provide a thin layer of security, but it’s not foolproof. If

you distribute this database to many users, each user has to know the password in order

to open and use the database. Because all users need to share one common password,

we don’t recommend encryption for multiple-user scenarios. If you’re creating this data-

base for your own personal use, encrypting might be an option to keep other people out

of your database. Just remember, however, a determined hacker could still gain access to

your database given enough time and determination.

 Packaging and Signing Your Database 1337

Ch
ap

te
r 2

5

If you want to test how packaging and signing works, you can create and use a self-

 signing certifi cate. The 2007 Microsoft Offi ce system includes a tool to create self-signing

digital certifi cates—SelfCert—that you can use for packaging databases. These certifi -

cates, however, are valid only for the computer on which you create them. To create a

digital certifi cate for yourself, click the Windows Start button, click All Programs, click

your Microsoft Offi ce folder, click Microsoft Offi ce Tools, and then click Digital Certifi -

cate For VBA Projects. In the Create Digital Certifi cate dialog box, enter the name of the

certifi cate you want to create, and then click OK. Because a self-signing digital certifi cate

is valid only on the computer on which you create it, if you package and sign a data-

base with a self-signing certifi cate and then send it to someone else, the certifi cate is no

longer valid.

To package and digitally sign your database, open the database, click the Microsoft
Offi ce Button, click Publish, and then click Package And Sign. Access opens the Select
Certifi cate dialog box, as shown in Figure 25-6. Click the View Certifi cate button to
review all the details of the selected certifi cate. Select the certifi cate you want to use
from the list, and then click OK. (In this example, we used a self-signing certifi cate for
demonstration purposes.)

Figure 25-6 Select the digital certifi cate you want to use to sign the package.

Access opens the Create Microsoft Offi ce Access Signed Package dialog box, as shown
in Figure 25-7. Enter or browse to the location in which you want to save your signed
database package. In the File Name box, enter a name for this new packaged fi le, and
then click Create. Access compresses your database, “signs” the fi le using the digital
certifi cate you selected, and places the database and signature into an .accdc fi le in the
location you specifi ed.

SIDE OUT Using a Self-Signing Certifi cate

If you want to test how packaging and signing works, you can create and use a self-

signing certifi cate. The 2007 Microsoft Offi ce system includes a tool to create self-signing

digital certifi cates—SelfCert—that you can use for packaging databases. These certifi -

cates, however, are valid only for the computer on which you create them. To create a

digital certifi cate for yourself, click the Windows Start button, click All Programs, click

your Microsoft Offi ce folder, click Microsoft Offi ce Tools, and then click Digital Certifi -

cate For VBA Projects. In the Create Digital Certifi cate dialog box, enter the name of the

certifi cate you want to create, and then click OK. Because a self-signing digital certifi cate

is valid only on the computer on which you create it, if you package and sign a data-

base with a self-signing certifi cate and then send it to someone else, the certifi cate is no

longer valid.

Chapter 25

1338 Chapter 25 Distributing Your Application
Note
You can package and sign only those databases saved in the .accdb fi le format. In addi-

tion, you can include only one database in a package. If you want to digitally sign the

Visual Basic code in an .mdb or .adp fi le, open the Visual Basic Editor, and click Digital

Signature on the Tools menu. Your VBA project must be compiled. If you make any fur-

ther changes to your database after signing it, the digital signature becomes invalid.

Figure 25-7 Enter a fi le name and location for your packaged database.

When you (or your user) open a signed database, Access displays the Microsoft Offi ce
Access Security Notice dialog box, shown in Figure 25-8, if you have not previously
trusted this publisher. If you’re unsure of the source of this certifi cate, you can click the
Show Signature Details link to examine all the details about the publisher. If you click
Trust All From Publisher, Access always trusts any fi les from this source. You can see a
list of trusted publishers in the Trusted Publishers list in the Trust Center that you can
access from the Access Options dialog box.

Note
You can package and sign only those databases saved in the .accdb fi le format. In addi-

tion, you can include only one database in a package. If you want to digitally sign the

Visual Basic code in an .mdb or .adp fi le, open the Visual Basic Editor, and click Digital

Signature on the Tools menu. Your VBA project must be compiled. If you make any fur-

ther changes to your database after signing it, the digital signature becomes invalid.

 Packaging and Signing Your Database 1339

Ch
ap

te
r 2

5

Figure 25-8 Click Open if you trust the publisher and want to open the database.

Click Open if you trust the publisher, and Access opens the Extract Database To dialog
box, as shown in Figure 25-9. Enter a name in the File Name text box, select a location
to save the extracted database, and then click OK. Access extracts the database from
the .accdc fi le, saves it to the location you specifi ed, and then opens the extracted fi le.
Note that Access might still disable content in this database depending upon your set-
tings in the Trust Center.

Figure 25-9 Select a location to extract the packaged database.

Chapter 25

1340 Chapter 25 Distributing Your Application
Understanding the Access 2007 Developer Extensions
and Runtime

You can obtain additional tools and a license to freely distribute runtime versions of
your applications by downloading the Access 2007 Developer Extensions and Runtime
from this location: http://msdn2.microsoft.com/en-us/offi ce/bb229700.aspx. In previous
versions, you had to purchase the developer tools and runtime extensions separately.
The big news is that, for Access 2007, Microsoft is offering these tools at no additional
charge. This set of software includes the following:

O A royalty-free license to distribute the runtime modules for Access 2007. This
allows you to provide your application to users who do not have Access.

O A Package Solution wizard that helps you create installation fi les that include your
database application, the runtime modules necessary to run your application, and
any supporting fi les (such as ActiveX controls or icons). The wizard creates a stan-
dard Microsoft Windows Installer setup fi le (.msi).

O A source code database to help you discover how the wizards included with this
package work.

O A Save As template that you can use to create the database templates to appear on
the Getting Started screen. The template fi les have .accdt extensions.

O White papers on conditional formatting, normalization, and managing SQL
Server security.

If you’re interested in building project fi les that link directly to tables and queries
stored in Microsoft SQL Server, be sure to read the chapters in Part 7 that you can fi nd
on the companion CD. The companion CD also includes a host of reference articles
that you’ll fi nd essential for increasing your knowledge about building applications
using Access.

APPENDIX

Installing Your Software

This book assumes you have installed Microsoft Offi ce Access 2007 as part of
 Microsoft Offi ce Professional 2007 or Microsoft Offi ce Ultimate 2007. To install

Microsoft Offi ce and related software for a single user, you need a Microsoft Windows–
compatible computer confi gured as follows:

O A Pentium 500 megahertz (MHz) or faster processor (Pentium III is recom-
mended as a minimum).

O Microsoft Windows Vista, Microsoft Windows XP with Service Pack 2 (or later),
or Windows Server 2003 with Service Pack 1 (or later) operating system.

O At least 256 megabytes (MB) of random access memory (RAM); 512 MB is
recommended.

O A hard drive with at least 527 MB of free space for a minimum installation when
your network administrator has set up an install package for you on a server.
When you perform a local installation, you need up to 3 gigabytes (GB) on your
primary hard drive for the installation fi les and programs. At the end of the
Microsoft Offi ce system install, you have the option to leave some of the instal-
lation fi les on your hard drive, which requires up to an additional 240 MB of
free space. You need an additional 40 MB to 240 MB of space to install Microsoft
SQL Server 2005 Express Edition (depending upon the components you want to
install).

O A CD-ROM or DVD-ROM drive. (A DVD-ROM is recommended.) If you are install-
ing over a network, no disc drive is required.

O A mouse or other pointing device.

O A 1024×768 or greater monitor display.

Other options required to use all features include the following:

O A multimedia computer for sound and other multimedia effects.

O Dial-up or broadband Internet access.

O Microsoft Mail, Microsoft Exchange, Internet SMTP/POP3 service, or other MAPI-
compliant messaging software for e-mail.

Installing the Microsoft Offi ce System 1342

Installing SQL Server 2005 Express Edition 1349

Converting from a Previous Release of Access 1358
 1341

A
ppendix

1342 Appendix Installing Your Software
O Microsoft Exchange Server 2000 or later for advanced collaboration functions.

O Microsoft Internet Explorer 6.0 or later to run Microsoft InfoPath.

O Connection to an Internet service provider or a local copy of Microsoft Internet
Information Services (IIS) installed.

Installing the Microsoft Offi ce System
Before you run the Microsoft Offi ce system setup program, be sure that no other appli-
cations are running on your computer.

If you’re installing from the Offi ce Professional 2007 or Offi ce Ultimate 2007 CD-ROM
or DVD-ROM, insert the fi rst disc. On most systems, the Microsoft Offi ce system
setup program starts automatically. If the setup program does not start automatically,
click the Run command on the Windows Start menu. In the Run dialog box, type
x:\setup.exe (where x is the drive letter of your CD-ROM drive), and click OK. If you see
the User Account Control dialog box and you’re logged on as a nonadministrative user,
specify the user name and password for an administrative account, and click Continue.
If you’re logged on as an administrator, click Continue.

To install from a network drive, use Windows Explorer to connect to the folder in
which your system manager has placed the Microsoft Offi ce system setup fi les. Run
Setup.exe in that folder by double-clicking it. If you’re installing the Microsoft Offi ce
system from a Master License Pack, click Run on the Start menu, and include a PID-
KEY= parameter and the 25-character volume-license key in the open box, as in:

x:\setup.exe PIDKEY=1234567890123456789012345

Note that the setup program might take several minutes after it displays its opening
screen to examine your computer and determine what programs you currently have
installed—be patient! If you didn’t supply a license key on the command line, the setup
program fi rst asks for a valid product key. If you’re installing from a CD or DVD, you
can fi nd the product key in the materials included with the 2007 Offi ce release instal-
lation package. Enter a valid key, and click Continue to go to the next page. The setup
program asks you to confi rm that you accept the license agreement. Select the I Accept
The Terms Of This Agreement check box, and then click Continue. The setup program
asks whether you want to install now or to customize your installation.

Choosing Options When You Have No Previous Version
of Microsoft Offi ce
When you install the 2007 Offi ce release on your computer, you can choose between
two options—Install Now or Customize, as shown in Figure A-1. If you click Install Now,
the setup program installs all the programs and components that Microsoft considers
most useful to the majority of users. The fastest way to complete an install is to click
Install Now. If you don’t want to tailor the installation to your specifi c needs by clicking

 Installing the Microsoft Offi ce System 1343

A
pp

en
di

x

Customize, click Install Now in order to include Access 2007 so that you can work
through the examples in this book.

Figure A-1 Click Install Now to install the default Offi ce Ultimate 2007 programs.

We like to click Customize to pick the options we need. The Customize install option
allows you to choose only some of the applications or include additional features that
Microsoft considers optional. When you click Customize, the setup program displays a
window with three tabs—Installation Options, File Location, and User Information, as
shown in Figure A-2.

The setup program shows you the available options for the Microsoft Offi ce system and
each program in a hierarchical view. By default, the setup program selects all programs,
but it selects only some of the features for several of the programs. Click the plus sign
next to any category to expand it and see the options in subcategories. When you see a
category that interests you, click the arrow next to the disk drive icon to choose options
for all items in that category and its subcategories. To work through all the examples
in this book, you should select the Run All From My Computer option for Microsoft
Offi ce Access, as shown in Figure A-3. Choosing this option selects the Run From My
Computer option for all subcategories. When you select Installed On First Use, the
installation program creates a shortcut for the program on your Start menu, but you’ll
be prompted to install the application when you select the shortcut the fi rst time.
Choosing Not Available causes the installation program to neither install the program
nor provide a shortcut.

A
ppendix

1344 Appendix Installing Your Software
Figure A-2 The Installation Options tab allows you to choose which programs and options to install.

Figure A-3 Choose Run All From My Computer to install Access 2007 components.

 Installing the Microsoft Offi ce System 1345

A
pp

en
di

x

We personally like to begin by selecting the Run All From My Computer option for the
top-level item, Microsoft Offi ce. We then go through each of the major categories and
selectively choose Installed On First Use or Not Available for options that we do not
want. For example, you might want to go to the Offi ce Shared Features category and
remove some of the extra fonts under International Support. Under Offi ce Tools, you
might want to remove the Microsoft Script Editor (HTML Source Editing) options if
you plan to also install Microsoft Expression Web. If you’re unsure about any option,
you can click the title of the option to see a brief description in the lower part of the
window.

On the File Location tab, you see a box with a default location chosen, as shown in
Figure A-4. You can enter a different program fi le location or click the Browse button to
select a location on your hard drive. We recommend that you keep the default location.
You’ll see summary information on how much space is required and available on your
hard drive in the middle of the window.

Figure A-4 Select an installation folder on the File Location tab.

On the User Information tab, you can enter personal information about yourself and
your company, as shown in Figure A-5. Type your name in the Full Name text box,
your initials in the Initials text box, and your organization or company name in the
Organization text box. (Note, if you do not fi ll in these boxes here, the fi rst Microsoft
Offi ce system program you open after installation prompts you for your full name and
initials.)

A
ppendix

1346 Appendix Installing Your Software
Figure A-5 Enter your personal information on the User Information tab.

After you have fi nished making your selections, click Install Now to proceed. If you’re
not sure, you can click any of the three tabs to verify the options you selected. When
the setup program fi nishes, it shows you a setup completed window, as shown in Figure
A-6. In this fi nal window, you can select options to open your Web browser to check for
additional updates. You can click the Help icon in the lower-left corner of the window to
display information about registering your copy of the 2007 Offi ce release. Click Close
to close the setup program window.

 Installing the Microsoft Offi ce System 1347

pe
nd

ix
Figure A-6 The setup program displays this message when the installation process completes.

Choosing Options to Upgrade a Previous Version
of Microsoft Offi ce
When you have a previous version of any of the Microsoft Offi ce programs installed
on your computer, the setup program shows you different options after you accept the
license agreement, as shown in Figure A-7. If you click Upgrade, the setup program
installs all the programs and components that Microsoft considers most useful to the
majority of users and removes any previous versions of Microsoft Offi ce programs. The
fastest way to complete an install is to click Upgrade.
A
p

A
ppendix

1348 Appendix Installing Your Software
Figure A-7 When you have previous versions of Microsoft Offi ce programs installed, you can
choose either Upgrade or Customize.

We like to click Customize to pick the options we need. The Customize install option
allows you to choose only some of the applications to install and to not remove previ-
ous versions. When you click Customize, the setup program displays a window with
four tabs—Upgrade, Installation Options, File Location, and User Information, as
shown in Figure A-8.

The Installation Options, File Location, and User Information tabs display the same
options you learned about in the previous section. The setup program displays the
Upgrade tab only when you have previous versions of Microsoft Offi ce programs
installed on your computer. If you select Remove All Previous Versions, the setup
program removes any existing Microsoft Offi ce programs before installing the 2007
Offi ce release programs. If you select the Keep All Previous Versions option, the setup
program does not remove any existing Microsoft Offi ce programs before installing the
2007 Offi ce release programs. Notice that you cannot choose to keep a previous ver-
sion of Microsoft Offi ce Outlook if you have chosen to install Offi ce Outlook 2007. If
you select Remove Only The Following Applications, you can choose which existing
 Microsoft Offi ce programs to keep.

As professional Microsoft Access developers, we keep several versions of Access
installed on our primary development computers so that we can continue to sup-
port older applications that we wrote. (We actually have Access 97, 2000, 2002, 2003,
and 2007 installed!) You might also want to keep an older version of Excel, Microsoft

 Installing SQL Server 2005 Express Edition 1349

A
pp

en
di

x

Offi ce PowerPoint, or Microsoft Offi ce Word. To keep an older version, you must clear
the appropriate check box for the application under Remove Only The Following
 Applications.

Figure A-8 You can choose to keep or remove existing Microsoft Offi ce programs on the
Upgrade tab.

As you learned in the previous section, you can change which of the 2007 Offi ce release
components are installed on the Installation Options tab, change the installation folder
on the File Location tab, and specify your user name information on the User Informa-
tion tab. After clicking Upgrade, the setup program proceeds and displays the setup
completed window in Figure A-6 when it is fi nished. You can click the Help icon in the
lower-left corner of the window to display information about registering your copy of
the 2007 Offi ce release. Click Close to close the setup program window.

Installing SQL Server 2005 Express Edition
If you intend to build Access project fi les (.adp fi le name extension) that link directly
to a database defi ned in SQL Server, you should install SQL Server 2005 Express Edi-
tion on your desktop computer to facilitate building and testing your application. SQL
Server 2005 Express Edition is a special version of SQL Server 2005 confi gured to
run on any operating system supported by the 2007 Offi ce release—Windows Vista,
Windows XP with Service Pack 2, or Windows Server 2003 with Service Pack 1. With
SQL Server 2005 Express Edition installed, you can use an Access project fi le to create

A
ppendix

1350 Appendix Installing Your Software
 databases and defi ne tables, views, diagrams, and stored procedures that you can later
move to SQL Server on a network. You normally install SQL Server 2005 Express Edi-
tion on your desktop computer. However, you can also install SQL Server 2005 Express
Edition on a server. If you need to install SQL Server 2005 Express Edition on a server,
you must install from that server’s console.

SQL Server 2005 Express Edition has its own setup program—you can’t install SQL
Server 2005 Express Edition using the setup program in the 2007 Offi ce release. You
can download SQL Server 2005 Express Edition from Microsoft’s Web site at this loca-
tion: http://msdn.microsoft.com/vstudio/express/default.aspx. Be sure to download the
.NET Framework 2.0 if you haven’t installed it yet. Also download both SQL Server
2005 Express Edition and SQL Server Management Studio Express.

After you download the SQL Server 2005 Express Edition setup fi le to your computer
and run the program, it shows you the license agreement that you must accept in order
to unpack the installation fi les to your hard drive. (Note, if you see the User Account
Control dialog box and you’re logged on as a nonadministrative user, specify the user
name and password for an administrative account, and click Continue. If you’re logged
on as an administrator, click Continue to see the license agreement.) After you accept
the license agreement by selecting the I Accept The Licensing Terms And Conditions
check box and clicking Next, the program displays a dialog box listing the prerequisite
components that will be installed, as shown in Figure A-9. Click Install to begin the
installation process.

Figure A-9 Click Install to install the prerequisite components needed for SQL Server 2005 Express
Edition.

 Installing SQL Server 2005 Express Edition 1351

A
pp

en
di

x

After the prerequisite components are installed, click Next to continue. The setup pro-
gram then performs a scan of your current computer confi guration. After the scan is
complete, the setup program displays the Microsoft SQL Server 2005 Setup Wizard, as
shown in Figure A-10. Click Next to continue.

Figure A-10 Click Next to begin the installation process for SQL Server 2005 Express Edition.

The wizard displays the System Confi guration Check page, as shown in Figure A-11.
The wizard checks to see that all necessary components and system requirements are
met before proceeding. If any problems exist, such as not having the .NET Framework
2.0 installed, the wizard displays an error message in the Status column. You’ll need to
review what components or system requirements need to be met in order to install SQL
Server 2005 Express Edition. If your computer passes all the requirement tests, click
Next to proceed.

A
ppendix

1352 Appendix Installing Your Software
Figure A-11 If your computer meets all the prerequisites for installation, you can click Next to
proceed.

The wizard next displays the Registration Information page, as shown in Figure A-12.
Enter your name in the Name text box (this is a required fi eld) and your company or
organization name in the Company text box. If you clear the Hide Advanced Confi gu-
ration Options check box (selected by default), you see a number of additional pages
along with the Authentication Mode and Error And Usage Report Settings pages shown
later in this section. Click the Help button in the lower-left corner of the wizard for
more information on each page. Click Next to proceed.

The next page of the setup wizard, Feature Selection, displays the components you can
install with SQL Server 2005 Express Edition, as shown in Figure A-13. The wizard
shows you all the available options for SQL Server 2005 Express Edition in a hierar-
chical view. By default, the wizard does not select Client Components, but you should
install those options. Click the plus sign next to any category to expand it and see the
options in subcategories. When you see a category that interests you, click the arrow
next to the disk drive icon to choose options for all items in that category and its sub-
categories. We selected the Will Be Installed On Local Hard Drive option for all compo-
nents. The installation path for the program is listed near the bottom of this page. If you
want to change this location, click the Browse button, and browse to a different loca-
tion to install SQL Server 2005 Express Edition. Click the Disk Cost button to display
each volume drive on your computer, the amount of total disk space for each drive, the
amount of free disk space available on each drive, the amount of required space needed
to install the components, and the difference in size remaining. Click Next to proceed.

 Installing SQL Server 2005 Express Edition 1353

A
pp

en
di

x

Figure A-12 Enter your name and company on this page of the setup wizard.

Figure A-13 Select the components you want to install on the Feature Selection page.

The wizard next displays the Authentication Mode page, as shown in Figure A-14. We
strongly recommend that you use Windows Authentication Mode. When you do this,
only Windows-authenticated users who have been granted permission on your server
can gain access to it. (The members of the Administrators group on your computer

A
ppendix

1354 Appendix Installing Your Software
 automatically have permission.) If you use SQL Server security, anyone who discov-
ers the password to the sa user ID can gain access to your server. If you choose to use
Mixed Mode (Windows Authentication And SQL Server Authentication), the password
for the sa user account should be at least six characters and can be as long as 128 char-
acters. A password should also contain some combination of letters, numbers, and sym-
bols such as # or) to make it more diffi cult to discover. Click Next to continue.

Figure A-14 Select an authentication mode to use with SQL Server 2005 Express Edition.

The wizard next displays the Confi guration Options page, as shown in Figure A-15.
On this page, you can create separate instances for users who do not have administra-
tor permissions. Select Enable User Instances (selected by default) to allow separate
instances or clear this check box to disable the functionality. Select Add User To The
SQL Server Administrator Role (cleared by default) to add the user installing SQL
Server 2005 Express Edition to the administrator role. If you’re installing SQL Server
2005 Express Edition on a Windows Vista computer, we recommend selecting this
option because the installation wizard does not add the user running the installation to
the administrator role. Click Next to proceed.

The wizard next displays the Error And Usage Report Settings page, as shown in Figure
A-16. If you select the fi rst check box (cleared by default), SQL Server 2005 Express
Edition automatically sends error reports to either Microsoft or an internal corporate
IT department. If you select the second check box (also cleared by default), SQL Server
2005 Express Edition automatically sends usage reports to Microsoft on what features
you are using in the program. Microsoft uses this data to make improvements in future
releases. Click Next to proceed.

 Installing SQL Server 2005 Express Edition 1355

A
pp

en
di

x

Figure A-15 Select user and administrator options on the Confi guration Options page.

Figure A-16 These two options allow you to report errors and usage data to either Microsoft or
your company’s IT department.

The last page of the setup wizard, Ready To Install, displays the components that will
be installed on your computer, as shown in Figure A-17. If you want to change any of
your installation options, click the Back button to return to previous setup wizard

A
ppendix

1356 Appendix Installing Your Software
pages. If you want to cancel the installation process, click the Cancel button. Click the
Install button to proceed with the installation.

Figure A-17 Click Install to complete the installation process.

The wizard displays a dialog box that shows you the progress and time remaining for
the installation. On a fast computer, the installation should complete in two to three
minutes. You can click Cancel in this dialog box at any time to cancel the installation.
On the Setup Progress page, shown in Figure A-18, the Status column should display
Setup Finished next to each component that the setup wizard installed. Click Next to
continue when the installation completes.

Figure A-19 shows the last page of the setup wizard, Completing Microsoft SQL Server
2005 Setup. Click the Summary Log link to open a Summary fi le in Notepad detailing
the success or failure of installing each component. If you encountered errors during
the installation process, you can use this log fi le to diagnose where the error occurred.
Click the Surface Area Confi guration Tool link to install a utility that helps confi gure
the surface area of your SQL Server installation. You can use this utility to start or stop
unused components after the installation. By managing the surface area of your SQL
Server 2005 Express Edition installation, you can improve the security on your system
by reducing potential entry points for attacks. Note, you’ll need to download and install
SQL Server 2005 Service Pack 2 to use this utility. The text box at the bottom of this
page displays additional information and links concerning SQL Server 2005. Click Fin-
ish to close the setup wizard.

 Installing SQL Server 2005 Express Edition 1357

A
pp

en
di

x

Figure A-18 The setup wizard displays a status message next to each installed component.

Figure A-19 You can review any errors that might have occurred during the installation on the last
page of the setup wizard.

After the installation completes, you can start the SQL Server Confi guration Manager
by clicking the SQL Server Confi guration Manager option on the Confi guration Tools
submenu of the Microsoft SQL Server 2005 program group. (If you don’t fi nd the

A
ppendix

1358 Appendix Installing Your Software
 program on your Microsoft SQL Server 2005 menu, you can also start it from C:\Win-
dows\System32\SQLServerManager.msc.) In the Confi guration Manager, select SQL
Server 2005 Services, and be sure the SQL Server (SQLEXPRESS) service is marked
as Running. If it is not running, right-click the service name, and click Start on the
shortcut menu. The Confi guration Manager presents options, as shown in Figure A-20.
You can close the SQL Server Confi guration Manager program window, but the service
continues to run.

Figure A-20 The SQL Server Confi guration Manager displays the status of your SQL Server
 services.

To be able to manage your databases, we recommend that you also install the SQL
Server Management Studio Express program. This program provides a graphical inter-
face to create, modify, and delete databases, tables, views, stored procedures, functions,
security settings, and more.

Converting from a Previous Release of Access
Access 2007 (version 12 of Access) can work with the data and tables in a database fi le
created by Access version 2, version 7 (Access for Windows 95), version 8 (Access 97),
version 9 (Access 2000), version 10 (Access 2002), and version 11 (Access 2003). For
version 2, you can only import the tables and queries in the old database into a new
database that you create using Access 2007. Depending on the complexity of the appli-
cation, you might be able to open and run a version 7 or version 8 database application
with version 12, but you won’t be able to modify any of the objects in the database. You
can open a version 9, version 10, or version 11 database with version 12 and modify any
of the objects in the database.

You can convert a version 7 or version 8 database fi le to either the Access 2000 format
(version 9), the Access 2002-2003 format (versions 10 and 11), or the Access 2007
.accdb format (version 12). Before you begin the conversion process, make sure all
Access Basic or Visual Basic for Applications (VBA) modules are compiled in your ear-
lier version database. If you want to convert your database to the .accdb fi le format, start
Access 2007, click the Microsoft Offi ce Button, and then click Convert. Access opens

 Converting from a Previous Release of Access 1359

A
pp

en
di

x

the Save As dialog box. You must specify a different fi le name or location for your con-
verted database because Access won’t let you replace your previous version fi le directly.
Click Save to convert the database. If you want to convert your database to the Access
2000 or Access 2002-2003 format, start Access 2007, click the Microsoft Offi ce Button,
click the arrow next to Save As, and then click either Access 2000 Database or Access
2002-2003 Database. Access opens the Save As dialog box. You must specify a different
fi le name or location for your converted database because Access won’t let you replace
your previous version fi le directly. Click Save to convert the database.

If you open a version 2, version 7, or version 8 database in Access 2007, you will see a
dialog box offering to convert the database to the current version or attempt to modify
the database for shared use between versions. For these versions, we recommend that
you attempt to convert them rather than modify them for shared use. You won’t be able
to convert a database that contains anything other than tables and queries. You must
create a new Access 2007 format database and import tables and queries from a version
2 database that has forms, reports, macros, or modules. You can also convert an earlier
version database by creating a new Access 2007 format database and then importing all
the objects from the older version database.

Conversion Issues
Access 2007 reports any objects or properties that it is unable to convert by creating a
table called Convert Errors in your converted database. The most common problems
you’re likely to encounter are Visual Basic libraries that were available in a previous
version but not in Access 2007 and obsolete code that you created in a user-defi ned
 function.

Other changes that might affect the conversion of your application code or how your
converted application runs include the following:

O In versions 7 and earlier, you had to use macros to construct custom menus.
Access 2007 continues to support macros for custom menus, but you might want
to rebuild custom Ribbons using XML.

O As of version 8, DoMenuItem is no longer supported. The conversion utility
replaces this command in all macros with the equivalent RunCommand action
or method. The DoMenuItem method in Visual Basic code is still supported for
backward compatibility, but you should locate and change these statements after
converting your database.

O In version 8, you could create a formatted Windows dialog box with the MsgBox
action or function, separating the sections of the message with the @ character.
Version 9 and later no longer support this feature. You should remove the @ char-
acter used in this way in code you wrote for version 8.

O Versions 7 and 8 supported the Microsoft DAO 2.5/3.x compatibility library
for databases converted from previous versions. Version 9 and later no longer
support this library. You will need to replace the reference to this library to the
Microsoft Offi ce 12.0 Access Database Engine Object Library after you convert

A
ppendix

1360 Appendix Installing Your Software
the database, and you might need to change old Visual Basic statements that
depended on the older version of Data Access Objects (DAO).

O If you convert a database by importing its objects, your new database might not
compile or execute properly. The problem is most likely a reference to an obso-
lete Visual Basic code library. You can correct this by opening any module in the
Visual Basic Editor and then clicking Tools, References. Remove any libraries
marked MISSING, and attempt to compile the project.

O Unless you also have Microsoft Offi ce 2003 installed on your computer, you won’t
be able to edit any data access pages that you created in Access 2003.

Index to Troubleshooting Topics

Topic Description Page

Tables Why can’t I see the Maximize/Minimize buttons on
my table?

109

Tables Why does my table have extra rows in the lower half
of the screen like a spreadsheet?

111

External Data Why can’t I connect to my local instance of SQL Server
2005 Express Edition using Windows authentication
on my Windows Vista computer?

258

External Data Access won’t use ODBC for all fi le types. 268

External Data You can’t connect to a specifi c database using trusted
authentication because you use more than one data
source.

302

External Data Why can’t I see all the fi elds from my table in the data
collection process?

311

Queries How can I be sure I’m using the correct table in the
query designer?

415

Queries I didn’t specify sorting criteria, so why is my data
sorted?

439

Queries How do I display more than one value in a crosstab? 444

Reports Why did the Print Preview tab disappear when I col-
lapsed the Navigation Pane?

739

Macros Why doesn’t the list include all the macro actions
available?

892

Forms Why isn’t Access setting my defi ned default value for
a date/time fi eld?

1063

External Data I don’t see the graphic or the background on my
sample page. What am I doing wrong?

1150

Windows
SharePoint Services

Why doesn’t my imported Windows SharePoint
 Services list include all the records?

1191

Windows
SharePoint Services

Why can’t I make any changes to my published
 database?

1224
1361

1362 Index to Troubleshooting Topics
Topic Description Page

Access Project I keep getting errors when I try to create a new data-
base. What am I doing wrong?

1452

Access Project I’m using SQL Server 7, so why can’t I see all the col-
umn properties or create lookups?

1470

Access Project Why can’t I open my form in Layout view in a project
fi le?

1552

Index

Symbols and Numbers

1363

Z03623252.indd 1363 3/8/2007 1:11:32 PM

A

1364 . (period)

Z03623252.indd 1364 3/8/2007 1:11:32 PM

1365Add A Sort option

Z03623252.indd 1365 3/8/2007 1:11:32 PM

1366 Add Generated Key button

Z03623252.indd 1366 3/8/2007 1:11:33 PM

1367applications

Z03623252.indd 1367 3/8/2007 1:11:33 PM

1368 architecture

Z03623252.indd 1368 3/8/2007 1:11:33 PM

B

1369Blank.accdb database template

Z03623252.indd 1369 3/8/2007 1:11:33 PM

1370 blocking harmful content

Z03623252.indd 1370 3/8/2007 1:11:33 PM

C

1371Cascade Delete Related Fields check box

Z03623252.indd 1371 3/8/2007 1:11:33 PM

1372 Cascade Update Related Fields check box

Z03623252.indd 1372 3/8/2007 1:11:33 PM

1373color

Z03623252.indd 1373 3/8/2007 1:11:34 PM

1374 Column Fields drop zone

Z03623252.indd 1374 3/8/2007 1:11:34 PM

1375Configuration Options page

Z03623252.indd 1375 3/8/2007 1:11:34 PM

1376 confirmation dialog boxes

Z03623252.indd 1376 3/8/2007 1:11:34 PM

1377Controls group

Z03623252.indd 1377 3/8/2007 1:11:34 PM

1378 conversion functions

Z03623252.indd 1378 3/8/2007 1:11:34 PM

D

1379data

Z03623252.indd 1379 3/8/2007 1:11:34 PM

1380 Data Access Objects

Z03623252.indd 1380 3/8/2007 1:11:35 PM

1381databases

Z03623252.indd 1381 3/8/2007 1:11:35 PM

1382 databases

Z03623252.indd 1382 3/8/2007 1:11:35 PM

1383Date Picker

Z03623252.indd 1383 3/8/2007 1:11:35 PM

1384 Date/Time data type

Z03623252.indd 1384 3/8/2007 1:11:35 PM

1385Detail section

Z03623252.indd 1385 3/8/2007 1:11:35 PM

1386 Details view

Z03623252.indd 1386 3/8/2007 1:11:36 PM

E

1387Editor tab

Z03623252.indd 1387 3/8/2007 1:11:36 PM

1388 elements

Z03623252.indd 1388 3/8/2007 1:11:36 PM

1389exporting

Z03623252.indd 1389 3/8/2007 1:11:36 PM

F

1390 ExportXML command

Z03623252.indd 1390 3/8/2007 1:11:36 PM

1391files

Z03623252.indd 1391 3/8/2007 1:11:36 PM

1392 fill characters embedded in format string

Z03623252.indd 1392 3/8/2007 1:11:36 PM

1393Form view

Z03623252.indd 1393 3/8/2007 1:11:36 PM

1394 Form window

Z03623252.indd 1394 3/8/2007 1:11:36 PM

1395Forms collections

Z03623252.indd 1395 3/8/2007 1:11:37 PM

G

1396 Forms object type

Z03623252.indd 1396 3/8/2007 1:11:37 PM

H

1397HAVING clause

Z03623252.indd 1397 3/8/2007 1:11:37 PM

1398 headers

Z03623252.indd 1398 3/8/2007 1:11:37 PM

I

1399in-line functions

Z03623252.indd 1399 3/8/2007 1:11:37 PM

J

1400 INNER JOIN statement

Z03623252.indd 1400 3/8/2007 1:11:37 PM

K

L

1401Layout view

Z03623252.indd 1401 3/8/2007 1:11:37 PM

1402 left arrow button

Z03623252.indd 1402 3/8/2007 1:11:38 PM

M

1403macros

Z03623252.indd 1403 3/8/2007 1:11:38 PM

1404 Macros object type

Z03623252.indd 1404 3/8/2007 1:11:38 PM

1405Microsoft Office system

Z03623252.indd 1405 3/8/2007 1:11:38 PM

1406 Microsoft Office Trusted Location dialog box

Z03623252.indd 1406 3/8/2007 1:11:38 PM

1407MVPs

Z03623252.indd 1407 3/8/2007 1:11:38 PM

N

1408 name separators in Expression Builder

Z03623252.indd 1408 3/8/2007 1:11:38 PM

O

1409objects

Z03623252.indd 1409 3/8/2007 1:11:38 PM

1410 ODBC

Z03623252.indd 1410 3/8/2007 1:11:39 PM

P

1411panes

Z03623252.indd 1411 3/8/2007 1:11:39 PM

1412 Paradox

Z03623252.indd 1412 3/8/2007 1:11:39 PM

1413printers

Z03623252.indd 1413 3/8/2007 1:11:39 PM

1414 printing

Z03623252.indd 1414 3/8/2007 1:11:39 PM

1415properties

Z03623252.indd 1415 3/8/2007 1:11:39 PM

1416 properties

Z03623252.indd 1416 3/8/2007 1:11:39 PM

Q

1417queries

Z03623252.indd 1417 3/8/2007 1:11:40 PM

1418 queries

Z03623252.indd 1418 3/8/2007 1:11:40 PM

1419query properties

Z03623252.indd 1419 3/8/2007 1:11:40 PM

R

1420 Query Type group

Z03623252.indd 1420 3/8/2007 1:11:40 PM

1421Relationships tab

Z03623252.indd 1421 3/8/2007 1:11:40 PM

1422 Relationships window

Z03623252.indd 1422 3/8/2007 1:11:40 PM

1423resending data collection messages

Z03623252.indd 1423 3/8/2007 1:11:40 PM

1424 resizing

Z03623252.indd 1424 3/8/2007 1:11:40 PM

S

1425searching

Z03623252.indd 1425 3/8/2007 1:11:41 PM

1426 secondary forms

Z03623252.indd 1426 3/8/2007 1:11:41 PM

1427simple queries

Z03623252.indd 1427 3/8/2007 1:11:41 PM

1428 simple reports

Z03623252.indd 1428 3/8/2007 1:11:41 PM

1429SQL Server 2005

Z03623252.indd 1429 3/8/2007 1:11:41 PM

1430 SQL Server 2005 Express Edition

Z03623252.indd 1430 3/8/2007 1:11:41 PM

1431Switchboard Manager

Z03623252.indd 1431 3/8/2007 1:11:41 PM

T

1432 SwitchboardSample form

Z03623252.indd 1432 3/8/2007 1:11:41 PM

1433tables

Z03623252.indd 1433 3/8/2007 1:11:42 PM

1434 Tables And Related Views category

Z03623252.indd 1434 3/8/2007 1:11:42 PM

1435To Grid button

Z03623252.indd 1435 3/8/2007 1:11:42 PM

U

1436 toggle buttons

Z03623252.indd 1436 3/8/2007 1:11:42 PM

1437user interface

Z03623252.indd 1437 3/8/2007 1:11:42 PM

V

1438 user-defined data types

Z03623252.indd 1438 3/8/2007 1:11:42 PM

1439Visual Basic

Z03623252.indd 1439 3/8/2007 1:11:42 PM

W

1440 Visual Basic 2005 Express Edition

Z03623252.indd 1440 3/8/2007 1:11:43 PM

1441Windows SharePoint Services

Z03623252.indd 1441 3/8/2007 1:11:43 PM

X

1442 Windows SharePoint Services Web sites

Z03623252.indd 1442 3/8/2007 1:11:43 PM

Y

Z

1443Zoom window

Z03623252.indd 1443 3/8/2007 1:11:43 PM

Z03623252.indd 1444 3/8/2007 1:11:43 PM

About the Authors
John Viescas has been working with database systems for most of his career. He began
by designing and building a database application for a magazine and paperback book
distributing company in Illinois in 1968. He went on to build large database application
systems for El Paso Natural Gas Company in his hometown in the early 1970s. From
there, he went to Applied Data Research in Dallas, where he managed the development
of database and data dictionary systems for mainframe computers.

Before forming his own company in 1993, he helped market and support NonStop SQL
for Tandem Computers in California. Somewhere along the way (would you believe
1991?), he got involved in the early testing of a new Microsoft product that was code-
named “Cirrus.” The fi rst edition of Running Microsoft Access was published in 1992.
Since then, he has written four more editions of Running, co-authored the best-selling
SQL Queries for Mere Mortals, wrote Building Microsoft Access Applications, and is pleased
to be writing about Access from the “Inside Out” for this book. If you hang out on the
Web, you can fi nd him answering questions about Access in the newsgroups. John
has been named a Microsoft MVP every year since 1993 for his continuing help to the
Access users’ community. You can reach John via his Web site at www.viescas.com.

Jeff Conrad started working with Access when he saw a need at his full-time position
for a database solution. He bought a book on Access (should have been one of John’s
books) and began teaching himself how to use the program to solve his business’s
needs. He immediately became hooked on the power and ease of working with Access
long after John had written several books on the program.

Jeff found a home in the Microsoft Access newsgroups, asking questions as he was
learning the ins-and-outs of Access and database development. He now enjoys giving
back to a community that helped him when he was fi rst learning how to use Access. He
has been an active participant for many years in the Access newsgroups where he is best
known as the Access Junkie.

Jeff also owns his own company, Conrad Systems Development, creating custom data-
base and spreadsheet applications for the food service industry. Jeff maintains a Web
site with a wealth of information and resource links for those needing guidance with
Access (www.AccessJunkie.com). He was awarded Microsoft’s Most Valuable Professional
award from 2005 to 2007 for his continual involvement with the online Access commu-
nity. Because Jeff knows Access “Inside Out,” he recently joined Microsoft as a Software
Design Engineer in Test working with Access and Excel technologies.

	Cover
	Copyright Page

	Dedication
	Contents at a Glance
	Table of Contents
	Acknowledgments
	About the CD
	What’s on the CD
	Sample Applications
	System Requirements
	Support Information

	Conventions and Features Used in This Book
	Text Conventions
	Design Conventions
	Syntax Conventions

	Introduction
	Getting Familiar with Access 2007
	About This Book

	Part 1: Understanding Microsoft Access
	Chapter 1: What Is Microsoft Access?
	What Is a Database?
	Relational Databases
	Database Capabilities

	Access as an RDBMS
	Data Definition and Storage
	Data Manipulation
	Data Control

	Access as an Application Development System
	Deciding to Move to Database Software

	Chapter 2: Exploring the New Look of Access 2007
	Opening Access for the First Time
	Getting Started—A New Look for Access
	Opening an Existing Database
	Exploring the Microsoft Office Button
	Taking Advantage of the Quick Access Toolbar

	Understanding Content Security
	Temporarily Enabling a Database That Is Not Trusted
	Understanding the Trust Center
	Enabling Content by Defining Trusted Locations

	Understanding the New Ribbon Feature
	Home Tab
	Create Tab
	External Data Tab
	Database Tools Tab

	Understanding the New Navigation Pane
	Exploring Navigation Pane Object Views
	Working with Custom Categories and Groups
	Sorting and Selecting Views in the Navigation Pane
	Manually Sorting Objects in the Navigation Pane
	Searching for Database Objects

	Using the Single-Document vs. Multiple- Document Interface
	Modifying Global Settings via the Access Options Dialog Box

	Chapter 3: Microsoft Office Access 2007 Overview
	The Architecture of Access
	Exploring a Desktop Database—Housing Reservations
	Tables
	Queries
	Forms
	Reports
	Macros
	Modules

	Exploring a Project File—Conrad Systems Contacts
	Tables
	Views, Functions, and Stored Procedures

	The Many Faces of Access

	Part 2: Building an Access 2007 Desktop Application
	Chapter 4: Creating Your Database and Tables
	Creating a New Database
	Using a Database Template to Create a Database
	Creating a New Empty Database

	Creating Your First Simple Table by Entering Data
	Creating a Table Using a Table Template
	Creating a Table in Design View
	Defining Fields
	Understanding Field Data Types
	Setting Field Properties
	Completing the Fields in the Companies Table
	Defining Simple Field Validation Rules
	Defining Input Masks

	Defining a Primary Key
	Defining a Table Validation Rule
	Understanding Other Table Properties
	Defining Relationships
	Defining Your First Relationship
	Creating a Relationship on Multiple Fields

	Adding Indexes
	Single-Field Indexes
	Multiple-Field Indexes

	Setting Table Design Options
	Creating a Default Template for New Databases
	Printing a Table Definition
	Database Limitations

	Chapter 5: Modifying Your Table Design
	Before You Get Started
	Making a Backup Copy
	Checking Object Dependencies

	Deleting Tables
	Renaming Tables
	Changing Field Names
	Moving Fields
	Inserting Fields
	Copying Fields
	Deleting Fields
	Changing Data Attributes
	Changing Data Types
	Changing Data Lengths
	Dealing with Conversion Errors
	Changing Other Field Properties

	Reversing Changes
	Using the Table Analyzer Wizard
	Taking a Look at Lookup Properties
	Working with Multi-Value Lookup Fields
	Changing the Primary Key
	Compacting Your Database

	Chapter 6: Importing and Linking Data
	A Word About Open Database Connectivity (ODBC)
	Creating a Data Source to Link to an ODBC Database
	Importing vs. Linking Database Files
	Importing Data and Databases
	Importing dBASE Files
	Importing Paradox Files
	Importing SQL Tables
	Importing Access Objects

	Importing Spreadsheet Data
	Preparing a Spreadsheet
	Importing a Spreadsheet
	Fixing Errors

	Importing Text Files
	Preparing a Text File
	Importing a Text File
	Fixing Errors

	Modifying Imported Tables
	Linking Files
	Security Considerations
	Performance Considerations
	Linking Access Tables
	Linking dBASE and Paradox Files
	Linking Text and Spreadsheet Files
	Linking SQL Tables
	Modifying Linked Tables
	Unlinking Linked Tables
	Using the Linked Table Manager

	Collecting Data via E-Mail
	Collecting Data via HTML Forms
	Collecting Data Using InfoPath Forms

	Chapter 7: Creating and Working with Simple Queries
	Selecting Data from a Single Table
	Specifying Fields
	Setting Field Properties
	Entering Selection Criteria
	Using Expressions
	Using the Expression Builder
	Specifying Field Names
	Sorting Data

	Testing Validation Rule Changes
	Checking a New Field Validation Rule
	Checking a New Table Validation Rule

	Working in Query Datasheet View
	Moving Around and Using Keyboard Shortcuts
	Working with Subdatasheets
	Changing Data
	Working with Hyperlinks
	Sorting and Searching for Data

	Chapter 8: Building Complex Queries
	Selecting Data from Multiple Tables
	Creating Inner Joins
	Building a Query on a Query
	Using Outer Joins

	Using a Query Wizard
	Summarizing Information with Totals Queries
	Totals Within Groups
	Selecting Records to Form Groups
	Selecting Specific Groups
	Building Crosstab Queries

	Using Query Parameters
	Customizing Query Properties
	Controlling Query Output
	Working with Unique Records and Values
	Defining a Subdatasheet
	Other Query Properties

	Editing and Creating Queries in SQL View
	Limitations on Using Select Queries to Update Data
	Creating PivotTables and PivotCharts from Queries
	Building a Query for a PivotTable
	Designing a PivotTable
	Designing a PivotChart

	Chapter 9: Modifying Data with Action Queries
	Updating Groups of Rows
	Testing with a Select Query
	Converting a Select Query to an Update Query
	Running an Update Query
	Updating Multiple Fields
	Creating an Update Query Using Multiple Tables or Queries

	Creating a New Table with a Make-Table Query
	Creating a Make-Table Query
	Running a Make-Table Query

	Inserting Data from Another Table
	Creating an Append Query
	Running an Append Query

	Deleting Groups of Rows
	Testing with a Select Query
	Using a Delete Query
	Deleting Inactive Data

	Troubleshooting Action Queries
	Solving Common Action Query Errors and Problems
	Looking at an Error Example

	Part 3: Creating Forms and Reports in a Desktop Application
	Chapter 10: Using Forms
	Uses of Forms
	A Tour of Forms
	Headers, Detail Sections, and Footers
	Multiple-Page Forms
	Continuous Forms
	Split Forms
	Subforms
	Pop-Up Forms
	Modal Forms
	Special Controls
	PivotTables and PivotCharts

	Moving Around on Forms and Working with Data
	Viewing Data

	Adding Records and Changing Data
	Adding a New Record
	Changing and Deleting Data

	Searching for and Sorting Data
	Performing a Simple Search
	Using the Search Box
	Performing a Quick Sort on a Form Field
	Adding a Filter to a Form

	Printing Forms

	Chapter 11: Building a Form
	Forms and Object-Oriented Programming
	Starting from Scratch—A Simple Input Form
	Building a New Form with Design Tools
	Building a Simple Input Form for the tblCompanies Table
	Customizing Colors and Checking Your Design Results

	Working with Quick Create Commands and the Form Wizard
	Creating a Form with the Quick Create Commands
	Creating the Basic Products Form with the Form Wizard
	Modifying the Products Form

	Simplifying Data Input with a Form
	Taking Advantage of Combo Boxes and List Boxes
	Using Toggle Buttons, Check Boxes, and Option Buttons

	Chapter 12: Customizing a Form
	Aligning and Sizing Controls in Design View
	Sizing Controls to Fit Content
	Adjusting the Layout of Controls
	“Snapping” Controls to the Grid
	Lining Up Controls

	Working in Layout View
	Understanding Control Layouts and Control Anchoring
	Lining Up Controls
	Moving Controls Within a Control Layout
	Formatting a Column of Controls
	Resizing Controls
	Removing a Control Layout
	Placing Controls into a Control Layout
	Adding Some Space with Control Padding
	Completing the Form

	Enhancing the Look of a Form
	Lines and Rectangles
	Colors and Special Effects
	Fonts

	Setting Control Properties
	Formatting Properties
	Adding a Scroll Bar
	Enabling and Locking Controls
	Setting the Tab Order
	Adding a Smart Tag
	Understanding Other Control Properties

	Setting Form Properties
	Allowing Different Views
	Setting Navigation Options
	Defining a Pop-Up and/ or Modal Form
	Controlling Edits, Deletions, Additions, and Filtering
	Defining Window Controls
	Setting the Border Style
	Understanding Other Form Properties

	Setting Form and Control Defaults
	Changing Control Defaults
	Working with AutoFormat
	Defining a Template Form

	Chapter 13: Advanced Form Design
	Basing a Form on a Multiple-Table Query
	Creating a Many-to-One Form

	Creating and Embedding Subforms
	Specifying the Subform Source
	Designing the Innermost Subform
	Designing the First Level Subform
	Embedding a Subform
	Specifying the Main Form Source
	Creating the Main Form
	Creating a Subdatasheet Subform

	Displaying Values in an Option Group
	Using Conditional Formatting
	Working with the Tab Control
	Creating Multiple-Page Forms
	Introducing ActiveX Controls—The Calendar Control
	Working with PivotChart Forms
	Building a PivotChart Form
	Embedding a Linked PivotChart

	Chapter 14: Using Reports
	Uses of Reports
	A Tour of Reports
	Print Preview — A First Look
	Headers, Detail Sections, Footers, and Groups
	Subreports
	Objects in Reports
	Report View — A First Look

	Printing Reports
	Print Setup

	Chapter 15: Constructing a Report
	Starting from Scratch—A Simple Report
	Building the Report Query
	Designing the Report
	Grouping, Sorting, and Totaling Information
	Completing the Report

	Using the Report Command
	Using the Report Wizard
	Specifying Report Wizard Options
	Viewing the Result
	Modifying a Wizard-Created Report in Layout View

	Building a Report in Layout View
	Starting with a Blank Report
	Adding Grouping and Sorting
	Working with Control Layouts
	Adding Totals to Records
	Applying an AutoFormat

	Chapter 16: Advanced Report Design
	Building a Query for a Complex Report
	Creating the Basic Facility Occupancy By Date Report
	Defining the Grouping and Sorting Criteria
	Setting Section and Report Properties
	Section Properties
	Report Properties

	Using Calculated Values
	Adding the Print Date and Page Numbers
	Performing Calculations
	Hiding Redundant Values and Concatenating Text Strings
	Calculating Percentages
	Using Running Sum
	Taking Advantage of Conditional Formatting

	Creating and Embedding a Subreport
	Understanding Subreport Challenges
	Building a Report with a Subreport

	Adding a PivotChart to a Report
	Designing the PivotChart Form
	Embedding a PivotChart in a Report

	Part 4: Automating an Access Application
	Chapter 17: Understanding Event Processing
	Access as a Windows Event-Driven Application
	Understanding Events in Windows
	Leveraging Access Events to Build an Application

	Summary of Form and Report Events
	Understanding Event Sequence and Form Editing

	Chapter 18: Automating Your Application with Macros
	Uses of Macros
	The Macro Design Facility—An Overview
	Working with the Macro Design Window
	Saving Your Macro
	Testing Your Macro

	Defining Multiple Actions
	Grouping Macros
	Understanding Conditional Expressions
	Using Embedded Macros
	Editing an Embedded Macro
	Creating an Embedded Macro
	Deleting an Embedded Macro

	Using Temporary Variables
	Trapping Errors in Macros
	Understanding Macro Actions That Are Not Trusted
	Making Your Application Come Alive with Macros
	Referencing Form and Report Objects
	Opening a Secondary Form
	Synchronizing Two Related Forms
	Validating Data and Presetting Values

	Converting Your Macros to Visual Basic

	Chapter 19: Understanding Visual Basic Fundamentals
	The Visual Basic Development Environment
	Modules
	The Visual Basic Editor Window
	Working with Visual Basic Debugging Tools

	Variables and Constants
	Data Types
	Variable and Constant Scope

	Declaring Constants and Variables
	Const Statement
	Dim Statement
	Enum Statement
	Event Statement
	Private Statement
	Public Statement
	ReDim Statement
	Static Statement
	Type Statement

	Collections, Objects, Properties, and Methods
	The Access Application Architecture
	The Data Access Objects (DAO) Architecture
	The ActiveX Data Objects (ADO) Architecture
	Referencing Collections, Objects, and Properties
	Assigning an Object Variable—Set Statement
	Object Methods

	Functions and Subroutines
	Function Statement
	Sub Statement

	Understanding Class Modules
	Property Get
	Property Let
	Property Set

	Controlling the Flow of Statements
	Call Statement
	Do…Loop Statement
	For…Next Statement
	For Each…Next Statement
	GoTo Statement
	If… Then…Else Statement
	RaiseEvent Statement
	Select Case Statement
	Stop Statement
	While… Wend Statement
	With…End Statement

	Running Macro Actions and Menu Commands
	DoCmd Object
	Executing an Access Command
	Actions with Visual Basic Equivalents

	Trapping Errors
	On Error Statement

	Some Complex Visual Basic Examples
	A Procedure to Randomly Load Data
	A Procedure to Examine All Error Codes

	Chapter 20: Automating Your Application with Visual Basic
	Why Aren’t We Using Macros?
	When to Use Macros
	When to Use Visual Basic

	Assisting Data Entry
	Filling In Related Data
	Handling the NotInList Event
	Fixing an E-Mail Hyperlink
	Providing a Graphical Calendar
	Working with Linked Photos

	Validating Complex Data
	Checking for Possible Duplicate Names
	Testing for Related Records When Deleting a Record
	Verifying a Prerequisite
	Maintaining a Special Unique Value
	Checking for Overlapping Data

	Controlling Tabbing on a Multiple-Page Form
	Automating Data Selection
	Working with a Multiple-Selection List Box
	Providing a Custom Query By Form
	Selecting from a Summary List
	Filtering One List with Another

	Linking to Related Data in Another Form or Report
	Linking Forms Using a Filter
	Linking to a Report Using a Filter
	Synchronizing Two Forms Using a Class Event

	Automating Complex Tasks
	Triggering a Data Task from a Related Form
	Linking to a Related Task
	Calculating a Stored Value

	Automating Reports
	Allowing for Used Mailing Labels
	Drawing on a Report
	Dynamically Filtering a Report When It Opens

	Part 5: Linking Access and the Web
	Chapter 21: Publishing Data on the Web
	Working with the Web
	Understanding HTML
	Introducing XML

	Understanding Static Web Pages
	Viewing Static HTML Pages
	Creating a Static HTML Document
	Improving the Look of Exported Data in HTML
	Generating an HTML Page from an Access Report
	Writing HTML from Visual Basic

	Creating Dynamic Web Pages
	Delivering Dynamic Query Results
	Processing Live Data with HTML Forms
	Using Visual Studio .NET and ASP.NET

	Sharing Your Data with SharePoint
	Introducing Windows SharePoint Services
	Office and Windows SharePoint Services

	Chapter 22: Working with Windows SharePoint Services
	Working Within the Windows SharePoint Services User Interface
	Editing Data in Lists
	Creating New Views
	Adding Columns to Lists
	Recycle Bin

	Using Windows SharePoint Services from Access
	Exporting Data to Windows SharePoint Services
	Importing a List from Windows SharePoint Services
	Linking a Windows SharePoint Services List into Access
	Using SharePoint List Options with Linked Lists
	Creating a New Windows SharePoint Services List from Within Access

	Migrating an Access Database to a Windows SharePoint Services Site
	Publishing Your Database to a Windows SharePoint Services Site
	Moving Your Database to a Windows SharePoint Services Site
	Republish a Database to a Windows SharePoint Services Site
	Opening the Database from Windows SharePoint Services
	Working Offline
	Synchronizing Changes After Working Offline

	Chapter 23: Using XML
	Exploring XML
	Well-Formed XML
	Understanding XML File Types

	Using XML in Microsoft Access
	Exporting and Importing XML from the User Interface
	Importing and Exporting XML in Visual Basic

	Modifying Table Templates
	Adding a New Field to a Table Template
	Modifying a Field in a Table Template

	Customizing the Ribbon with XML
	Creating a USysRibbons Table
	Creating a Test Form
	Building the Ribbon XML

	Part 6: After Completing Your Application
	Chapter 24: The Finishing Touches
	Creating Custom Ribbons
	Loading Ribbon XML
	Using Ribbon Attributes
	Creating VBA Callbacks
	Dynamically Updating Ribbon Elements
	Loading Images into Custom Controls
	Hiding Options on the Microsoft Office Button
	Setting Focus to a Tab

	Fine-Tuning with Performance Analyzer
	Disabling Layout View
	Defining Switchboard Forms
	Designing a Switchboard Form from Scratch
	Using the Switchboard Manager to Design Switchboard Forms

	Controlling How Your Application Starts and Runs
	Setting Startup Properties for Your Database
	Starting and Stopping Your Application
	Creating an AutoKeys Macro

	Performing a Final Visual Basic Compile

	Chapter 25: Distributing Your Application
	Using Linked Tables in a Desktop Database
	Taking Advantage of the Database Splitter Wizard
	Creating Startup Code to Verify and Correct Linked Table Connections

	Understanding Runtime Mode
	Creating an Execute-Only Database
	Creating an Application Shortcut
	Encrypting Your Database
	Packaging and Signing Your Database
	Understanding the Access 2007 Developer Extensions and Runtime

	Appendix: Installing Your Software
	Installing the Microsoft Office System
	Choosing Options When You Have No Previous Version of Microsoft Office
	Choosing Options to Upgrade a Previous Version of Microsoft Office

	Installing SQL Server 2005 Express Edition
	Converting from a Previous Release of Access
	Conversion Issues

	Index to Troubleshooting Topics
	Index
	About the Authors

